To see the other types of publications on this topic, follow the link: Variable gain amplifier.

Journal articles on the topic 'Variable gain amplifier'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Variable gain amplifier.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Jing Zhi. "A 520MHz Wideband Variable Gain Amplifier." Applied Mechanics and Materials 556-562 (May 2014): 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.

Full text
Abstract:
The design and realization of a wideband variable gain amplifier for RF system is presented. The cascade of LNA and controllable attenuation makes the design have a 0-90dB gain adjustment range. Special care is devoted to the solution of typical problems encountered in the design of the amplifier, such as signal shielding and power supply decoupling. The amplifier uses passive amplitude-frequency equalization, 0.1-460MHz band variation is less than 1dB, the 3dB bandwidth is up to 520MHz. The noise characteristic is low, the total input referred noise is less than 15.5nV⁄√¯Hz.
APA, Harvard, Vancouver, ISO, and other styles
2

Balteanu, F., and M. Cloutier. "Charge-pump controlled variable gain amplifier." Electronics Letters 34, no. 9 (1998): 838. http://dx.doi.org/10.1049/el:19980644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Borel, Andžej. "DEVELOPMENT AND INVESTIGATION OF INPUT AMPLIFIER FOR THE OSCILOSCOPE." Mokslas - Lietuvos ateitis 12 (January 20, 2020): 1–5. http://dx.doi.org/10.3846/mla.2020.11420.

Full text
Abstract:
Digital oscilloscope’s structure has analog signal acquisition circuit, which transforms signal’s amplitude to fit ADC dynamic range. This circuit is commonly called oscilloscope’s vertical or front-end amplifier. Difficulty in designing front-end amplifiers in GHz range largely affects higher frequency range oscilloscope’s price. This work is focused on designing a front-end amplifier using discrete and openly sold components. We propose a design for attenuator, buffer, variable gain circuits. Amplifier’s prototype is designed. Main characteristics of the amplifier were measured. Measured bandwidth is 3 GHz. Amplifier’s gain and attenuation can support vertical scale sensitivity range from 10 mV/div to 1 V/div. Step response distortion is under 10 %. SMD and PTH relay model attenuators were evaluated. In this paper we review oscilloscope’s front-end purpose and structure. We review amplifiers design and provide the results of experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Cho, Young-Kyun, Young-Deuk Jeon, and Jong-Kee Kwon. "Switched-Capacitor Variable Gain Amplifier with Operational Amplifier Preset Technique." ETRI Journal 31, no. 2 (April 9, 2009): 234–36. http://dx.doi.org/10.4218/etrij.09.0208.0288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Penchalaiah, Dr Usthulamuri, Devandla Vamsi, Aata Siddardha, Banka Pavan Kumar Reddy, and Bachu Gnaneswar. "Design and Simulation of variable gain amplifier using cadence Tool." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 15, no. 1 (March 4, 2024): 190–94. http://dx.doi.org/10.61841/turcomat.v15i1.14611.

Full text
Abstract:
The radio frequency (RF) amplifiers are widely used in a variety of communication systems. However, the conventional analog RF resulted in reduced volage gain, magnitude, and phase responses. So, this work provides an overview of a research paper focused on the design and analysis of a single-stage variable gain amplifier (SSVGA) utilizing cascaded linear transconductance amplifier (Gm cell) and linear transimpedance amplifier (TIA) blocks with feedback via shunt resistors. The SSVGA architecture aims to maintain constant bandwidth while offering controllable voltage gain, making it versatile for applications with varying input signal strengths. The first stage of the SSVGA is realized as a current mode TIA, converting the input voltage signal to an output current efficiently. The second stage features a Gm cell with source degeneration, enhancing bias current efficiency and transconductance at the supply voltage. The proposed SSVGA design offers flexibility and adaptability, making it suitable for diverse communication systems and signal processing applications. The incorporation of feedback control ensures consistent performance across different voltage gain settings, resulting in a robust and efficient solution for varying signal strengths.
APA, Harvard, Vancouver, ISO, and other styles
6

