Academic literature on the topic 'Variable prediction horizons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variable prediction horizons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variable prediction horizons"
Alamaniotis, Miltiadis, and Georgios Karagiannis. "Integration of Gaussian Processes and Particle Swarm Optimization for Very-Short Term Wind Speed Forecasting in Smart Power." International Journal of Monitoring and Surveillance Technologies Research 5, no. 3 (July 2017): 1–14. http://dx.doi.org/10.4018/ijmstr.2017070101.
Full textAbduljabbar, Rusul L., Hussein Dia, and Pei-Wei Tsai. "Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction." Journal of Advanced Transportation 2021 (March 26, 2021): 1–16. http://dx.doi.org/10.1155/2021/5589075.
Full textMontaser, Eslam, José-Luis Díez, and Jorge Bondia. "Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework." Sensors 21, no. 9 (May 4, 2021): 3188. http://dx.doi.org/10.3390/s21093188.
Full textFaria, Álvaro José Gomes de, Sérgio Henrique Godinho Silva, Leônidas Carrijo Azevedo Melo, Renata Andrade, Marcelo Mancini, Luiz Felipe Mesquita, Anita Fernanda dos Santos Teixeira, Luiz Roberto Guimarães Guilherme, and Nilton Curi. "Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models." Soil Research 58, no. 7 (2020): 683. http://dx.doi.org/10.1071/sr20136.
Full textGoldstein, Benjamin A., Michael J. Pencina, Maria E. Montez-Rath, and Wolfgang C. Winkelmayer. "Predicting mortality over different time horizons: which data elements are needed?" Journal of the American Medical Informatics Association 24, no. 1 (June 29, 2016): 176–81. http://dx.doi.org/10.1093/jamia/ocw057.
Full textLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou, and Pau Herrero. "Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal." Sensors 19, no. 19 (October 8, 2019): 4338. http://dx.doi.org/10.3390/s19194338.
Full textAlmarzooqi, Ameera M., Maher Maalouf, Tarek H. M. El-Fouly, Vasileios E. Katzourakis, Mohamed S. El Moursi, and Constantinos V. Chrysikopoulos. "A hybrid machine-learning model for solar irradiance forecasting." Clean Energy 8, no. 1 (January 10, 2024): 100–110. http://dx.doi.org/10.1093/ce/zkad075.
Full textFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby, and Juan José Vinagre Díaz. "Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction." Sensors 22, no. 12 (June 17, 2022): 4565. http://dx.doi.org/10.3390/s22124565.
Full textWang, Haowei, Kin On Kwok, and Steven Riley. "Forecasting influenza incidence as an ordinal variable using machine learning." Wellcome Open Research 9 (January 8, 2024): 11. http://dx.doi.org/10.12688/wellcomeopenres.19599.1.
Full textZjavka, Ladislav. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation." Energies 14, no. 22 (November 12, 2021): 7581. http://dx.doi.org/10.3390/en14227581.
Full textDissertations / Theses on the topic "Variable prediction horizons"
Amor, Yasmine. "Ιntelligent apprοach fοr trafic cοngestiοn predictiοn." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR129.
Full textTraffic congestion presents a critical challenge to urban areas, as the volume of vehicles continues to grow faster than the system’s overall capacity. This growth impacts economic activity, environmental sustainability, and overall quality of life. Although strategies for mitigating traffic congestion have seen improvements over the past few decades, many cities still struggle to manage it effectively. While various models have been developed to tackle this issue, existing approaches often fall short in providing real-time, localized predictions that can adapt to complex and dynamic traffic conditions. Most rely on fixed prediction horizons and lack the intelligent infrastructure needed for flexibility. This thesis addresses these gaps by proposing an intelligent, decentralized, infrastructure-based approach for traffic congestion estimation and prediction.We start by studying Traffic Estimation. We examine the possible congestion measures and data sources required for different contexts that may be studied. We establish a three-dimensional relationship between these axes. A rule-based system is developed to assist researchers and traffic operators in recommending the most appropriate congestion measures based on the specific context under study. We then proceed to Traffic Prediction, introducing our DECentralized COngestion esTimation and pRediction model using Intelligent Variable Message Signs (DECOTRIVMS). This infrastructure-based model employs intelligent Variable Message Signs (VMSs) to collect real-time traffic data and provide short-term congestion predictions with variable prediction horizons.We use Graph Attention Networks (GATs) due to their ability to capture complex relationships and handle graph-structured data. They are well-suited for modeling interactions between different road segments. In addition to GATs, we employ online learning methods, specifically, Stochastic Gradient Descent (SGD) and ADAptive GRAdient Descent (ADAGRAD). While these methods have been successfully used in various other domains, their application in traffic congestion prediction remains under-explored. In our thesis, we aim to bridge that gap by exploring their effectiveness within the context of real-time traffic congestion forecasting.Finally, we validate our model’s effectiveness through two case studies conducted in Muscat, Oman, and Rouen, France. A comprehensive comparative analysis is performed, evaluating various prediction techniques, including GATs, Graph Convolutional Networks (GCNs), SGD and ADAGRAD. The achieved results underscore the potential of DECOTRIVMS, demonstrating its potential for accurate and effective traffic congestion prediction across diverse urban contexts
Shekhar, Rohan Chandra. "Variable horizon model predictive control : robustness and optimality." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244210.
Full textBook chapters on the topic "Variable prediction horizons"
Huisman, Mischa, and Erjen Lefeber. "Online Motion Planning for All-Wheel Drive Autonomous Race Cars." In Lecture Notes in Mechanical Engineering, 185–92. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_27.
