Journal articles on the topic 'Variable gain amplifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Variable gain amplifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bai, Chunfeng, Jianhui Wu, and Xiaoying Deng. "A Review of CMOS Variable Gain Amplifiers and Programmable Gain Amplifiers." IETE Technical Review 36, no. 5 (August 22, 2018): 484–500. http://dx.doi.org/10.1080/02564602.2018.1507766.
Full textLiu, W., W. Liu, and S. K. Wei. "CMOS exponential-control variable gain amplifiers." IEE Proceedings - Circuits, Devices and Systems 151, no. 2 (2004): 83. http://dx.doi.org/10.1049/ip-cds:20040111.
Full textBorel, Andžej. "DEVELOPMENT AND INVESTIGATION OF INPUT AMPLIFIER FOR THE OSCILOSCOPE." Mokslas - Lietuvos ateitis 12 (January 20, 2020): 1–5. http://dx.doi.org/10.3846/mla.2020.11420.
Full textDUONG, Q. H., C. W. KIM, and S. G. LEE. "All CMOS Low-Power Wide-Gain Range Variable Gain Amplifiers." IEICE Transactions on Electronics E91-C, no. 5 (May 1, 2008): 788–97. http://dx.doi.org/10.1093/ietele/e91-c.5.788.
Full textHuang, Yan-Yu, Wangmyong Woo, Hamhee Jeon, Chang-Ho Lee, and J. Stevenson Kenney. "Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers." IEEE Transactions on Microwave Theory and Techniques 60, no. 1 (January 2012): 68–76. http://dx.doi.org/10.1109/tmtt.2011.2175234.
Full textCiubotaru, A. A. "A precision control circuit for variable-gain amplifiers." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 43, no. 9 (1996): 779–82. http://dx.doi.org/10.1109/81.536747.
Full textJuang, C., S. F. Shiue, S. Y. Tsai, and J. N. Yang. "Transimpedance amplifiers using three cascade variable inverter gain stages." Analog Integrated Circuits and Signal Processing 49, no. 3 (September 11, 2006): 299–302. http://dx.doi.org/10.1007/s10470-006-9706-0.
Full textBelousov, E. O., and A. G. Timoshenko. "Method for extending the bandwidth of variable gain amplifiers." Russian Microelectronics 43, no. 7 (November 14, 2014): 459–61. http://dx.doi.org/10.1134/s1063739714070026.
Full textSchindeler, Ryan, Daniel Cleveland, and Keyvan Hashtrudi-Zaad. "Experimental evaluation of computer-controlled variable gain analog amplifiers." Analog Integrated Circuits and Signal Processing 86, no. 3 (January 21, 2016): 449–58. http://dx.doi.org/10.1007/s10470-016-0690-8.
Full textKong, Lingshan, Yong Chen, Haohong Yu, Chirn Chye Boon, Pui-In Mak, and Rui P. Martins. "Wideband Variable-Gain Amplifiers Based on a Pseudo-Current-Steering Gain-Tuning Technique." IEEE Access 9 (2021): 35814–23. http://dx.doi.org/10.1109/access.2021.3062360.
Full textSchneider, A., and O. Werther. "Nonlinear Analysis of Noise in Current-Steering Variable Gain Amplifiers." IEEE Journal of Solid-State Circuits 39, no. 2 (February 2004): 290. http://dx.doi.org/10.1109/jssc.2003.821782.
Full textPetrzela, Jiri, and Roman Sotner. "Binary Memory Implemented by Using Variable Gain Amplifiers With Multipliers." IEEE Access 8 (2020): 197276–86. http://dx.doi.org/10.1109/access.2020.3034665.
Full textGodoy, Philip, and Joel L. Dawson. "Chopper Stabilization of Analog Multipliers, Variable Gain Amplifiers, and Mixers." IEEE Journal of Solid-State Circuits 43, no. 10 (October 2008): 2311–21. http://dx.doi.org/10.1109/jssc.2008.2004328.
Full textKim, Chang-Woo. "Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications." ETRI Journal 28, no. 3 (June 9, 2006): 386–88. http://dx.doi.org/10.4218/etrij.06.0205.0134.
