Journal articles on the topic 'Variable prediction horizons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Variable prediction horizons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alamaniotis, Miltiadis, and Georgios Karagiannis. "Integration of Gaussian Processes and Particle Swarm Optimization for Very-Short Term Wind Speed Forecasting in Smart Power." International Journal of Monitoring and Surveillance Technologies Research 5, no. 3 (July 2017): 1–14. http://dx.doi.org/10.4018/ijmstr.2017070101.
Full textAbduljabbar, Rusul L., Hussein Dia, and Pei-Wei Tsai. "Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction." Journal of Advanced Transportation 2021 (March 26, 2021): 1–16. http://dx.doi.org/10.1155/2021/5589075.
Full textMontaser, Eslam, José-Luis Díez, and Jorge Bondia. "Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework." Sensors 21, no. 9 (May 4, 2021): 3188. http://dx.doi.org/10.3390/s21093188.
Full textFaria, Álvaro José Gomes de, Sérgio Henrique Godinho Silva, Leônidas Carrijo Azevedo Melo, Renata Andrade, Marcelo Mancini, Luiz Felipe Mesquita, Anita Fernanda dos Santos Teixeira, Luiz Roberto Guimarães Guilherme, and Nilton Curi. "Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models." Soil Research 58, no. 7 (2020): 683. http://dx.doi.org/10.1071/sr20136.
Full textGoldstein, Benjamin A., Michael J. Pencina, Maria E. Montez-Rath, and Wolfgang C. Winkelmayer. "Predicting mortality over different time horizons: which data elements are needed?" Journal of the American Medical Informatics Association 24, no. 1 (June 29, 2016): 176–81. http://dx.doi.org/10.1093/jamia/ocw057.
Full textLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou, and Pau Herrero. "Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal." Sensors 19, no. 19 (October 8, 2019): 4338. http://dx.doi.org/10.3390/s19194338.
Full textAlmarzooqi, Ameera M., Maher Maalouf, Tarek H. M. El-Fouly, Vasileios E. Katzourakis, Mohamed S. El Moursi, and Constantinos V. Chrysikopoulos. "A hybrid machine-learning model for solar irradiance forecasting." Clean Energy 8, no. 1 (January 10, 2024): 100–110. http://dx.doi.org/10.1093/ce/zkad075.
Full textFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby, and Juan José Vinagre Díaz. "Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction." Sensors 22, no. 12 (June 17, 2022): 4565. http://dx.doi.org/10.3390/s22124565.
Full textWang, Haowei, Kin On Kwok, and Steven Riley. "Forecasting influenza incidence as an ordinal variable using machine learning." Wellcome Open Research 9 (January 8, 2024): 11. http://dx.doi.org/10.12688/wellcomeopenres.19599.1.
Full textZjavka, Ladislav. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation." Energies 14, no. 22 (November 12, 2021): 7581. http://dx.doi.org/10.3390/en14227581.
Full textLi, Gang, Lin Zhong, Wenjun Sun, Shaohua Zhang, Qianjie Liu, Qingsheng Huang, and Guoliang Hu. "A Variable Horizon Model Predictive Control for Magnetorheological Semi-Active Suspension with Air Springs." Sensors 24, no. 21 (October 29, 2024): 6926. http://dx.doi.org/10.3390/s24216926.
Full textGiraldo, Sergio A. C., Príamo A. Melo, and Argimiro R. Secchi. "Tuning of Model Predictive Controllers Based on Hybrid Optimization." Processes 10, no. 2 (February 11, 2022): 351. http://dx.doi.org/10.3390/pr10020351.
Full textMendes, Wanderson de Sousa, and Michael Sommer. "Advancing Soil Organic Carbon and Total Nitrogen Modelling in Peatlands: The Impact of Environmental Variable Resolution and vis-NIR Spectroscopy Integration." Agronomy 13, no. 7 (July 6, 2023): 1800. http://dx.doi.org/10.3390/agronomy13071800.
