Academic literature on the topic 'Variable gain power amplifier'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variable gain power amplifier.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Variable gain power amplifier"

1

Choi, Ye-Ji, and Jee-Youl Ryu. "Design of Low-Power Variable Gain Amplifier." Journal of Institute of Control, Robotics and Systems 28, no. 1 (2022): 1–5. http://dx.doi.org/10.5302/j.icros.2022.21.0138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Jing Zhi. "A 520MHz Wideband Variable Gain Amplifier." Applied Mechanics and Materials 556-562 (May 2014): 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.

Full text
Abstract:
The design and realization of a wideband variable gain amplifier for RF system is presented. The cascade of LNA and controllable attenuation makes the design have a 0-90dB gain adjustment range. Special care is devoted to the solution of typical problems encountered in the design of the amplifier, such as signal shielding and power supply decoupling. The amplifier uses passive amplitude-frequency equalization, 0.1-460MHz band variation is less than 1dB, the 3dB bandwidth is up to 520MHz. The noise characteristic is low, the total input referred noise is less than 15.5nV⁄√¯Hz.
APA, Harvard, Vancouver, ISO, and other styles
3

Fujimoto, Y., H. Tani, M. Maruyama, H. Akada, H. Ogawa, and M. Miyamoto. "A low-power switched-capacitor variable gain amplifier." IEEE Journal of Solid-State Circuits 39, no. 7 (2004): 1213–16. http://dx.doi.org/10.1109/jssc.2004.829919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vintola, V. T. S., M. J. Matilainen, S. J. K. Kalajo, and E. A. Jarvinen. "Variable-gain power amplifier for mobile WCDMA applications." IEEE Transactions on Microwave Theory and Techniques 49, no. 12 (2001): 2464–71. http://dx.doi.org/10.1109/22.971637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Yan-Yu, Wangmyong Woo, Hamhee Jeon, Chang-Ho Lee, and J. Stevenson Kenney. "Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers." IEEE Transactions on Microwave Theory and Techniques 60, no. 1 (2012): 68–76. http://dx.doi.org/10.1109/tmtt.2011.2175234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quoc-Hoang Duong, Quan Le, Chang-Wan Kim, and Sang-Gug Lee. "A 95-dB linear low-power variable gain amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 53, no. 8 (2006): 1648–57. http://dx.doi.org/10.1109/tcsi.2006.879058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tang, Fang, Amine Bermak, Amira Abbes та Mohieddine Amor Benammar. "Continuous-TimeΣΔADC with Implicit Variable Gain Amplifier for CMOS Image Sensor". Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/208540.

Full text
Abstract:
This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in th
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Hongyun, Shuo Liu, Lianghao Zhang, et al. "Low power dissipation SiGe HBT dual-band variable gain amplifier." Microelectronics Journal 46, no. 7 (2015): 626–31. http://dx.doi.org/10.1016/j.mejo.2015.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kang, So Young, Jooyoung Jang, Inn-Yeal Oh, and Chul Soon Park. "A 2.16 mW Low Power Digitally-Controlled Variable Gain Amplifier." IEEE Microwave and Wireless Components Letters 20, no. 3 (2010): 172–74. http://dx.doi.org/10.1109/lmwc.2010.2040222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mustaffa, Mohd Tafir. "A Variable-Gain Low-Noise Amplifier for MedRadio Band Applications." International Journal of Electrical and Electronic Engineering & Telecommunications 13, no. 4 (2024): 293–303. http://dx.doi.org/10.18178/ijeetc.13.4.293-303.

Full text
Abstract:
A variable-gain 0.18 μm Complementary Metal- Oxide-Semiconductor (CMOS) Low-Noise Amplifier (LNA) for Medical Device Radiocommunications Service (MedRadio) applications has been designed and verified through simulations in Cadence IC5 with Silterra’s C18G CMOS technology Process Design Kit. Unlike other MedRadio LNAs from previous works, this proposed LNA can vary its gain from just above 10 dB to nearly 30 dB. It consists of three stages; the input-matching stage, the interstage buffer, and the gain-varying stage. The input-matching stage provides an input impedance match and drives the initi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Variable gain power amplifier"

1

PATEL, PRERNA D. "DESIGN OF A PIXEL SCALE OPTICAL POWER METER SUITABLE FOR INCORPORATION IN A MULTI-TECHNOLOGY FPGA." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1066421274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Lin. "A low power, high dynamic-range, broadband variable gain amplifier for an ultra wideband receiver." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5843.

