Academic literature on the topic 'Variation (Biologie)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variation (Biologie).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variation (Biologie)"
OLSSON, P. G. "Studien über die Variation des Choleravirus in Bezug auf Biologie und Virulenz." Nordiskt Medicinskt Arkiv 47, no. 10 (April 24, 2009): 1–101. http://dx.doi.org/10.1111/j.0954-6820.1914.tb01550.x.
Full textPailler, Thierry, Benjamin Warren, and Jean-Noël Labat. "Biologie de la reproduction de Aloe mayottensis (Liliaceae), une espèce endémique de l'île Mayotte (Océan Indien)." Canadian Journal of Botany 80, no. 4 (April 1, 2002): 340–48. http://dx.doi.org/10.1139/b02-019.
Full textNtumba Mabedi, Jean Métis, Victorine Mbadu Zebe, Johan R. Michaux, and Jean-Claude Micha. "Biologie de la reproduction des Marcusenius (M. monteiri, M. stanleyanus, M. schilthuisiae et M. macrolepidotus) du Pool Malebo, fleuve Congo, Kinshasa." International Journal of Biological and Chemical Sciences 16, no. 2 (July 8, 2022): 564–80. http://dx.doi.org/10.4314/ijbcs.v16i2.5.
Full textHilley, P., C. Li Wai Suen, A. Srinivasan, M. C. Choy, and P. De Cruz. "P379 Variations in disease monitoring between Inflammatory Bowel Disease patients on intravenous and subcutaneous biologic agents." Journal of Crohn's and Colitis 15, Supplement_1 (May 1, 2021): S393. http://dx.doi.org/10.1093/ecco-jcc/jjab076.503.
Full textEnos, Clinton W., Hadiza Galadima, Arjun D. Saini, Stacie Bell, Michael Siegel, and Abby S. Van Voorhees. "Predictors of Biologic Use and Satisfaction Among Patients With Psoriasis: An Analysis and Geographic Visualization of the 2016 and 2017 National Psoriasis Foundation Annual Surveys." Journal of Psoriasis and Psoriatic Arthritis 5, no. 3 (July 2020): 100–108. http://dx.doi.org/10.1177/2475530320925553.
Full textHenderson, I. Craig. "Biologic variations of tumors." Cancer 69, S7 (April 1, 1992): 1888–95. http://dx.doi.org/10.1002/1097-0142(19920401)69:7+<1888::aid-cncr2820691703>3.0.co;2-#.
Full textGalli, Emily, Guodong Liu, Doug Leslie, Joslyn Kirby, and Jeffrey J. Miller. "Prescription Pattern Variability of Biologic Therapies in Treating Psoriasis." Journal of Psoriasis and Psoriatic Arthritis 3, no. 3 (July 2018): 84–87. http://dx.doi.org/10.1177/2475530318781308.
Full textRicós, Carmen, Virtudes Álvarez, Joana Minchinela, Pilar Fernández-Calle, Carmen Perich, Beatriz Boned, Elisabet González, et al. "Biologic Variation Approach to Daily Laboratory." Clinics in Laboratory Medicine 37, no. 1 (March 2017): 47–56. http://dx.doi.org/10.1016/j.cll.2016.09.005.
Full textMoody, J. P. "Biologic Variation of Serum and Salivary Lithium." Therapeutic Drug Monitoring 21, no. 1 (February 1999): 97–101. http://dx.doi.org/10.1097/00007691-199902000-00015.
Full textSledge, George W. "Innumerable Variations: Combining Biologics." Clinical Breast Cancer 9, no. 1 (February 2009): 7. http://dx.doi.org/10.3816/cbc.2009.n.001.
Full textDissertations / Theses on the topic "Variation (Biologie)"
Hutter, Stephan. "Natural variation in Drosophila melanogaster." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-74185.
Full textCisneros, Caballero Angel Fernando, and Caballero Angel Fernando Cisneros. "The role of structural pleiotropy in the retention of protein complexes after gene duplication." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37529.
