Academic literature on the topic 'Variable Order Markov Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variable Order Markov Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variable Order Markov Model"
Shirgave, Suresh, Prakash Kulkarni, and José Borges. "Semantically Enriched Variable Length Markov Chain Model for Analysis of User Web Navigation Sessions." International Journal of Information Technology & Decision Making 13, no. 04 (July 2014): 721–53. http://dx.doi.org/10.1142/s0219622014500643.
Full textBegleiter, R., R. El-Yaniv, and G. Yona. "On Prediction Using Variable Order Markov Models." Journal of Artificial Intelligence Research 22 (December 1, 2004): 385–421. http://dx.doi.org/10.1613/jair.1491.
Full textTengke Xiong, Shengrui Wang, Qingshan Jiang, and Joshua Zhexue Huang. "A Novel Variable-order Markov Model for Clustering Categorical Sequences." IEEE Transactions on Knowledge and Data Engineering 26, no. 10 (October 2014): 2339–53. http://dx.doi.org/10.1109/tkde.2013.104.
Full textCunial, Fabio, Jarno Alanko, and Djamal Belazzougui. "A framework for space-efficient variable-order Markov models." Bioinformatics 35, no. 22 (April 20, 2019): 4607–16. http://dx.doi.org/10.1093/bioinformatics/btz268.
Full textPOSCH, STEFAN, JAN GRAU, ANDRE GOHR, IRAD BEN-GAL, ALEXANDER E. KEL, and IVO GROSSE. "RECOGNITION OF CIS-REGULATORY ELEMENTS WITH VOMBAT." Journal of Bioinformatics and Computational Biology 05, no. 02b (April 2007): 561–77. http://dx.doi.org/10.1142/s0219720007002886.
Full textXiao Li, Yuhao Wang, and Yuan Liu. "A Channel Cognitive Method for Local Fading Characteristics using Variable-Order Markov Model." Journal of Communications and Information Sciences 1, no. 2 (2011): 1–12. http://dx.doi.org/10.4156/jcis.vol1.issue2.1.
Full textSaadani, A., P. Gelpi, and P. Tortelier. "A Variable-Order Markov-Chain-Based Model for Rayleigh Fading and Rake Receiver." IEEE Signal Processing Letters 11, no. 3 (March 2004): 356–58. http://dx.doi.org/10.1109/lsp.2003.822915.
Full textQi, Zhang, Wen Guang, Chen Zhixin, Zhou Qin, Xiang Guoqi, Yang Guangchun, and Zhang Xuegang. "Contact stress reliability analysis based on first order second moment for variable hyperbolic circular arc gear." Advances in Mechanical Engineering 14, no. 7 (July 2022): 168781322211112. http://dx.doi.org/10.1177/16878132221111210.
Full textMelikov, A. Z., L. A. Ponomarenko, and S. A. Bagirova. "Markov Models of Queueing–Inventory Systems with Variable Order Size." Cybernetics and Systems Analysis 53, no. 3 (May 2017): 373–86. http://dx.doi.org/10.1007/s10559-017-9937-3.
Full textKohli, Amit Kumar, Amrita Rai, and Meher Krishna Patel. "Variable Forgetting Factor LS Algorithm for Polynomial Channel Model." ISRN Signal Processing 2011 (December 30, 2011): 1–4. http://dx.doi.org/10.5402/2011/915259.
Full textDissertations / Theses on the topic "Variable Order Markov Model"
Zippo, A. G. "NEURONAL ENSEMBLE MODELING AND ANALYSIS WITH VARIABLE ORDER MARKOV MODELS." Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150077.
Full textSchimert, James. "A high order hidden Markov model /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/8939.
Full textXu, Xuechun. "Sequential recommendation for food recipes with Variable Order Markov Chain." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223567.