Full text
Abstract:
A fully differential Complementary Metal-Oxide Semiconductor (CMOS) Variable Gain Amplifier (VGA) consisting of complementary differential pairs with source degeneration, a current gain stage with programmable current mirror, and resistor loads is designed for high frequency and low power communication applications, such as an Ultra Wideband (UWB) receiver system. The gain can be programmed from 0dB to 42dB in 2dB increments with -3dB bandwidth greater than 425MHz for the entire range of gain. The 3rd-order intercept point (IIP3) is above -13.6dBm for 1Vpp differential input and output voltage
APA, Harvard, Vancouver, ISO, and other styles
3

Oder, Stephen, Paula Arinello, Peter Caron, Scott Crawford, Stephen McGoldrick, and Douglas Bajgot. "Development of a Variable Output Power, High Efficiency Programmable Telemetry Transmitter Using GaN Amplifier Technology." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581842.

Full text
Abstract:
Cobham Electronic Systems, Inc. has developed a field-programmable telemetry transmitter module for higher-power (0.1W to 25W) airborne telemetry applications. A key feature of the transmitter is high DC to RF conversion efficiency over the entire variable output power range of 25dB through the use of GaN amplifiers. This high efficiency is realized by using a variable voltage DC-DC converter and dynamic bias control of the GaN amplifier elements. This feature is useful in that output power can be tailored to mission requirements and timelines, thereby extending battery life and increasing ope
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yan-Yu. "CMOS-based amplitude and phase control circuits designed for multi-standard wireless communication systems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44908.

Full text
Abstract:
Designing CMOS linear transmitter front-end, specially the power amplifiers (PAs), in multi-band wireless transceivers is a major challenge for the single-chip integration of a CMOS radio. In some of the linear PA systems, for example, polar- or predistortion-PA system, amplitude and phase control circuits are used to suppress the distortion produces by the PA core. The requirements of these controlling circuits are much different from their conventional role in a receiver or a phase array system. In this dissertation, the special design issues will be addressed, and the circuit topologies of
APA, Harvard, Vancouver, ISO, and other styles
5

Fechine, Sette Elmo Luiz. "Circuits intégrés millimétriques en bande Ka pour une antenne à pointage électronique pour les télécommunications avec des satellites géostationnaires ou des constellations de satellites." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0002.

Full text
Abstract:
Ce travail présente la conception de circuits actifs intégrés en vue d'une intégration dans une antenne à dépointage électronique pour les télécommunications par satellite en bande Ka. Tout d'abord, le manuscrit présente le contexte dans lequel se déroule l'étude, abordant les principaux concepts et caractéristiques de ce type d'antenne. Par la suite, deux blocs clés de la chaîne d’émission sont étudiés en détail et conçus : un amplificateur de puissance à gain variable et trois déphaseurs pilotables. Les circuits sont réalisés en utilisant deux technologies SiGe BiCMOS: BiCMOS9MW et SG13G2. E
APA, Harvard, Vancouver, ISO, and other styles
6

Rahmatian, Behnoosh. "A 75-dB digitally programmable CMOS variable gain amplifier." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/32248.

Full text
Abstract:
A 75-dB DIGITALLY PROGRAMMABLE CMOS VARIABLE GAIN AMPLIFIER Variable-gain amplifiers (VGAs) are essential building blocks of many communication systems. In this thesis, a monolithic low-power digitally programmable VGA with 75dB of gain range is presented. The VGA is targeted for power line communication systems in particular for automotive application; however, it is a generic block that can be use in other applications. The core of the design is based on the low-distortion source-degenerated differential amplifier structure. A gm-boosting circuit is also used to provide higher gain and
APA, Harvard, Vancouver, ISO, and other styles
7

Jha, Nand Kishore. "Design of a complementary silicon-germanium variable gain amplifier." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krishnanji, Sivasankari. "Design of a variable gain amplifier for an ultrawideband receiver." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2576.