Full textLa duplication de gènes est l’un des plus importants mécanismes évolutifs pour la génération de diversité fonctionelle. Lorsqu’un gène est dupliqué, la nouvelle copie partage toutes ses fonctions avec la copie ancestrale car elles encodent pour des protéines identiques. Donc, les deux protéines, appelées paralogues, auront le même réseau d’interactions physiques protéine-protéine. Cependant, dans le cas de la duplication des gènes qui codent des protéines qui interagissent avec elles-mêmes (homomères), la nouvelle protéine interagira aussi avec la copie ancestrale, ce qui introduit une nouvelle interaction (heteromère) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). Puisque ces interactions peuvent avoir des différents motifs de rétention et de fonction (Ashenberg et al., 2011; Baker et al., 2013; Boncoeur et al., 2012; Bridgham et al., 2008), il est important de mieux comprendre comment ces états sont atteints et quelles forces évolutives les favorisent. Dans ce memoire, je cible ces questions avec des simulations in silico de l’évolution des protéines suite à la duplication de gènes en travaillant avec des structures crystallographiques de haute qualité, provenant de la Protein Data Bank (Berman et al., 2000; Dey et al., 2018). Les simulations montrent que les sous-unités et interfaces partagées entraînent une forte corrélation entre les trajectoires évolutives de ces complexes. Ainsi, les simulations prédisent que la préservation de seulement les deux homomères ou seulement l’hétéromère ne devrait pas être fréquente. Toutefois, la simulation qui applique la sélection seulement sur un homomère montre que l’homomère neutre est destabilisé plus rapidement que l’hétéromère neutre. Nous avons comparé ces prédictions avec des résultats expérimentaux du réseau d’interactions protéine-protéine de la levure. Comme suggéré par les simulations, les patrons d’interactions les plus fréquents ont été la formation des trois complexes (deux homomères et un hétéromère) ou la formation de seulement un homomère. Les patrons correspondants à deux homomères sans hétéromères ou un hétéromère sans homomères sont rares. Nos résultats démontrent l’extension de l’hétéromérisation entre paralogues dans le réseau d’interactions physiques protéine-protéine de la levure, les mécanismes sous-jacents et ses implications.
Gene duplication is one of the most important evolutionary mechanisms for the generation of functional diversity. When a gene is duplicated, the new copy shares all of the ancestral copy’s functions because they encode identical proteins. Therefore, the two proteins, called paralogs, will have the same protein-protein interaction network. However, in the case of the duplication of genes encoding proteins that self-interact (homomers), the new protein will also interact with the ancestral copy, introducing a novel interaction (heteromer) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). As these interactions can have different retention and functional patterns (Ashenberg et al., 2011; Baker et al., 2013; Boncoeur et al., 2012; Bridgham et al., 2008), it is important to understand better how these states are reached and what evolutionary forces favor each of them. In this thesis, I approach these questions by means of in silico simulations of protein evolution after gene duplication by working with high-quality crystal structures from the Protein Data Bank (Berman et al., 2000; Dey et al., 2018). The simulations show that the shared subunits and interfaces lead to these complexes having highly correlated evolutionary trajectories. Thus, the simulations predict that the preservation of only the two homomers or only the heteromer is not likely to happen often. Nevertheless, simulating evolution with selection on only one homomer shows that the neutral homomer is destabilized faster than the neutral heteromer. We compared these predictions against experimental results from the yeast protein-protein interaction network. As suggested by the simulations, the most abundant interaction patterns were either the formation of all three complexes (two homomers and one heteromer) or the formation of only one homomer, with motifs corresponding to two homomers without a heteromer or a heteromer without homomers being rare. Our results highlight the extent of heteromerization between paralogs in the yeast protein-protein interaction network, the underlying mechanisms, and its implications