Full textIIZUKA, K., M. KOUTANI, T. MITSUNAKA, H. KAWAMURA, S. TOYOYAMA, M. MIYAMOTO, and A. MATSUZAWA. "RF Variable-Gain Amplifiers and AGC Loops for Digital TV Receivers." IEICE Transactions on Electronics E91-C, no. 6 (June 1, 2008): 854–61. http://dx.doi.org/10.1093/ietele/e91-c.6.854.
Full textBameri, H., H. Abdollahi, and A. Hakimi. "A comprehensive, adjustable approach for linearizing and broadening the gain characteristic of variable gain amplifiers." Microelectronics Journal 45, no. 8 (August 2014): 1079–86. http://dx.doi.org/10.1016/j.mejo.2014.04.041.
Full textLee, Samuel B. S., Hang Liu, Kiat Seng Yeo, Jer-Ming Chen, and Xiaopeng Yu. "Design of Differential Variable-Gain Transimpedance Amplifier in 0.18 µm SiGe BiCMOS." Electronics 9, no. 7 (June 27, 2020): 1058. http://dx.doi.org/10.3390/electronics9071058.
Full textSnow, K. H., J. J. Komiak, and D. A. Bates. "Segmented dual-gate MESFETs for variable gain and power amplifiers in GaAs MMIC." IEEE Transactions on Microwave Theory and Techniques 36, no. 12 (December 1988): 1976–85. http://dx.doi.org/10.1109/22.17442.
Full textKobayashi, K. W., A. K. Oki, D. K. Umemoto, S. K. Z. Claxton, and D. C. Streit. "Monolithic GaAs HBT p-i-n diode variable gain amplifiers, attenuators, and switches." IEEE Transactions on Microwave Theory and Techniques 41, no. 12 (1993): 2295–302. http://dx.doi.org/10.1109/22.260720.
Full textdel Pino, J., Sunil L. Khemchandani, D. Galante-Sempere, and C. Luján-Martínez. "A Compact Size Wideband RF-VGA Based on Second Generation Controlled Current Conveyors." Electronics 9, no. 10 (September 30, 2020): 1600. http://dx.doi.org/10.3390/electronics9101600.
Full textZvorykin, V. D., N. V. Didenko, A. A. Ionin, I. V. Kholin, A. V. Konyashchenko, O. N. Krokhin, A. O. Levchenko, et al. "GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept." Laser and Particle Beams 25, no. 3 (July 20, 2007): 435–51. http://dx.doi.org/10.1017/s0263034607000559.
Full textAbdelfattah, K. M., and A. M. Soliman. "Variable gain amplifiers based on a new approximation method to realize the exponential function." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49, no. 9 (September 2002): 1348–54. http://dx.doi.org/10.1109/tcsi.2002.802365.
Full textArigong, Bayaner, Hualiang Zhang, Sungyong Jung, and Hyoungsoo Kim. "A feed-forward equalizer with winner-take-all variable gain amplifiers for backplane channels." Microwave and Optical Technology Letters 55, no. 11 (August 26, 2013): 2666–70. http://dx.doi.org/10.1002/mop.27924.
Full textLiu, Hang, Xi Zhu, Chirn Chye Boon, and Xiaofeng He. "Cell-Based Variable-Gain Amplifiers With Accurate dB-Linear Characteristic in 0.18 µm CMOS Technology." IEEE Journal of Solid-State Circuits 50, no. 2 (February 2015): 586–96. http://dx.doi.org/10.1109/jssc.2014.2368132.
Full textLanghammer, Lukas, Roman Sotner, Jan Dvorak, Jan Jerabek, and Peter A. Ushakov. "Novel Reconnection-Less Reconfigurable Filter Design Based on Unknown Nodal Voltages Method and Its Fractional-Order Counterpart." Elektronika ir Elektrotechnika 25, no. 3 (June 25, 2019): 34–38. http://dx.doi.org/10.5755/j01.eie.25.3.23673.