Full textAslan, Antonio, José-Luis Díez, Alejandro José Laguna Sanz, and Jorge Bondia. "On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study." Applied Sciences 13, no. 9 (April 25, 2023): 5348. http://dx.doi.org/10.3390/app13095348.
Full textClingensmith, Christopher M., and Sabine Grunwald. "Predicting Soil Properties and Interpreting Vis-NIR Models from across Continental United States." Sensors 22, no. 9 (April 21, 2022): 3187. http://dx.doi.org/10.3390/s22093187.
Full textPavani-Biju, Barbara, José G. Borges, Susete Marques, and Ana C. Teodoro. "Enhancing Forest Site Classification in Northwest Portugal: A Geostatistical Approach Employing Cokriging." Sustainability 16, no. 15 (July 26, 2024): 6423. http://dx.doi.org/10.3390/su16156423.
Full textDill, Robert, Henryk Dobslaw, and Maik Thomas. "ESMGFZ EAM Products for EOP Prediction: Toward the Quantification of Time Variable EAM Forecast Errors." Artificial Satellites 58, no. 4 (December 1, 2023): 330–40. http://dx.doi.org/10.2478/arsa-2023-0013.
Full textRamspek, Chava L., Marie Evans, Christoph Wanner, Christiane Drechsler, Nicholas C. Chesnaye, Maciej Szymczak, Magdalena Krajewska, et al. "Kidney Failure Prediction Models: A Comprehensive External Validation Study in Patients with Advanced CKD." Journal of the American Society of Nephrology 32, no. 5 (March 8, 2021): 1174–86. http://dx.doi.org/10.1681/asn.2020071077.
Full textBeauchemin, S., R. R. Simard, M. A. Bolinder, M. C. Nolin, and D. Cluis. "Prediction of phosphorus concentration in tile-drainage water from the Montreal Lowlands soils." Canadian Journal of Soil Science 83, no. 1 (February 1, 2003): 73–87. http://dx.doi.org/10.4141/s02-029.
Full textAmara-Ouali, Yvenn, Bachir Hamrouche, Guillaume Principato, and Yannig Goude. "Quantifying the Uncertainty of Electric Vehicle Charging with Probabilistic Load Forecasting." World Electric Vehicle Journal 16, no. 2 (February 9, 2025): 88. https://doi.org/10.3390/wevj16020088.
Full textO'Connell, D. A., and P. J. Ryan. "Prediction of three key hydraulic properties in a soil survey of a small forested catchment." Soil Research 40, no. 2 (2002): 191. http://dx.doi.org/10.1071/sr01036.
Full textPark, Sophia, and Myeong Jun Kim. "Forecasting Ultrafine Dust Concentrations in Seoul: A Machine Learning Approach." Atmosphere 16, no. 3 (February 20, 2025): 239. https://doi.org/10.3390/atmos16030239.
Full textHitziger, Martin, and Mareike Ließ. "Comparison of Three Supervised Learning Methods for Digital Soil Mapping: Application to a Complex Terrain in the Ecuadorian Andes." Applied and Environmental Soil Science 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/809495.
Full textZhang, Mengmeng, Guijun Han, Xiaobo Wu, Chaoliang Li, Qi Shao, Wei Li, Lige Cao, Xuan Wang, Wanqiu Dong, and Zenghua Ji. "SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea." Remote Sensing 16, no. 6 (March 14, 2024): 1034. http://dx.doi.org/10.3390/rs16061034.
Full textPañeda, Emilio Martínez. "Progress and opportunities in modelling environmentally assisted cracking." RILEM Technical Letters 6 (July 19, 2021): 70–77. http://dx.doi.org/10.21809/rilemtechlett.2021.145.
Full textBruzda, Joanna. "Does modal (auto)regression produce credible forecasts of macroeconomic indicators?" Wiadomości Statystyczne. The Polish Statistician 2024, no. 10 (October 31, 2024): 1–27. http://dx.doi.org/10.59139/ws.2024.10.1.