Full text
Abstract:
A fully differential CMOS variable gain amplifier (VGA) has been designed for an ultra-wideband receiver. The VGA comprises of two variable gain stages followed by a post amplifier stage. The interface between the digital control block and the analog VGA is formed by a digital-to-analog converter and an exponential voltage generator. The gain of the VGA varies dB-linearly from 0 to 52 dB with respect to the control voltage. The VGA is operated in open loop with a bandwidth greater than 500 MHz throughout the gain range to cater to the requirements of the ultra-wideband system. The noise-to-pow
APA, Harvard, Vancouver, ISO, and other styles
9

Lo, Keng Wai. "Wideband active-balun variable-gain low-noise amplifier for mobile-TV applications." Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2148237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Lisha. "High Gain Low Power Operational Amplifier Design and Compensation Techniques." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1701.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Variable gain power amplifier"

1

Mullahy-Flores, Sara. 2. 4 GHz High-Power, High-Gain Power Amplifier,SST12LP15B, Data Sheet. Microchip Technology Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mullahy-Flores, Sara. SST12LP22 2. 4 GHz High-Gain, High-Efficiency Power Amplifier, Data Sheet. Microchip Technology Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mullahy-Flores, Sara. 2. 4 GHz High-Efficiency, High-Gain Power Amplifier ModuleSST12LP17E Data Sheet. Microchip Technology Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mullahy-Flores, Sara. 2. 4 GHz High-Efficiency, High-Gain Power Amplifier ModuleSST12LP17E Data Sheet. Microchip Technology Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mullahy-Flores, Sara. 2. 4 GHz High Gain, High Efficiency Power Amplifier, SST12LP19E Data Sheet. Microchip Technology Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mullahy-Flores, Sara. SST12CP21 2. 4 GHz High-Gain, High-Efficiency Power Amplifier Data Sheet. Microchip Technology Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Otis, Brian, Fan Zhang, and Jeremy Holleman. Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces. Springer New York, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Variable gain power amplifier"

1

Verma, Vivek, and Chetan D. Parikh. "A Low-Power Wideband High Dynamic Range Single-Stage Variable Gain Amplifier." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42024-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Jieyu, Yuanyu Yu, Jiujiang Wang, et al. "A Low-Power Variable Gain Amplifier Design with 70-DB Gain Range and 1.28-DB Gain Error for Ultrasound Imaging System." In 12th Asian-Pacific Conference on Medical and Biological Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51455-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jensen, C. "Pulsed Dye Laser Gain Analysis and Amplifier Design." In High-Power Dye Lasers. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-47385-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Artz, Patrick James, and Friedel Gerfers. "Variable Gain Control with Bulk Biasing in mmW Amplifier." In Bulk-Driven Circuit Techniques for CMOS FDSOI Processes. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-85114-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Chenghui, Le Chang, and Cheng Fu. "Variable Gain Control of Three-Phase AC/DC Power Converters." In Variable Gain Control and Its Applications in Energy Conversion. CRC Press, 2023. http://dx.doi.org/10.1201/9781003392927-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naik, Jatoth Deepak, Pradeep Gorre, Rajesh Kumar, Sandeep Kumar, and Hanjung Song. "A 73% PAE, Highly Gain Inverse Class-F Power Amplifier for S-Band Applications." In Advances in Smart Communication and Imaging Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9938-5_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ellinger, F., C. Carta, L. Rodoni, et al. "BiCMOS Variable Gain LNA at C-Band with Ultra Low Power Consumption for WLAN." In Telecommunications and Networking - ICT 2004. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27824-5_117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Du, Cuiqi, Yaozhen Han, and Shuzhen Li. "A Barrier Function-Based Variable-Gain SOSM Power Control Scheme for DFIG Wind Turbine." In Proceedings of 2021 Chinese Intelligent Automation Conference. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6372-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaur, Ajaybeer, Manjit Singh Bhamrah, and Ahmad Atieh. "Effect of Power Distribution of Raman Pumps on the Gain, Flatness, NF, and System Performance of a Hybrid Optical Amplifier." In Lecture Notes in Electrical Engineering. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1420-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar Thangarasu, Bharatha, Kaixue Ma, and Kiat Seng Yeo. "Variable Gain Amplifier." In Low-Power Wireless Communication Circuits and Systems. Jenny Stanford Publishing, 2018. http://dx.doi.org/10.1201/9781315156538-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Variable gain power amplifier"

1

Karunakaran, S., S. Srivardhan, M. Harshith, and K. SaiManish. "Low Power VLSI Architecture for Variable Gain Amplifier Using Pseudo Current Steering Gain Tuning Method." In 2024 2nd World Conference on Communication & Computing (WCONF). IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Senlin, Yike Wang, Xuanming Cui, Xu Liu, and Xiaolong Li. "A design of a variable gain amplifier with current source load reassigned." In 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET). IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10627178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

D’Amico, Andrea, Fatih Yaman, Daisuke Katsukura, et al. "Variable Temperature and Pump Power Semi-Analytical Gain Model for GFF-Embedded Single-Stage EDFAs." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.tu3e.5.