Choi, Ye-Ji, and Jee-Youl Ryu. "Design of Low-Power Variable Gain Amplifier." Journal of Institute of Control, Robotics and Systems 28, no. 1 (January 31, 2022): 1–5. http://dx.doi.org/10.5302/j.icros.2022.21.0138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Asgari, Vahid, and Leonid Belostotski. "Wideband 28-nm CMOS Variable-Gain Amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 67, no. 1 (January 2020): 37–47. http://dx.doi.org/10.1109/tcsi.2019.2942492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaudhry, Q., R. Alidio, G. Sakamoto, and T. Cisco. "A SiGe MMIC variable gain cascode amplifier." IEEE Microwave and Wireless Components Letters 12, no. 11 (November 2002): 424–25. http://dx.doi.org/10.1109/lmwc.2002.805533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thanachayanont, Apinunt. "Low-voltage compact CMOS variable gain amplifier." AEU - International Journal of Electronics and Communications 62, no. 6 (June 2008): 413–20. http://dx.doi.org/10.1016/j.aeue.2007.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

El-Gabaly, A. M., and C. E. Saavedra. "Wideband variable gain amplifier with noise cancellation." Electronics Letters 47, no. 2 (2011): 116. http://dx.doi.org/10.1049/el.2010.3226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Floc'h, J. M., and L. Desclos. "Variable gain amplifier with traveling wave structure." Microwave and Optical Technology Letters 7, no. 12 (August 20, 1994): 539–42. http://dx.doi.org/10.1002/mop.4650071203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Choi, Inyoung, Heesong Seo, and Bumman Kim. "Accurate dB-Linear Variable Gain Amplifier With Gain Error Compensation." IEEE Journal of Solid-State Circuits 48, no. 2 (February 2013): 456–64. http://dx.doi.org/10.1109/jssc.2012.2227606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

CHA, S. "A CMOS IF Variable Gain Amplifier with Exponential Gain Control." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A, no. 2 (February 1, 2005): 410–15. http://dx.doi.org/10.1093/ietfec/e88-a.2.410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Yin, Yijun Wang, Yun Mao, Weishao Peng, Di Jin, and Ying Guo. "Continuous-Variable Quantum Key Distribution Based on Heralded Hybrid Linear Amplifier with a Local Local Oscillator." Entropy 23, no. 11 (October 24, 2021): 1395. http://dx.doi.org/10.3390/e23111395.

Full text
Abstract:
An improved continuous variable quantum key distribution (CVQKD) approach based on a heralded hybrid linear amplifier (HLA) is proposed in this study, which includes an ideal deterministic linear amplifier and a probabilistic noiseless linear amplifier. The CVQKD, which is based on an amplifier, enhances the signal-to-noise ratio and provides for fine control between high gain and strong noise reduction. We focus on the impact of two types of optical amplifiers on system performance: phase sensitive amplifiers (PSA) and phase insensitive amplifiers (PIA). The results indicate that employing amplifiers, local local oscillation-based CVQKD systems can enhance key rates and communication distances. In addition, the PIA-based CVQKD system has a broader application than the PSA-based system.
APA, Harvard, Vancouver, ISO, and other styles
15

Huang, Yan-Yu, Wangmyong Woo, Hamhee Jeon, Chang-Ho Lee, and J. Stevenson Kenney. "Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers." IEEE Transactions on Microwave Theory and Techniques 60, no. 1 (January 2012): 68–76. http://dx.doi.org/10.1109/tmtt.2011.2175234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chang, C. C., M. L. Lin, and S. I. Liu. "CMOS current-mode exponential-control variable-gain amplifier." Electronics Letters 37, no. 14 (2001): 868. http://dx.doi.org/10.1049/el:20010593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mahdavi, S., A. Soltani, M. Jafarzadeh, and T. Moradi Khanshan. "A novel method to design variable gain amplifier." Journal of Fundamental and Applied Sciences 8, no. 2 (August 22, 2016): 1003. http://dx.doi.org/10.4314/jfas.v8i2s147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