Full textGu, Cheng Jie, Xiang Ning Fan, Kuan Bao, and Zai Jun Hua. "Design of a Reconfigurable Mixer for Multi-Mode Multi-Standard Receivers." Applied Mechanics and Materials 618 (August 2014): 553–57. http://dx.doi.org/10.4028/www.scientific.net/amm.618.553.
Full textZeb, Muhammad, Muhammad Tahir, Fida Muhammad, Suhana Mohd Said, Mohd Faizul Mohd Sabri, Mahidur R. Sarker, Sawal Hamid Md Ali, and Fazal Wahab. "Amplified Spontaneous Emission and Optical Gain in Organic Single Crystal Quinquethiophene." Crystals 9, no. 12 (November 21, 2019): 609. http://dx.doi.org/10.3390/cryst9120609.
Full textRUNGE, K., P. J. ZAMPARDI, R. L. PIERSON, R. YU, P. B. THOMAS, S. M. BECCUE, and K. C. WANG. "AlGaAs/GaAs HBT CIRCUITS FOR OPTICAL TDM COMMUNICATIONS." International Journal of High Speed Electronics and Systems 09, no. 02 (June 1998): 473–503. http://dx.doi.org/10.1142/s012915649800021x.
Full textHan, Jingyu, Yu Jiang, Guiliang Guo, and Xu Cheng. "A Reconfigurable Analog Baseband Circuitry for LFMCW RADAR Receivers in 130-nm SiGe BiCMOS Process." Electronics 9, no. 5 (May 18, 2020): 831. http://dx.doi.org/10.3390/electronics9050831.
Full textKumar, Umesh, and P. Bhushan Mital. "Design, Fabrication, and Comparative Study of Electronically Tunable Active Filters." Active and Passive Electronic Components 18, no. 2 (1995): 73–109. http://dx.doi.org/10.1155/1995/78209.
Full textMayer, U., F. Ellinger, and R. Eickhoff. "Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-band." IET Circuits, Devices & Systems 4, no. 5 (2010): 433. http://dx.doi.org/10.1049/iet-cds.2009.0299.
Full textNam, Hyosung, Taejoo Sim, and Junghyun Kim. "A 2.4 GHz 20 W 8-channel RF Source Module with Solid-State Power Amplifiers for Plasma Generators." Electronics 9, no. 9 (August 26, 2020): 1378. http://dx.doi.org/10.3390/electronics9091378.
Full textSOLIMAN, EMAN A., and SOLIMAN A. MAHMOUD. "THE DIFFERENTIAL DIFFERENCE OPERATIONAL FLOATING AMPLIFIER: NEW CMOS REALIZATIONS AND APPLICATIONS." Journal of Circuits, Systems and Computers 18, no. 07 (November 2009): 1287–308. http://dx.doi.org/10.1142/s0218126609005666.
Full textMoriyama, Takuro, and Daisuke Kurabayashi. "Adaptive Control Using an Oscillator Network with Capacitive Couplers." Journal of Advanced Computational Intelligence and Intelligent Informatics 15, no. 6 (August 20, 2011): 632–38. http://dx.doi.org/10.20965/jaciii.2011.p0632.
Full textHyun, Eugin, Young-Seok Jin, and Jong-Hun Lee. "Design and Implementation of 24 GHz Multichannel FMCW Surveillance Radar with a Software-Reconfigurable Baseband." Journal of Sensors 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3148237.
Full textGaspar, Imre, Yanxun V. Yu, Sean L. Cotton, Dae-Hwan Kim, Anne Ephrussi, and Michael A. Welte. "Klar ensures thermal robustness of oskar localization by restraining RNP motility." Journal of Cell Biology 206, no. 2 (July 21, 2014): 199–215. http://dx.doi.org/10.1083/jcb.201310010.
Full textNguyen Thi, Bao My, Van Sy Nguyen, Van Tien Vu, Quang Tuan Ho, Thuy Mai Nguyen Thi, Ngoc Thiem Le, Thi Anh Vo, and Manh Hung Nguyen. "Equipment for measuring the characteristics of X-ray." Nuclear Science and Technology 6, no. 2 (September 24, 2021): 39–46. http://dx.doi.org/10.53747/jnst.v6i2.155.