Full text
Abstract:
A simple and accurate semi-analytical model for predicting the gain of a single-stage erbium-doped fiber amplifier embedded with an unknown gain flattening filter is proposed for precise system equalization that is crucial for submarine systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Mneimneh, Malak, and Lutfi Albasha. "A 2.4 GHz Input Cascaded CMOS Variable Gain Amplifier with 50 dB Gain Control for RF Applications." In 2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2025. https://doi.org/10.1109/reepe63962.2025.10970800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yishay, Roee Ben, Fabian Cossoy, Tzvi Maimon, and Tamir Levinger. "A 76-81 GHz Variable Gain Power Amplifier in 16 nm FinFET CMOS Technology." In 2024 19th European Microwave Integrated Circuits Conference (EuMIC). IEEE, 2024. http://dx.doi.org/10.23919/eumic61603.2024.10732325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Geng, Mengqian, Yiming Yu, Chenxi Zhao, Huihua Liu, Yunqiu Wu, and Kai Kang. "A Wideband Variable Gain Power Amplifier With Phase Compensation and PAE Enhancement Techniques in 65 nm CMOS Technology." In 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10672163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Zu, Yang Yu, Yingdan Jiang, Shutong Wu, and Jinghe Wei. "Design of Roadband Digital Variable Gain Amplifier." In 2024 6th International Conference on Electronic Engineering and Informatics (EEI). IEEE, 2024. http://dx.doi.org/10.1109/eei63073.2024.10696324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Belousov, Egor, and Ksenia Lomovskaya. "A 84-db wideband low-power variable gain amplifier." In 2013 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2013. http://dx.doi.org/10.1109/isscs.2013.6651221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Craciun, Adrian Virgil. "Low noise, low power variable gain amplifier for ultrasounds." In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP). IEEE, 2017. http://dx.doi.org/10.1109/optim.2017.7975075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Ya-ze, Wan-rong Zhang, Dong-yue Jin, et al. "A low power variable gain wideband low noise amplifier." In 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB). IEEE, 2016. http://dx.doi.org/10.1109/icuwb.2016.7790410.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Variable gain power amplifier"

1

Meth M. and A. Zaltsman. Gain-Bandwith Product of Power Grid Tubes and Application to AGS Power Amplifier Driver. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/1061710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sentman, L. H., P. Theodoropoulos, R. Waldo, T. Nguyen, and R. Snipes. An Experimental Study of CW HF Chemical Laser Amplifier Performance and Zero Power Gain. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada185241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

อึ๊งภากรณ์, วริทธิ์, та วิบูลย์ แสงวีระพันธุ์ศิริ. การออกแบบและควบคุมหุ่นยนต์อุตสาหกรรมชนิด 3 ข้อต่อ ที่มีการเคลื่อนที่แบบพิกัดฉาก : รายงานผลการวิจัย. จุฬาลงกรณ์มหาวิทยาลัย, 1992. https://doi.org/10.58837/chula.res.1992.9.

Full text
Abstract:
หุ่นยนต์อุตสาหกรรมชนิดสามข้อต่อที่มีการเคลื่อนที่แบบพิกัดฉากนี้ควบคุมด้วยเครื่องไมโครคอมพิวเตอร์ ระบบขับเคลื่อนเป็นมอเตอร์ไฟฟ้ากระแสตรงชนิดแม่เหล็กถาวร ใช้เครื่องขยายกำลังสัญญาณ (Power amplifier) เป็นตัวจ่ายพลังงาน โดยระบบควบคุมการเคลื่อนที่จะเป็นแบบเปิด เครื่องขยายกำลังสัญญาณ (Power amplifier) นั้น จะใช้ต่อเป็นแบบควบคุมกระแส (Current amplifier) และแบบควบคุมแรงดัน (Voltage amplifier) จากผลการวิเคราะห์และทดลองเปรียบเทียบระบบควบคุมในแบบที่ใช้เครื่องขยายสัญญาณแบบควบคุมกระแส (Current amplifier) และแบบที่ใช้เครื่องขยายสัญญาณแบบควบคุมแรงดัน (Voltage amplifier) นั้น จะได้ว่าการควบคุมแบบที่ใช้เครื่องข
APA, Harvard, Vancouver, ISO, and other styles
4

Poelker, M., and J. Hansknecht. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/563274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!