De Ridder, T., P. Ossieur, X. Yin, B. Baekelandt, C. Mélange, J. Bauwelinck, X. Z. Qiu, and J. Vandewege. "BiCMOS variable gain transimpedance amplifier for automotive applications." Electronics Letters 44, no. 4 (2008): 287. http://dx.doi.org/10.1049/el:20083101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fujimoto, Y., H. Tani, M. Maruyama, H. Akada, H. Ogawa, and M. Miyamoto. "A low-power switched-capacitor variable gain amplifier." IEEE Journal of Solid-State Circuits 39, no. 7 (July 2004): 1213–16. http://dx.doi.org/10.1109/jssc.2004.829919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Thanachayanont, A., and P. Naktongkul. "Low-voltage wideband compact CMOS variable gain amplifier." Electronics Letters 41, no. 2 (2005): 51. http://dx.doi.org/10.1049/el:20057110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vintola, V. T. S., M. J. Matilainen, S. J. K. Kalajo, and E. A. Jarvinen. "Variable-gain power amplifier for mobile WCDMA applications." IEEE Transactions on Microwave Theory and Techniques 49, no. 12 (2001): 2464–71. http://dx.doi.org/10.1109/22.971637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rijns, J. J. F. "CMOS low-distortion high-frequency variable-gain amplifier." IEEE Journal of Solid-State Circuits 31, no. 7 (July 1996): 1029–34. http://dx.doi.org/10.1109/4.508217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cho, Jong Min, and Shin Il Lim. "Design of Variable Gain Amplifier without Passive Devices." Journal of the Korea Industrial Information System Society 18, no. 5 (October 31, 2013): 1–8. http://dx.doi.org/10.9723/jksiis.2013.18.5.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Elwan, H., A. El Adawi, M. Ismail, H. K. Olsson, and A. Soliman. "Digitally controlled dB-linear CMOS variable gain amplifier." Electronics Letters 35, no. 20 (1999): 1725. http://dx.doi.org/10.1049/el:19991193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wey, T. A., and W. D. Jemison. "Variable gain amplifier circuit using titanium dioxide memristors." IET Circuits, Devices & Systems 5, no. 1 (2011): 59. http://dx.doi.org/10.1049/iet-cds.2010.0210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sun, Zhengyu, and Yuepeng Yan. "Design of a 2 GHz Linear-in-dB Variable-Gain Amplifier with 80-dB Gain Range." Active and Passive Electronic Components 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/434189.