Full textHatanaka, Takeshi, Teruki Yamada, Masayuki Fujita, Shigeru Morimoto, and Masayuki Okamoto. "Explicit Receding Horizon Control of Automobiles with Continuously Variable Transmissions." In Nonlinear Model Predictive Control, 561–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_46.
Full textBertipaglia, Alberto, Mohsen Alirezaei, Riender Happee, and Barys Shyrokau. "A Learning-Based Model Predictive Contouring Control for Vehicle Evasive Manoeuvres." In Lecture Notes in Mechanical Engineering, 632–38. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_89.
Full textDe Nicolao, G., and R. Scattolini. "Properties of MBPC Algorithms." In Advances in Model-Based Predictive Control, 103–69. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198562924.003.0002.
Full textLima, Rodrigo de Souza, Leonardo Azevedo Scárdua, and Gustavo Maia de Almeida. "Predicting temperatures inside a steel slab reheating furnace using Deep Learning." In A LOOK AT DEVELOPMENT. Seven Editora, 2023. http://dx.doi.org/10.56238/alookdevelopv1-016.
Full text"Cash Management." In Decision and Prediction Analysis Powered With Operations Research, 209–21. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-4179-7.ch011.
Full textMartínez, Blanca, Javier Sanchis, and Sergio Garcia-Nieto. "A model independent constrained predictive control for the Furuta Pendulum." In XLIV Jornadas de Automática: libro de actas: Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura, 6, 7 y 8 de septiembre de 2023, Zaragoza, 323–28. 2023rd ed. Servizo de Publicacións. Universidade da Coruña, 2023. http://dx.doi.org/10.17979/spudc.9788497498609.323.
Full textBandyopadhyay, Arindam. "Matrix Algebra and their Application in Risk Prediction and Risk Monitoring." In Basic Statistics for Risk Management in Banks and Financial Institutions, 119–40. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192849014.003.0005.
Full textKumar, Rajendra, Surbhit Shukla, and C. S. Raghuvanshi. "Deep Learning Models for Predicting High and Low Tides With Gravitational Analysis." In Practice, Progress, and Proficiency in Sustainability, 35–46. IGI Global, 2023. http://dx.doi.org/10.4018/979-8-3693-1722-8.ch003.
Full textZickler Stefan and Veloso Manuela. "Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2010. https://doi.org/10.3233/978-1-60750-606-5-189.
Full textConference papers on the topic "Variable prediction horizons"
Ngo, Tri, and Cornel Sultan. "Towards Automation of Helicopter Landings on Ship Decks Using Integer Programming and Model Predictive Control." In Vertical Flight Society 80th Annual Forum & Technology Display, 1–9. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12783.
Full textXiong, Weiliang, Xiangjun Xia, Haiping Du, and Defeng He. "A Two-Stage Variable-Horizon Economic Model Predictive Control without Terminal Constraint." In 2024 IEEE 63rd Conference on Decision and Control (CDC), 4791–97. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886727.
Full textKellermann, Christoph, Eric Neumann, and Joern Ostermann. "Prediction of variable forecast horizons with artificial neural networks by embedding the temporal resolution warping." In 2022 International Conference on Control, Automation and Diagnosis (ICCAD). IEEE, 2022. http://dx.doi.org/10.1109/iccad55197.2022.9853884.
Full textDussi, Simone, Ryvo Octaviano, and Pejman Shoeibi Omrani. "Bayesian Networks Applied to ESP Performance Monitoring and Forecasting." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210495-ms.
Full textAlevras, Ilias, Petros Karamanakos, Stefanos Manias, and Ralph Kennel. "Variable switching point predictive torque control with extended prediction horizon." In 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015. http://dx.doi.org/10.1109/icit.2015.7125445.
Full textLi, Jiahui, Jian Zhang, and Bo Wang. "Cooperative Control Strategy for Variable Speed Limit and Dynamic Hard Shoulder Running of Highway On-Ramp Merging Area." In 2024 International Conference on Smart Transportation Interdisciplinary Studies. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2025. https://doi.org/10.4271/2025-01-7207.
Full textGonzález, Cristóbal, and Alejandro Angulo. "Multistep–Finite–Control–Set Model Predictive Control with Variable–Step Prediction Horizon." In 2023 IEEE 8th Southern Power Electronics Conference (SPEC). IEEE, 2023. http://dx.doi.org/10.1109/spec56436.2023.10408051.
Full textAli, Ahmed M., and Dirk Söffker. "Real-Time Applicable Power Management of Multi-Source Fuel Cell Vehicles Using Situation-Based Model Predictive Control." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22383.
Full textLee, Tae-Kyung, and Zoran S. Filipi. "Control Oriented Modeling and Nonlinear Model Predictive Control of Advanced SI Engine System." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4024.
Full textFernando, Eranga, Syed Imtiaz, Salim Ahmed, Kevin Murrant, Robert Gash, Mohammed Islam, and Hasanat Zaman. "Obstacle Avoidance Nonlinear Model Predictive Controller for Autonomous Surface Vessels With Variable Sampling Time Prediction." In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-126778.
Full textReports on the topic "Variable prediction horizons"
Clements, Michael, Robert W. Rich, and Joseph Tracy. An Investigation into the Uncertainty Revision Process of Professional Forecasters. Federal Reserve Bank of Cleveland, September 2024. http://dx.doi.org/10.26509/frbc-wp-202419.
Full textShaver, Greg, and Miles Droege. Develop and Deploy a Safe Truck Platoon Testing Protocol for the Purdue ARPA-E Project in Indiana. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317314.
Full text