Gene duplication is one of the most important evolutionary mechanisms for the generation of functional diversity. When a gene is duplicated, the new copy shares all of the ancestral copy’s functions because they encode identical proteins. Therefore, the two proteins, called paralogs, will have the same protein-protein interaction network. However, in the case of the duplication of genes encoding proteins that self-interact (homomers), the new protein will also interact with the ancestral copy, introducing a novel interaction (heteromer) (Kaltenegger and Ober, 2015; Pereira-Leal et al., 2007). As these interactions can have different retention and functional patterns (Ashenberg et al., 2011; Baker et al., 2013; Boncoeur et al., 2012; Bridgham et al., 2008), it is important to understand better how these states are reached and what evolutionary forces favor each of them. In this thesis, I approach these questions by means of in silico simulations of protein evolution after gene duplication by working with high-quality crystal structures from the Protein Data Bank (Berman et al., 2000; Dey et al., 2018). The simulations show that the shared subunits and interfaces lead to these complexes having highly correlated evolutionary trajectories. Thus, the simulations predict that the preservation of only the two homomers or only the heteromer is not likely to happen often. Nevertheless, simulating evolution with selection on only one homomer shows that the neutral homomer is destabilized faster than the neutral heteromer. We compared these predictions against experimental results from the yeast protein-protein interaction network. As suggested by the simulations, the most abundant interaction patterns were either the formation of all three complexes (two homomers and one heteromer) or the formation of only one homomer, with motifs corresponding to two homomers without a heteromer or a heteromer without homomers being rare. Our results highlight the extent of heteromerization between paralogs in the yeast protein-protein interaction network, the underlying mechanisms, and its implications
Loës, Corinna. "Variation in sleep behaviour and its underlying causes." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-149876.
Full textAraya-Ajoy, Yimen G. "Multi-level variation in labile characters." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-185184.
Full textMontero, Terrazas Juan Carlos [Verfasser], and Albert [Akademischer Betreuer] Reif. "Floristic variation of the Igapó Forests along the Negro River, Central Amazonia = Floristische Variation der Igapó Wälder entlang des Rio Negro, Zentral Amazonien." Freiburg : Universität, 2012. http://d-nb.info/1122592426/34.
Full textMartin, Jean-Louis. "Variation géographique, adaptation et spéciation : l'exemple de Parus caeruleus (Aves)." Montpellier 2, 1988. http://www.theses.fr/1988MON20233.
Full textRaess, Michael. "Annual timing and life-history variation in free-living stonechats." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-63313.
Full textBoell, Louis A. [Verfasser]. "Variation und Variabilität der Unterkieferform in der Hausmaus / Louis A. Boell." Kiel : Universitätsbibliothek Kiel, 2010. http://d-nb.info/1020001011/34.
Full textDavid, Bruno. "La variation chez les Echinidés irréguliers : dimensions ontogénétiques, écologiques, évolutives." Dijon, 1985. http://www.theses.fr/1985DIJOS004.
Full textWarthmann, Norman [Verfasser]. "Finding the Causal Genes: Developing Tools for Natural Variation Research / Norman Warthmann." München : Verlag Dr. Hut, 2012. http://d-nb.info/1028785836/34.
Full textBooks on the topic "Variation (Biologie)"
Section, Hamilton Association Biological, ed. Is species a natural or artificial division in nature?: A paper read before the Biological Section of the Hamilton Association, December 7th, 1888. [Hamilton, Ont.?: s.n., 1993.
Find full textStaszkiewicz, Jerzy. Zmiennnosc wybranych gatunków krzewów i drzew =: Variability of selected shrub and tree species. Kraków: Instytut botaniki im. W. Szafer - Polska Akademia Nauk, 1997.
Find full text1927-, Harrison G. A., ed. Human biology: An introduction to human evolution, variation, growth, and adaptability. 3rd ed. Oxford: Oxford University Press, 1988.
Find full textN, Curnow R., and Hasted A. M, eds. Statistical methods in agriculture and experimental biology. 2nd ed. London: Chapman & Hall, 1993.
Find full textN, Curnow R., and Hasted A. M, eds. Statistical methods in agriculture and experimental biology. 3rd ed. Boca Raton, Fla: Chapman & Hall/CRC, 2003.
Find full textGeographical population analysis: Tools for the analysis of biodiversity. Oxford: Blackwell Scientific Publications, 1994.
Find full textGenetic variation and disorders in peoples of Africian origin. Baltimore: Johns Hopkins University Press, 1990.