Full text
Abstract:
A broadband linear-in-dB variable-gain amplifier (VGA) circuit is implemented in 0.18 μm SiGe BiCMOS process. The VGA comprises two cascaded variable-gain core, in which a hybrid current-steering current gain cell is inserted in the Cherry-Hooper amplifier to maintain a broad bandwidth while covering a wide gain range. Postlayout simulation results confirm that the proposed circuit achieves a 2 GHz 3-dB bandwidth with wide linear-in-dB gain tuning range from −19 dB up to 61 dB. The amplifier offers a competitive gain bandwidth product of 2805 GHz at the maximum gain for a 110-GHz ftBiCMOS technology. The amplifier core consumes 31 mW from a 3.3 V supply and occupies active area of 280 μm by 140 μm.
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Hui Dong, Kyung Ai Lee, and Songcheol Hong. "A Wideband CMOS Variable Gain Amplifier With an Exponential Gain Control." IEEE Transactions on Microwave Theory and Techniques 55, no. 6 (June 2007): 1363–73. http://dx.doi.org/10.1109/tmtt.2007.896787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wey, Todd, and William Jemison. "An automatic gain control circuit with TiO2 memristor variable gain amplifier." Analog Integrated Circuits and Signal Processing 73, no. 3 (April 19, 2012): 663–72. http://dx.doi.org/10.1007/s10470-012-9860-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lin, Nan, Fei Fang, Zhi-Liang Hong, and Hao Fang. "A broadband linear-in-decibel variable gain amplifier with low gain error." Analog Integrated Circuits and Signal Processing 76, no. 1 (May 21, 2013): 73–80. http://dx.doi.org/10.1007/s10470-013-0079-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kwon, Ji-Wook, and Seung-Tak Ryu. "An Inherently dB-linear All-CMOS Variable Gain Amplifier." JSTS:Journal of Semiconductor Technology and Science 11, no. 4 (December 31, 2011): 336–43. http://dx.doi.org/10.5573/jsts.2011.11.4.336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Waghmode, Sourabh, and V. S. Kulkarni. "A Wideband Variable-Gain Amplifier for High Frequency Applications." International Journal Of Recent Advances in Engineering & Technology 8, no. 5 (May 30, 2020): 16–21. http://dx.doi.org/10.46564/ijraet.2020.v08i05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Abdel-Hafez, I. L., Y. A. Khalaf, and Fathi A. Farag. "HIGH LINEARITY CMOS VARIABLE GAIN AMPLIFIER FOR UWB APPLICATIONS." JES. Journal of Engineering Sciences 41, no. 2 (March 1, 2013): 577–91. http://dx.doi.org/10.21608/jesaun.2013.114750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Masud, M. A., H. Zirath, and M. Kelly. "A 45-dB variable-gain low-noise MMIC amplifier." IEEE Transactions on Microwave Theory and Techniques 54, no. 6 (June 2006): 2848–55. http://dx.doi.org/10.1109/tmtt.2006.875453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nguyen, H. H., Q. H. Duong, and S. G. Lee. "84 dB 5.2 mA digitally-controlled variable gain amplifier." Electronics Letters 44, no. 5 (2008): 344. http://dx.doi.org/10.1049/el:20080135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Abdalla, I. L. "High linearity CMOS variable gain amplifier for UWB applications." Science Journal of Circuits, Systems and Signal Processing 1, no. 1 (2012): 1. http://dx.doi.org/10.11648/j.cssp.20120101.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Quoc-Hoang Duong, Quan Le, Chang-Wan Kim, and Sang-Gug Lee. "A 95-dB linear low-power variable gain amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 53, no. 8 (August 2006): 1648–57. http://dx.doi.org/10.1109/tcsi.2006.879058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Abu Bakar, M. H., S. J. Sheih, F. R. Mahamd Adikan, and M. A. Mahdi. "Variable gain-flattened L-band erbium-doped fiber amplifier." Laser Physics 21, no. 9 (August 3, 2011): 1638–44. http://dx.doi.org/10.1134/s1054660x11170014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Meyer, R. G., and W. D. Mack. "A wideband low-noise variable-gain BiCMOS transimpedance amplifier." IEEE Journal of Solid-State Circuits 29, no. 6 (June 1994): 701–6. http://dx.doi.org/10.1109/4.293116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hauptmann, S., C. Carta, and F. Ellinger. "Fully differential variable gain amplifier for 60 GHz applications." Electronics Letters 46, no. 19 (2010): 1330. http://dx.doi.org/10.1049/el.2010.1731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, Chun-Chieh, Nan-Ku Lu, and Yi-Zhi Zeng. "Low gain error, linear-in-dB variable gain amplifier with programmable gain range and gain steps." AEU - International Journal of Electronics and Communications 64, no. 12 (December 2010): 1203–6. http://dx.doi.org/10.1016/j.aeue.2009.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Arbet, Daniel, Viera Stopjaková, Martin Kováč, Lukáš Nagy, Matej Rakús, and Michal Šovčík. "130 nm CMOS Bulk-Driven Variable Gain Amplifier for Low-Voltage Applications." Journal of Circuits, Systems and Computers 26, no. 08 (April 11, 2017): 1740003. http://dx.doi.org/10.1142/s0218126617400035.

Full text
Abstract:
In this paper, a variable gain amplifier (VGA) designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven (BD) design approach, which brings a possibility to operate with low supply voltage. Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no risk of latch-up event that usually represents the main drawback of the BD circuit systems. BD transistors are employed in the input differential stage, which makes it possible to operate in rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide scale, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications. An additional circuit responsible for maintaining the linear-in-decibel gain dependency of the VGA is also addressed. The proposed circuit block avails arbitrary shaping of the curve characterizing the gain versus the controlling voltage dependency.
APA, Harvard, Vancouver, ISO, and other styles
42

Abuelma'atti, Muhammad Taher, Abdulrahman Khalaf Al-Ali, and Abdulrafeeq Abdulshakoor. "Programmable Second-Generation Current-Conveyor With Variable Current Gain." Active and Passive Electronic Components 17, no. 4 (1995): 257–60. http://dx.doi.org/10.1155/1995/16240.