Full textEn av huvuduppgifterna när det kommer till rekommenderingsplatformar är att modellera kortsidiga dynamiska egenskaper, dvs. användares sekventiella beteenden. Markov Chain (MC), som är mest känd för sin förmåga att lära sig övergångsgrafer, är den mest populära metoden för att ge sig på denna uppgift. I föregående arbeten så har rekommenderingsplatformar ofta tenderat att modellera kortsidig dynamik baserat på långsidig dynamik, t.ex. likheter mellan objekt eller användares relativa preferenser givet olika tillfällen. Att använda den här metoden brukar medföra att användares långsiktiga dynamik, i detta fall personliga smakpreferenser, är alltid densamma. Däremot, så har studien av Sensory-Specific Satiety visat att användares preferenser gällande mat varierar. I detta arbete så undersöks ett rekommenderingssystem som baseras på Variable Order Markov Chain (VOMC) som kan anpassa sig efter den observerade realiseringen genom att använda suffix tree (ST) för att extrahera sekventiella mönster. Detta rekommenderingssystem fokuserar på kortsidig dynamik istället för att kombinera kort- och långsidig dynamik. För att evaluera metoden, en undersökning av vilken mat som konsumeras, under loppet av sju dagar, ges ut för att samla data om vilken mat och i vilken ordning användare konsumerar. I resultaten så visas att det föreslagna rekommenderingsystemet kan ge meningsfulla rekommendationer.
Schwardt, Ludwig. "Efficient Mixed-Order Hidden Markov Model Inference." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/709.
Full textJindasawat, Jutaporn. "Testing the order of a Markov chain model." Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446197.
Full textAvila, Manuel. "Optimisation de modèles markoviens pour la reconnaissance de l'écrit." Rouen, 1996. http://www.theses.fr/1996ROUES034.
Full textMainguy, Yves. "A robust variable order facet model for image data." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-10222009-124949/.
Full textEngelbrecht, Herman A. "Efficient Decoding of High-order Hidden Markov Models." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/1095.
Full textMost speech recognition and language identification engines are based on hidden Markov models (HMMs). Higher-order HMMs are known to be more powerful than first-order HMMs, but have not been widely used because of their complexity and computational demands. The main objective of this dissertation was to develop a more time-efficient method of decoding high-order HMMs than the standard Viterbi decoding algorithm currently in use. We proposed, implemented and evaluated two decoders based on the Forward-Backward Search (FBS) paradigm, which incorporate information obtained from low-order HMMs. The first decoder is based on time-synchronous Viterbi-beam decoding where we wish to base our state pruning on the complete observation sequence. The second decoder is based on time-asynchronous A* search. The choice of heuristic is critical to the A* search algorithms and a novel, task-independent heuristic function is presented. The experimental results show that both these proposed decoders result in more time-efficient decoding of the fully-connected, high-order HMMs that were investigated. Three significant facts have been uncovered. The first is that conventional forward Viterbi-beam decoding of high-order HMMs is not as computationally expensive as is commonly thought. The second (and somewhat surprising) fact is that backward decoding of conventional, high-order left-context HMMs is significantly more expensive than the conventional forward decoding. By developing the right-context HMM, we showed that the backward decoding of a mathematically equivalent right-context HMM is as expensive as the forward decoding of the left-context HMM. The third fact is that the use of information obtained from low-order HMMs significantly reduces the computational expense of decoding high-order HMMs. The comparison of the two new decoders indicate that the FBS-Viterbi-beam decoder is more time-efficient than the A* decoder. The FBS-Viterbi-beam decoder is not only simpler to implement, it also requires less memory than the A* decoder. We suspect that the broader research community regards the Viterbi-beam algorithm as the most efficient method of decoding HMMs. We hope that the research presented in this dissertation will result in renewed investigation into decoding algorithms that are applicable to high-order HMMs.
Wang, Chaohui. "Distributed and Higher-Order Graphical Models : towards Segmentation, Tracking, Matching and 3D Model Inference." Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00658765.
Full textCrespo, Cuaresma Jesus, and Philipp Piribauer. "Bayesian Variable Selection in Spatial Autoregressive Models." WU Vienna University of Economics and Business, 2015. http://epub.wu.ac.at/4584/1/wp199.pdf.