Full textKim, Jungah, Yongho Lee, Shinil Chang, and Hyunchol Shin. "Low-Power CMOS Complex Bandpass Filter with Passband Flatness Tunability." Electronics 9, no. 3 (March 17, 2020): 494. http://dx.doi.org/10.3390/electronics9030494.
Full textNguyen, Van-Viet, Hyohyun Nam, Young Choe, Bok-Hyung Lee, and Jung-Dong Park. "An X-band Bi-Directional Transmit/Receive Module for a Phased Array System in 65-nm CMOS." Sensors 18, no. 8 (August 6, 2018): 2569. http://dx.doi.org/10.3390/s18082569.
Full textWheeler, Diek W., Paul H. M. Kullmann, and John P. Horn. "Estimating Use-Dependent Synaptic Gain in Autonomic Ganglia by Computational Simulation and Dynamic-Clamp Analysis." Journal of Neurophysiology 92, no. 5 (November 2004): 2659–71. http://dx.doi.org/10.1152/jn.00470.2004.
Full textEvseev, Vladimir, Mikhail Ivlev, Elena Lupanova, Sergey Nikulin, Vitaliy Petrov, and Andrey Terentyev. "Automation of S-parameters measurements of high-power microwave transistors in a contact device with tunable strip matching circuits." ITM Web of Conferences 30 (2019): 11002. http://dx.doi.org/10.1051/itmconf/20193011002.
Full textGupta, Ritesh, Servin Rathi, Ravneet Kaur, Mridula Gupta, and R. S. Gupta. "T-gate geometric (solution for submicrometer gate length) HEMT: Physical analysis, modeling and implementation as parasitic elements and its usage as dual gate for variable gain amplifiers." Superlattices and Microstructures 45, no. 3 (March 2009): 105–16. http://dx.doi.org/10.1016/j.spmi.2008.12.032.
Full textAlkhorshid, Daniel Rostami, Seyyedeh Fatemeh Molaeezadeh, and Mikaeil Rostami Alkhorshid. "Analysis: Electroencephalography Acquisition System: Analog Design." Biomedical Instrumentation & Technology 54, no. 5 (September 1, 2020): 346–51. http://dx.doi.org/10.2345/0899-8205-54.5.346.
Full textZhang, Jing Zhi. "A 520MHz Wideband Variable Gain Amplifier." Applied Mechanics and Materials 556-562 (May 2014): 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.
Full textBalteanu, F., and M. Cloutier. "Charge-pump controlled variable gain amplifier." Electronics Letters 34, no. 9 (1998): 838. http://dx.doi.org/10.1049/el:19980644.
Full textAsgari, Vahid, and Leonid Belostotski. "Wideband 28-nm CMOS Variable-Gain Amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 67, no. 1 (January 2020): 37–47. http://dx.doi.org/10.1109/tcsi.2019.2942492.
Full textChaudhry, Q., R. Alidio, G. Sakamoto, and T. Cisco. "A SiGe MMIC variable gain cascode amplifier." IEEE Microwave and Wireless Components Letters 12, no. 11 (November 2002): 424–25. http://dx.doi.org/10.1109/lmwc.2002.805533.
Full textFloc'h, J. M., and L. Desclos. "Variable gain amplifier with traveling wave structure." Microwave and Optical Technology Letters 7, no. 12 (August 20, 1994): 539–42. http://dx.doi.org/10.1002/mop.4650071203.
Full textEl-Gabaly, A. M., and C. E. Saavedra. "Wideband variable gain amplifier with noise cancellation." Electronics Letters 47, no. 2 (2011): 116. http://dx.doi.org/10.1049/el.2010.3226.
Full textThanachayanont, Apinunt. "Low-voltage compact CMOS variable gain amplifier." AEU - International Journal of Electronics and Communications 62, no. 6 (June 2008): 413–20. http://dx.doi.org/10.1016/j.aeue.2007.06.002.
Full text