Full text
Abstract:
A new programmable second-generation current-conveyor is proposed. The proposed circuit uses a commercially available second-generation current-conveyor and one operational transconductance amplifier. Simulation results confirming the presented theory are included.
APA, Harvard, Vancouver, ISO, and other styles
43

Lee, Samuel B. S., Hang Liu, Kiat Seng Yeo, Jer-Ming Chen, and Xiaopeng Yu. "Design of Differential Variable-Gain Transimpedance Amplifier in 0.18 µm SiGe BiCMOS." Electronics 9, no. 7 (June 27, 2020): 1058. http://dx.doi.org/10.3390/electronics9071058.

Full text
Abstract:
This paper presents two new inductorless differential variable-gain transimpedance amplifiers (DVGTIA) with voltage bias controlled variable gain designed in TowerJazz’s 0.18 µm SiGe BiCMOS technology (using CMOS transistors only). Both consist of a modified differential cross-coupled regulated cascode preamplifier stage and a cascaded amplifier stage with bias-controlled gain-variation and third-order interleaving feedback. The designs have wide measured transimpedance gain ranges of 24.5–60.6 dBΩ and 27.8–62.8 dBΩ with bandwidth above 6.42 GHz and 5.22 GHz for DVGTIA designs 1 and 2 respectively. The core power consumptions are 30.7 mW and 27.5 mW from a 1.8 V supply and the input referred noise currents are 10.3 pA/√Hz and 21.7 pA/√Hz. The DVGTIA designs 1 and 2 have a dynamic range of 40.4 µA to 3 mA and 76.8 µA to 2.7 mA making both suitable for real photodetectors with an on-chip photodetector capacitive load of 250 fF. Both designs are compact with a core area of 100 µm × 85 µm.
APA, Harvard, Vancouver, ISO, and other styles
44

Nishikawa, K., and T. Tokumitsu. "An MMIC low-distortion variable-gain amplifier using active feedback." IEEE Transactions on Microwave Theory and Techniques 43, no. 12 (1995): 2812–16. http://dx.doi.org/10.1109/22.475639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Meyer, R. G., and W. D. Mack. "A DC to 1-GHz differential monolithic variable-gain amplifier." IEEE Journal of Solid-State Circuits 26, no. 11 (1991): 1673–80. http://dx.doi.org/10.1109/4.98989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nasser, Abd El-Moneam Abd El-Bary, and Amr E. Rizk. "A Wideband Variable Gain Amplifier using 0.13m CMOS Technology." Menoufia Journal of Electronic Engineering Research 22, no. 1 (January 1, 2012): 23–32. http://dx.doi.org/10.21608/mjeer.2012.66904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xie, Hongyun, Shuo Liu, Lianghao Zhang, Zhiyun Jiang, Yanxiao Zhao, Liang Chen, and Wanrong Zhang. "Low power dissipation SiGe HBT dual-band variable gain amplifier." Microelectronics Journal 46, no. 7 (July 2015): 626–31. http://dx.doi.org/10.1016/j.mejo.2015.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kang, So Young, Jooyoung Jang, Inn-Yeal Oh, and Chul Soon Park. "A 2.16 mW Low Power Digitally-Controlled Variable Gain Amplifier." IEEE Microwave and Wireless Components Letters 20, no. 3 (March 2010): 172–74. http://dx.doi.org/10.1109/lmwc.2010.2040222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kim, S., H. C. Kim, D. H. Kim, S. Jeon, M. Kim, and J. S. Rieh. "58–72 GHz CMOS wideband variable gain low-noise amplifier." Electronics Letters 47, no. 16 (2011): 904. http://dx.doi.org/10.1049/el.2011.1741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zheng, You, and Carlos E. Saavedra. "A variable gain amplifier using a very-high speed OTA." Microwave and Optical Technology Letters 52, no. 5 (March 5, 2010): 1112–16. http://dx.doi.org/10.1002/mop.25114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography