Journal articles on the topic 'Variable gain power amplifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Variable gain power amplifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Choi, Ye-Ji, and Jee-Youl Ryu. "Design of Low-Power Variable Gain Amplifier." Journal of Institute of Control, Robotics and Systems 28, no. 1 (2022): 1–5. http://dx.doi.org/10.5302/j.icros.2022.21.0138.
Full textZhang, Jing Zhi. "A 520MHz Wideband Variable Gain Amplifier." Applied Mechanics and Materials 556-562 (May 2014): 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.
Full textFujimoto, Y., H. Tani, M. Maruyama, H. Akada, H. Ogawa, and M. Miyamoto. "A low-power switched-capacitor variable gain amplifier." IEEE Journal of Solid-State Circuits 39, no. 7 (2004): 1213–16. http://dx.doi.org/10.1109/jssc.2004.829919.
Full textVintola, V. T. S., M. J. Matilainen, S. J. K. Kalajo, and E. A. Jarvinen. "Variable-gain power amplifier for mobile WCDMA applications." IEEE Transactions on Microwave Theory and Techniques 49, no. 12 (2001): 2464–71. http://dx.doi.org/10.1109/22.971637.
Full textHuang, Yan-Yu, Wangmyong Woo, Hamhee Jeon, Chang-Ho Lee, and J. Stevenson Kenney. "Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers." IEEE Transactions on Microwave Theory and Techniques 60, no. 1 (2012): 68–76. http://dx.doi.org/10.1109/tmtt.2011.2175234.
Full textQuoc-Hoang Duong, Quan Le, Chang-Wan Kim, and Sang-Gug Lee. "A 95-dB linear low-power variable gain amplifier." IEEE Transactions on Circuits and Systems I: Regular Papers 53, no. 8 (2006): 1648–57. http://dx.doi.org/10.1109/tcsi.2006.879058.
Full textTang, Fang, Amine Bermak, Amira Abbes та Mohieddine Amor Benammar. "Continuous-TimeΣΔADC with Implicit Variable Gain Amplifier for CMOS Image Sensor". Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/208540.
Full textXie, Hongyun, Shuo Liu, Lianghao Zhang, et al. "Low power dissipation SiGe HBT dual-band variable gain amplifier." Microelectronics Journal 46, no. 7 (2015): 626–31. http://dx.doi.org/10.1016/j.mejo.2015.03.007.
Full textKang, So Young, Jooyoung Jang, Inn-Yeal Oh, and Chul Soon Park. "A 2.16 mW Low Power Digitally-Controlled Variable Gain Amplifier." IEEE Microwave and Wireless Components Letters 20, no. 3 (2010): 172–74. http://dx.doi.org/10.1109/lmwc.2010.2040222.
Full textMustaffa, Mohd Tafir. "A Variable-Gain Low-Noise Amplifier for MedRadio Band Applications." International Journal of Electrical and Electronic Engineering & Telecommunications 13, no. 4 (2024): 293–303. http://dx.doi.org/10.18178/ijeetc.13.4.293-303.
Full textKledrowetz, Vilem, Roman Prokop, Lukas Fujcik, Michal Pavlik, and Jiří Háze. "Low-power ASIC suitable for miniaturized wireless EMG systems." Journal of Electrical Engineering 70, no. 5 (2019): 393–99. http://dx.doi.org/10.2478/jee-2019-0071.
Full textLahiani, Sawssen, Samir Ben Salem, Houda Daoud, and Mourad Loulou. "A CMOS Low-Power Digital Variable Gain Amplifier Design for a Cognitive Radio Receiver “Application for IEEE 802.22 Standard”." Journal of Circuits, Systems and Computers 27, no. 09 (2018): 1850135. http://dx.doi.org/10.1142/s0218126618501359.
Full textMotamed, A., Changku Hwang, and M. Ismail. "A low-voltage low-power wide-range CMOS variable gain amplifier." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45, no. 7 (1998): 800–811. http://dx.doi.org/10.1109/82.700927.
Full textLiao, Hsien-Yuan, Kuan-Yu Chen, Joseph D. S. Deng та Hwann-Kaeo Chiou. "0.35-μm SiGe BiCMOS variable-gain power amplifier for WiMAX transmitters". Microwave and Optical Technology Letters 49, № 11 (2007): 2750–53. http://dx.doi.org/10.1002/mop.22851.
Full textIji, Ayobami, Xi Zhu, and Michael Heimlich. "High gain/power quotient variable-gain wideband low-noise amplifier for capsule endoscopy application." Microwave and Optical Technology Letters 54, no. 11 (2012): 2563–65. http://dx.doi.org/10.1002/mop.27111.
Full textArbet, Daniel, Viera Stopjaková, Martin Kováč, Lukáš Nagy, Matej Rakús, and Michal Šovčík. "130 nm CMOS Bulk-Driven Variable Gain Amplifier for Low-Voltage Applications." Journal of Circuits, Systems and Computers 26, no. 08 (2017): 1740003. http://dx.doi.org/10.1142/s0218126617400035.
Full textAlam, M. J., Mohammad Arif Sobhan Bhuiyan, Md Torikul Islam Badal, Mamun Bin Ibne Reaz, and Noorfazila Kamal. "Design of a low-power compact CMOS variable gain amplifier for modern RF receivers." Bulletin of Electrical Engineering and Informatics 9, no. 1 (2020): 87–93. http://dx.doi.org/10.11591/eei.v9i1.1468.
Full textM., J. Alam, A. S. Bhuiyan M., T. I. Badal M., B. I. Reaz M., and Kamal N. "Design of a low-power compact CMOS variable gain amplifier for modern RF receivers." Bulletin of Electrical Engineering and Informatics 9, no. 1 (2020): 87–93. https://doi.org/10.11591/eei.v9i1.1468.
Full textHan, Jingyu, Yu Jiang, Guiliang Guo, and Xu Cheng. "A Reconfigurable Analog Baseband Circuitry for LFMCW RADAR Receivers in 130-nm SiGe BiCMOS Process." Electronics 9, no. 5 (2020): 831. http://dx.doi.org/10.3390/electronics9050831.
Full textZIABAKHSH, SOHEYL, HOSEIN ALAVI-RAD, MORTEZA ALINIA AHANDANI, and MUSTAPHA C. E. YAGOUB. "DESIGN AND OPTIMIZATION OF A FULLY DIFFERENTIAL CMOS VARIABLE-GAIN LNA WITH DIFFERENTIAL EVOLUTION ALGORITHM FOR WLAN APPLICATIONS." Journal of Circuits, Systems and Computers 23, no. 09 (2014): 1450124. http://dx.doi.org/10.1142/s0218126614501242.
Full textSemsar Parapari, Ehsan, Elmira Semsar Parapari, Ziaddin Daie Koozehkanani, and Siroos Toofan. "A low power 102 dB Reconfigurable Variable Gain Amplifier for Multistandard Receivers." AEU - International Journal of Electronics and Communications 132 (April 2021): 153631. http://dx.doi.org/10.1016/j.aeue.2021.153631.
Full textNguyen, H. H., Q. H. Duong, H. B. Le, J. S. Lee, and S. G. Lee. "Low-power 42 dB-linear single-stage digitally-controlled variable gain amplifier." Electronics Letters 44, no. 13 (2008): 780. http://dx.doi.org/10.1049/el:20081269.
Full textChen, Zhiming, Yuanjin Zheng, Foo Chung Choong, and Minkyu Je. "A Low-Power Variable-Gain Amplifier With Improved Linearity: Analysis and Design." IEEE Transactions on Circuits and Systems I: Regular Papers 59, no. 10 (2012): 2176–85. http://dx.doi.org/10.1109/tcsi.2012.2185331.
Full textSánchez‐Rodríguez, Trinidad, Juan Antonio Galán, Manuel Pedro, Antonio J. López‐Martín, Ramon G. Carvajal, and Jaime Ramírez‐Angulo. "Low‐power CMOS variable gain amplifier based on a novel tunable transconductor." IET Circuits, Devices & Systems 9, no. 2 (2015): 105–10. http://dx.doi.org/10.1049/iet-cds.2014.0130.
Full textMa, Dongsheng, Chen Zheng, Hio Leong Chao, and Mike Koen. "Integrated low-power CMFB-free variable-gain amplifier for ultrasound diagnostic applications." Analog Integrated Circuits and Signal Processing 61, no. 2 (2009): 171–79. http://dx.doi.org/10.1007/s10470-009-9296-8.
Full textXuelian, Zhang, Yan Jun, Shi Yin, and Dai Fa Foster. "5.2 GHz variable-gain amplifier and power amplifier driver for WLAN IEEE 802.11a transmitter front-end." Journal of Semiconductors 30, no. 1 (2009): 015008. http://dx.doi.org/10.1088/1674-4926/30/1/015008.
Full textLee, Samuel B. S., Hang Liu, Kiat Seng Yeo, Jer-Ming Chen, and Xiaopeng Yu. "Design of Differential Variable-Gain Transimpedance Amplifier in 0.18 µm SiGe BiCMOS." Electronics 9, no. 7 (2020): 1058. http://dx.doi.org/10.3390/electronics9071058.
Full textDuan, Ji Hai, and Chun Lei Kang. "A Fully Integrated 5.2-GHz CMOS Variable Gain LNA for 802.11a WLAN." Advanced Materials Research 433-440 (January 2012): 5579–83. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.5579.
Full textDUONG, Q. H., C. W. KIM, and S. G. LEE. "All CMOS Low-Power Wide-Gain Range Variable Gain Amplifiers." IEICE Transactions on Electronics E91-C, no. 5 (2008): 788–97. http://dx.doi.org/10.1093/ietele/e91-c.5.788.
Full textNam, Hyosung, Taejoo Sim, and Junghyun Kim. "A 2.4 GHz 20 W 8-channel RF Source Module with Solid-State Power Amplifiers for Plasma Generators." Electronics 9, no. 9 (2020): 1378. http://dx.doi.org/10.3390/electronics9091378.
Full textBao, Jiazhen, Yifeng Cao, and Qian Huang. "Maximum gain optimization of thulium-doped fiber amplifier based on genetic algorithm for peak gain spectrum at 1800- 2000nm." Applied and Computational Engineering 10, no. 1 (2023): 72–78. http://dx.doi.org/10.54254/2755-2721/10/20230143.
Full textShin, Gibeom, Kyunghwan Kim, Kangseop Lee, Hyun-Hak Jeong, and Ho-Jin Song. "An E-Band 21-dB Variable-Gain Amplifier with 0.5-V Supply in 40-nm CMOS." Electronics 10, no. 7 (2021): 804. http://dx.doi.org/10.3390/electronics10070804.
Full textRahmatian, Behnoosh, та Shahriar Mirabbasi. "A low-power 75 dB digitally programmable variable-gain amplifier in 0.18μm CMOS". Canadian Journal of Electrical and Computer Engineering 32, № 4 (2007): 181–86. http://dx.doi.org/10.1109/cjece.2007.4407663.
Full textvan Lieshout, P. J. G., and R. J. van de Plassche. "A power-efficient, low-distortion variable gain amplifier consisting of coupled differential pairs." IEEE Journal of Solid-State Circuits 32, no. 12 (1997): 2105–10. http://dx.doi.org/10.1109/4.643668.
Full textWu, Junjie, and Jianhui Wu. "A 12-Bit 200 MS/s Pipelined-SAR ADC Using Back-Ground Calibration for Inter-Stage Gain." Electronics 9, no. 3 (2020): 507. http://dx.doi.org/10.3390/electronics9030507.
Full textZhang, Wei Jia, and Bo Wang. "A SiGe HBT Variable Gain Amplifier for Wireless Receiver System with On-Chip Filter." Applied Mechanics and Materials 155-156 (February 2012): 167–70. http://dx.doi.org/10.4028/www.scientific.net/amm.155-156.167.
Full textKumar, Vijay, and Sujatha Ravichandran. "A Low Noise Variable Gain Amplifier with 97.2 dB Linear Gain Range for CW Radar." Defence Science Journal 74, no. 01 (2023): 85–90. http://dx.doi.org/10.14429/dsj.74.19149.
Full textLee, Lini, Roslina Mohd Sidek, Sudhanshu Shekhar Jamuar, and Sabira Khatun. "Cascode Current Mirror for a Variable Gain Stage in a 1.8 GHz Low Noise Amplifier (LNA)." ECTI Transactions on Electrical Engineering, Electronics, and Communications 6, no. 1 (2007): 47–52. http://dx.doi.org/10.37936/ecti-eec.200861.171760.
Full textZhang, Da Hui, Ze Dong Nie, Feng Guan, and Lei Wang. "An Energy-Efficient Receiver for Human Body Communication." Applied Mechanics and Materials 195-196 (August 2012): 84–89. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.84.
Full textZhao, Yinan, Jinwu Zhuang, Zhihao Ye, Zhiliang Qian, and Fang Peng. "Simulation of Steady-State Temperature Rise of Electric Heating Field of Wireless Sensor Circuit Fault Current Trigger." Journal of Sensors 2021 (September 30, 2021): 1–11. http://dx.doi.org/10.1155/2021/8359504.
Full textJazayeri, Farzan, Behjat Forouzandeh, and Farshid Raissi. "Low-power variable gain amplifier with wide UGBW based on nanoscale Field Effect Diode." IEICE Electronics Express 6, no. 1 (2009): 51–57. http://dx.doi.org/10.1587/elex.6.51.
Full textMa, Rui, Maliang Liu, Hao Zheng, and Zhangming Zhu. "A 77-dB Dynamic Range Low-Power Variable-Gain Transimpedance Amplifier for Linear LADAR." IEEE Transactions on Circuits and Systems II: Express Briefs 65, no. 2 (2018): 171–75. http://dx.doi.org/10.1109/tcsii.2017.2684822.
Full textRivetti, A. "A low-power variable-gain front-end amplifier in a 0.25 μm CMOS technology". IEEE Transactions on Nuclear Science 50, № 4 (2003): 948–54. http://dx.doi.org/10.1109/tns.2003.815131.
Full textLahiani, Sawssen, Houda Daoud, Samir Ben Salem, and Mourad Loulou. "Low power CMOS variable gain amplifier design for a multistandard receiver WLAN/WIMAX/LTE." Analog Integrated Circuits and Signal Processing 101, no. 2 (2019): 255–65. http://dx.doi.org/10.1007/s10470-019-01509-8.
Full textdel Pino, J., Sunil L. Khemchandani, D. Galante-Sempere, and C. Luján-Martínez. "A Compact Size Wideband RF-VGA Based on Second Generation Controlled Current Conveyors." Electronics 9, no. 10 (2020): 1600. http://dx.doi.org/10.3390/electronics9101600.
Full textTogawa, Kazuaki, Hirokazu Maesaka, Reichiro Kobana, and Hitoshi Tanaka. "Frequency-segmented power amplification using multi-band radio frequency amplifiers to produce a high-voltage pulse." Review of Scientific Instruments 93, no. 7 (2022): 073304. http://dx.doi.org/10.1063/5.0093915.
Full textNam, Hyungseok, Dang-An Nguyen, Yanghyun Kim, and Chulhun Seo. "Design of 6 GHz Variable-Gain Low-Noise Amplifier Using Adaptive Bias Circuit for Radar Receiver Front End." Electronics 12, no. 9 (2023): 2036. http://dx.doi.org/10.3390/electronics12092036.
Full textChilukuri, Manu, Sungyong Jung, and Hoon-Ju Chung. "A Charge Amplifier Based Complementary Metal–Oxide–Semiconductor Analog Front End for Piezoelectric Microphones in Hearing Aid Devices." Journal of Low Power Electronics 15, no. 3 (2019): 315–22. http://dx.doi.org/10.1166/jolpe.2019.1615.
Full textWang, Yanjie, Bagher Afshar, Lu Ye, Vincent C. Gaudet, and Ali M. Niknejad. "Design of a Low Power, Inductorless Wideband Variable-Gain Amplifier for High-Speed Receiver Systems." IEEE Transactions on Circuits and Systems I: Regular Papers 59, no. 4 (2012): 696–707. http://dx.doi.org/10.1109/tcsi.2011.2169852.
Full textHau, G., T. B. Nishimura, and N. Iwata. "High efficiency, wide dynamic range variable gain and power amplifier MMICs for wideband CDMA handsets." IEEE Microwave and Wireless Components Letters 11, no. 1 (2001): 13–15. http://dx.doi.org/10.1109/7260.905953.
Full text