Full textAlekseev, Valery I. "Forecasting changes in the Earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the SUN. Part 2." Yugra State University Bulletin 21, no. 1 (March 28, 2025): 48–62. https://doi.org/10.18822/byusu20250148-62.
Full textJin, Yixuan. "Stock Price Analysis and Prediction Method Based on Machine Learning: Taking Apple Inc as an Example." Highlights in Business, Economics and Management 21 (December 12, 2023): 652–58. http://dx.doi.org/10.54097/hbem.v21i.14720.
Full textAlekseev, Valery I. "Forecasting changes in the earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the sun. Part 1." Yugra State University Bulletin 20, no. 2 (October 10, 2024): 74–96. http://dx.doi.org/10.18822/byusu20240274-96.
Full textWang, Meng, Changhe Niu, Zifan Wang, Yongxin Jiang, Jianming Jian, and Xiuying Tang. "Model and Parameter Adaptive MPC Path Tracking Control Study of Rear-Wheel-Steering Agricultural Machinery." Agriculture 14, no. 6 (May 24, 2024): 823. http://dx.doi.org/10.3390/agriculture14060823.
Full textUkalovic, D., B. Leeb, B. Rintelen, G. Eichbauer-Sturm, P. Spellitz, R. Puchner, M. Herold, et al. "POS0641 MACHINE LEARNING AND EXPLAINABLE AI METHODS CAN HELP TO PREDICT THE INEFFECTIVENESS OF INDIVIDUAL BIOLOGICAL DISEASE MODIFYING ANTIRHEUMATIC DRUGS (bDMARDS) – DATA FROM THE AUSTRIAN BIOLOGICAL REGISTRY BIOREG." Annals of the Rheumatic Diseases 82, Suppl 1 (May 30, 2023): 597. http://dx.doi.org/10.1136/annrheumdis-2023-eular.3479.
Full textLuo, Yaneng, Handong Huang, Yadi Yang, Qixin Li, Sheng Zhang, and Jinwei Zhang. "Deepwater reservoir prediction using broadband seismic-driven impedance inversion and seismic sedimentology in the South China Sea." Interpretation 6, no. 4 (November 1, 2018): SO17—SO29. http://dx.doi.org/10.1190/int-2018-0029.1.
Full textAkhmedov, T. R., and M. A. Aghayeva. "Prediction of petrophysical characteristics of deposits in Kurovdagh field by use of attribute analysis of 3D data." Geofizicheskiy Zhurnal 44, no. 3 (August 24, 2022): 103–12. http://dx.doi.org/10.24028/gj.v44i3.261976.
Full textLawson, John R., Corey K. Potvin, Patrick S. Skinner, and Anthony E. Reinhart. "The Vice and Virtue of Increased Horizontal Resolution in Ensemble Forecasts of Tornadic Thunderstorms in Low-CAPE, High-Shear Environments." Monthly Weather Review 149, no. 4 (April 2021): 921–44. http://dx.doi.org/10.1175/mwr-d-20-0281.1.
Full textGonzález-Enrique, Javier, Juan Jesús Ruiz-Aguilar, José Antonio Moscoso-López, Daniel Urda, Lipika Deka, and Ignacio J. Turias. "Artificial Neural Networks, Sequence-to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO2 (Air Pollution) Forecasting: A Case Study in the Bay of Algeciras (Spain)." Sensors 21, no. 5 (March 4, 2021): 1770. http://dx.doi.org/10.3390/s21051770.
Full textAbduljabbar, Rusul, Hussein Dia, and Sohani Liyanage. "Machine Learning Models for Traffic Prediction on Arterial Roads Using Traffic Features and Weather Information." Applied Sciences 14, no. 23 (November 27, 2024): 11047. http://dx.doi.org/10.3390/app142311047.