Find full textBook chapters on the topic "Variation (Biologie)"
Schmidt, Marco F. "Genomische Variation." In Chemische Biologie, 49–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61116-6_6.
Full textBachmann, Konrad. "Evolution: Genetische Variation." In Biologie für Mediziner, 378–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71119-0_24.
Full textBachmann, Konrad. "Die Dynamik der genetischen Variation." In Biologie für Mediziner, 389–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71119-0_25.
Full textSchmidt, Marco F. "Genomic Variation." In Chemical Biology, 49–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64412-6_6.
Full textWalters, Kevin. "Epigenetic Variation." In Methods in Molecular Biology, 185–97. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-416-6_14.
Full textAntonovics, Janis, Norman C. Ellstrand, and Robert N. Brandon. "Genetic variation and environmental variation: expectations and experiments." In Plant Evolutionary Biology, 275–303. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1207-6_11.
Full textKonigsberg, Lyle W. "Quantitative Variation and Genetics." In Human Biology, 143–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118108062.ch5.
Full textMitton, Jeffry B. "Physiological and Demographic Variation Associated With Allozyme Variation." In Isozymes in Plant Biology, 127–45. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1840-5_7.
Full textWain, Louise V., and Martin D. Tobin. "Copy Number Variation." In Methods in Molecular Biology, 167–83. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-416-6_13.
Full textMacé, Aurélien, Zoltán Kutalik, and Armand Valsesia. "Copy Number Variation." In Methods in Molecular Biology, 231–58. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7868-7_14.
Full textConference papers on the topic "Variation (Biologie)"
Zare, Fatima, and Sheida Nabavi. "Copy Number Variation Detection Using Total Variation." In BCB '19: 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3307339.3342181.
Full textBERWICK, ROBERT C. "INVARIANTS AND VARIATION IN BIOLOGY AND LANGUAGE EVOLUTION: EXTENDED ABSTRACT." In Proceedings of the 8th International Conference (EVOLANG8). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814295222_0005.
Full textBlonshine, S. B., E. A. Becker, L. M. Stewart, J. M. Blonshine, and E. M. Moran. "Normal Variation in Spirometry Biologic Control Measures in a Multi-Center Global Study." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2361.
Full textLi, Bingjue, Andrew P. Murray, David H. Myszka, and Gérard Subsol. "Synthesizing Planar Rigid-Body Chains for Morphometric Applications." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59412.
Full textMcNally, Ken. "Rice SNP-Seek database for gemic variation." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053087.
Full textBeal, J. "Mathematical Foundations of Variation in Gene Expression." In IET/SynbiCITE Engineering Biology Conference. Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/cp.2016.1228.
Full textStuhrmann, H. B. "Neutron scattering in biology: from isotopic substitution to nuclear spin contrast variation." In Fifth International Conference on Applications of Nuclear Techniques: Neutrons in Research and Industry, edited by George Vourvopoulos. SPIE, 1997. http://dx.doi.org/10.1117/12.267880.
Full textSelvaskandan, H., H. Al-Ani, and A. Moorthy. "AB1090 Is there an ethnic variation in acceptance of biologic therapy? a university hospital experience." In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.2944.
Full textCannataro, Mario. "Session details: Genomic variation." In BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3478666.
Full textNabavi, Sheida. "Session details: Genomic variation." In BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3552480.
Full textReports on the topic "Variation (Biologie)"
Del Mauro, Diana, and William Fischer. Vaccines and Viral Variation Will Fischer LANL Theoretical Biology. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766971.
Full textAgresar, Grenmarie, and Michael A. Savageau. Final Report, December, 1999. Sloan - US Department of Energy joint postdoctoral fellowship in computational molecular biology [Canonical nonlinear methods for modeling and analyzing gene circuits and spatial variations during pattern formation in embryonic development]. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/811376.
Full textFridman, Eyal, Jianming Yu, and Rivka Elbaum. Combining diversity within Sorghum bicolor for genomic and fine mapping of intra-allelic interactions underlying heterosis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597925.bard.
Full textLers, Amnon, Majid R. Foolad, and Haya Friedman. genetic basis for postharvest chilling tolerance in tomato fruit. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600014.bard.
Full text