Full textSeries: Department of Economics Working Paper Series
Books on the topic "Variable Order Markov Model"
United States. National Aeronautics and Space Administration., ed. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Low-order nonlinear dynamic model of IC engine-variable pitch propeller system for general aviation aircraft. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textKoldaev, Viktor. Theoretical and methodological aspects of the use of information technologies in education. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1014651.
Full textGestión de calidad y su impacto en la innovación ecológica del Distrito de Ica, Perú. Editora Acadêmica Periodicojs, 2021. http://dx.doi.org/10.51249/hp01.2021.21.
Full textLi, Quan. Using R for Data Analysis in Social Sciences. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190656218.001.0001.
Full textZydroń, Tymoteusz. Wpływ systemów korzeniowych wybranych gatunków drzew na przyrost wytrzymałości gruntu na ścinanie. Publishing House of the University of Agriculture in Krakow, 2019. http://dx.doi.org/10.15576/978-83-66602-46-5.
Full textBook chapters on the topic "Variable Order Markov Model"
Armentano, Marcelo G., and Analía A. Amandi. "Recognition of User Intentions for Interface Agents with Variable Order Markov Models." In User Modeling, Adaptation, and Personalization, 173–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02247-0_18.
Full textNagata, Yuichi. "Population Diversity Measures Based on Variable-Order Markov Models for the Traveling Salesman Problem." In Parallel Problem Solving from Nature – PPSN XIV, 973–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45823-6_91.
Full textIllescas, Gustavo, Mariano Martínez, Arturo Mora-Soto, and Jose Roberto Cantú-González. "How to Think Like a Data Scientist: Application of a Variable Order Markov Model to Indicators Management." In Advances in Intelligent Systems and Computing, 153–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26285-7_13.
Full textDalevi, Daniel, and Devdatt Dubhashi. "The Peres-Shields Order Estimator for Fixed and Variable Length Markov Models with Applications to DNA Sequence Similarity." In Lecture Notes in Computer Science, 291–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11557067_24.
Full textParag, Toufiq, and Ahmed Elgammal. "Higher Order Markov Networks for Model Estimation." In Advances in Visual Computing, 246–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24028-7_23.
Full textHan, Jinyu, Gautham J. Mysore, and Bryan Pardo. "Audio Imputation Using the Non-negative Hidden Markov Model." In Latent Variable Analysis and Signal Separation, 347–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28551-6_43.
Full textTonne, Jens, and Olaf Stursberg. "Constrained Model Predictive Control of Processes with Uncertain Structure Modeled by Jump Markov Linear Systems." In Variable-Structure Approaches, 335–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31539-3_12.
Full textSierociuk, Dominik, Michal Macias, and Pawel Ziubinski. "Experimental Results of Modeling Variable Order System Based on Discrete Fractional Variable Order State-Space Model." In Theoretical Developments and Applications of Non-Integer Order Systems, 129–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23039-9_11.
Full textBabich, Fulvio, Owen E. Kelly, and Giancarlo Lombardi. "A Variable-Order Discrete Model for the Fading Channel." In Broadband Wireless Communications, 259–66. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1570-0_24.
Full textKermorvant, Christopher, and Pierre Dupont. "Improved Smoothing for Probabilistic Suffix Trees Seen as Variable Order Markov Chains." In Lecture Notes in Computer Science, 185–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36755-1_16.
Full textConference papers on the topic "Variable Order Markov Model"
Yang, Jie, Jian Xu, Ming Xu, Ning Zheng, and Yu Chen. "Predicting next location using a variable order Markov model." In SIGSPATIAL '14: 22nd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2676552.2676557.
Full textZhu, Simin, Xin Lv, and Lin Yu. "Location Privacy Protection Method based on Variable-Order Markov Prediction Model." In CSSE 2021: 2021 4th International Conference on Computer Science and Software Engineering. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3494885.3494890.
Full textXia, Ying, Yu Gong, Xu Zhang, and Hae-young Bae. "Location Prediction Based on Variable-order Markov Model and User's Spatio-temporal Rule." In 2018 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2018. http://dx.doi.org/10.1109/ictc.2018.8539593.