Full textBergeron, Jean M., Mélanie Trudel, and Robert Leconte. "Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions." Hydrology and Earth System Sciences 20, no. 10 (October 28, 2016): 4375–89. http://dx.doi.org/10.5194/hess-20-4375-2016.
Full textWentz, Victor Hugo, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma, and Oswaldo Hideo Ando Junior. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models." Energies 15, no. 7 (March 27, 2022): 2457. http://dx.doi.org/10.3390/en15072457.
Full textMishra, Pradeep, Khder Alakkari, Mostafa Abotaleb, Pankaj Kumar Singh, Shilpi Singh, Monika Ray, Soumitra Sankar Das, et al. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)." Data 6, no. 11 (November 2, 2021): 113. http://dx.doi.org/10.3390/data6110113.
Full textLopes, Gustavo. "The wisdom of crowds in forecasting at high-frequency for multiple time horizons: A case study of the Brazilian retail sales." Brazilian Review of Finance 20, no. 2 (June 19, 2022): 77–115. http://dx.doi.org/10.12660/rbfin.v20n2.2022.85016.
Full textGong, Chen Chris, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer. "Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2." Geoscientific Model Development 16, no. 17 (August 31, 2023): 4977–5033. http://dx.doi.org/10.5194/gmd-16-4977-2023.
Full textMcKenzie, Neil, and David Jacquier. "Improving the field estimation of saturated hydraulic conductivity in soil survey." Soil Research 35, no. 4 (1997): 803. http://dx.doi.org/10.1071/s96093.
Full textKerry, Colette Gabrielle, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza. "Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system." Geoscientific Model Development 17, no. 6 (March 22, 2024): 2359–86. http://dx.doi.org/10.5194/gmd-17-2359-2024.
Full textEl Ghazouli, Khalid, Jamal El Khattabi, Isam Shahrour, and Aziz Soulhi. "Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network." H2Open Journal 4, no. 1 (January 1, 2021): 276–90. http://dx.doi.org/10.2166/h2oj.2021.107.
Full textDumm, Gabriel, Lauren Fins, Russell T. Graham, and Theresa B. Jain. "Distribution of Fine Roots of Ponderosa Pine and Douglas-Fir in a Central Idaho Forest." Western Journal of Applied Forestry 23, no. 4 (October 1, 2008): 202–5. http://dx.doi.org/10.1093/wjaf/23.4.202.
Full textAler, Ricardo, Javier Huertas-Tato, José M. Valls, and Inés M. Galván. "Improving Prediction Intervals Using Measured Solar Power with a Multi-Objective Approach." Energies 12, no. 24 (December 10, 2019): 4713. http://dx.doi.org/10.3390/en12244713.
Full textMendonça de Paiva, Gabriel, Sergio Pires Pimentel, Bernardo Pinheiro Alvarenga, Enes Gonçalves Marra, Marco Mussetta, and Sonia Leva. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks." Energies 13, no. 11 (June 11, 2020): 3005. http://dx.doi.org/10.3390/en13113005.
Full textCarreno-Madinabeitia, Sheila, Gabriel Ibarra-Berastegi, Jon Sáenz, Eduardo Zorita, and Alain Ulazia. "Sensitivity Studies for a Hybrid Numerical–Statistical Short-Term Wind and Gust Forecast at Three Locations in the Basque Country (Spain)." Atmosphere 11, no. 1 (December 29, 2019): 45. http://dx.doi.org/10.3390/atmos11010045.
Full textHe, Hongwen, Jianfei Cao, and Jiankun Peng. "Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle." Energy Procedia 105 (May 2017): 2348–53. http://dx.doi.org/10.1016/j.egypro.2017.03.674.
Full textCao, Jianfei, Jiankun Peng, and Hongwen He. "Research on Model Prediction Energy Management Strategy with Variable Horizon." Energy Procedia 105 (May 2017): 3565–70. http://dx.doi.org/10.1016/j.egypro.2017.03.819.
Full text