Full textSurmeli, Bans Gun, Feyza Eksen, Bilal Dinc, Peter Schuller, and Borahan Tumer. "Unsupervised mode detection in cyber-physical systems using variable order Markov models." In 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). IEEE, 2017. http://dx.doi.org/10.1109/indin.2017.8104881.
Full textJi, Guoli, Huanghui Zhang, Xiaohui Wu, and Meishuang Tang. "Identification of plant messenger RNA polyadenylation sites using length-variable second order Markov model." In 2011 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2011. http://dx.doi.org/10.1109/icsmc.2011.6083769.
Full textDevanarayana, C., and A. S. Alfa. "Predictive Channel Access in Cognitive Radio Networks Based on Variable Order Markov Models." In 2011 IEEE Global Communications Conference (GLOBECOM 2011). IEEE, 2011. http://dx.doi.org/10.1109/glocom.2011.6133706.
Full textAraújo, Felipe Rocha de, Denis Lima Rosário, Kassio Machado, Eduardo Coelho Cerqueira, and Leandro Villas. "TEMMUS: A Mobility Predictor based on Temporal Markov Model with User Similarity." In XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sbrc.2019.7389.
Full textChen, Yuqiao, Nicholas Ruozzi, and Sriraam Natarajan. "Lifted Message Passing for Hybrid Probabilistic Inference." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/790.
Full textYannou, Bernard, Jiliang Wang, Ndrianarilala Rianantsoa, Chris Hoyle, Mark Drayer, Wei Chen, Fabrice Alizon, and Jean-Pierre Mathieu. "Usage Coverage Model for Choice Modeling: Principles." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87534.
Full textMori, Shinsuke, and Gakuto Kurata. "Class-based variable memory length Markov model." In Interspeech 2005. ISCA: ISCA, 2005. http://dx.doi.org/10.21437/interspeech.2005-6.
Full textReports on the topic "Variable Order Markov Model"
Соловйов, Володимир Миколайович, Vladimir Saptsin, and Dmitry Chabanenko. Prediction of financial time series with the technology of high-order Markov chains. AGSOE, March 2009. http://dx.doi.org/10.31812/0564/1131.
Full textSoloviev, V., V. Saptsin, and D. Chabanenko. Financial time series prediction with the technology of complex Markov chains. Брама-Україна, 2014. http://dx.doi.org/10.31812/0564/1305.
Full textСоловйов, Володимир Миколайович, V. Saptsin, and D. Chabanenko. Financial time series prediction with the technology of complex Markov chains. Transport and Telecommunication Institute, 2010. http://dx.doi.org/10.31812/0564/1145.
Full textKim, Changmo, Ghazan Khan, Brent Nguyen, and Emily L. Hoang. Development of a Statistical Model to Predict Materials’ Unit Prices for Future Maintenance and Rehabilitation in Highway Life Cycle Cost Analysis. Mineta Transportation Institute, December 2020. http://dx.doi.org/10.31979/mti.2020.1806.
Full textKimhi, Ayal, Barry Goodwin, Ashok Mishra, Avner Ahituv, and Yoav Kislev. The dynamics of off-farm employment, farm size, and farm structure. United States Department of Agriculture, September 2006. http://dx.doi.org/10.32747/2006.7695877.bard.
Full textLasko, Kristofer, and Elena Sava. Semi-automated land cover mapping using an ensemble of support vector machines with moderate resolution imagery integrated into a custom decision support tool. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42402.
Full textTao, Yang, Amos Mizrach, Victor Alchanatis, Nachshon Shamir, and Tom Porter. Automated imaging broiler chicksexing for gender-specific and efficient production. United States Department of Agriculture, December 2014. http://dx.doi.org/10.32747/2014.7594391.bard.
Full textAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li, and A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Full textChapman, Ray, Phu Luong, Sung-Chan Kim, and Earl Hayter. Development of three-dimensional wetting and drying algorithm for the Geophysical Scale Transport Multi-Block Hydrodynamic Sediment and Water Quality Transport Modeling System (GSMB). Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41085.
Full text