Academic literature on the topic 'Variational Autoencoders (VAEs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variational Autoencoders (VAEs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variational Autoencoders (VAEs)"
Singh, Aman, and Tokunbo Ogunfunmi. "An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications." Entropy 24, no. 1 (2021): 55. http://dx.doi.org/10.3390/e24010055.
Full textLyu, Zhuoyue, Safinah Ali, and Cynthia Breazeal. "Introducing Variational Autoencoders to High School Students." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12801–9. http://dx.doi.org/10.1609/aaai.v36i11.21559.
Full textNugroho, Herminarto, Meredita Susanty, Ade Irawan, Muhamad Koyimatu, and Ariana Yunita. "Fully Convolutional Variational Autoencoder For Feature Extraction Of Fire Detection System." Jurnal Ilmu Komputer dan Informasi 13, no. 1 (2020): 9. http://dx.doi.org/10.21609/jiki.v13i1.761.
Full textPapadopoulos, Dimitris, and Vangelis D. Karalis. "Variational Autoencoders for Data Augmentation in Clinical Studies." Applied Sciences 13, no. 15 (2023): 8793. http://dx.doi.org/10.3390/app13158793.
Full textKiran, Vadduri Uday. "HAVAE – An Advanced Approach for Malware Detection Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 12, no. 3 (2024): 2740–46. http://dx.doi.org/10.22214/ijraset.2024.59303.
Full textBattey, C. J., Gabrielle C. Coffing, and Andrew D. Kern. "Visualizing population structure with variational autoencoders." G3 Genes|Genomes|Genetics 11, no. 1 (2021): 1–11. http://dx.doi.org/10.1093/g3journal/jkaa036.
Full textPotu, Rakshitha Reddy, Naalla Sushma, Baru Shiva Kumar, and Aruna Kumari Kumbhagiri. "Real Image Restoration Using VAEs." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (2022): 889–98. http://dx.doi.org/10.22214/ijraset.2022.43964.
Full textYang, FengLei, Fei Liu, and ShanShan Liu. "Collaborative Filtering Based on a Variational Gaussian Mixture Model." Future Internet 13, no. 2 (2021): 37. http://dx.doi.org/10.3390/fi13020037.
Full textAkkari, Nissrine, Fabien Casenave, Elie Hachem, and David Ryckelynck. "A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders." Fluids 7, no. 10 (2022): 334. http://dx.doi.org/10.3390/fluids7100334.
Full textWang, Ziyang. "Addressing Posterior Collapse in Variational Autoencoders with β-VAE". Highlights in Science, Engineering and Technology 57 (11 липня 2023): 161–67. http://dx.doi.org/10.54097/hset.v57i.9995.
Full textDissertations / Theses on the topic "Variational Autoencoders (VAEs)"
Nilsson, Mårten. "Augmenting High-Dimensional Data with Deep Generative Models." Thesis, KTH, Robotik, perception och lärande, RPL, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233969.
Full textEskandari, Aram. "VAE-clustering of neural signals and their association to cytokines." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273627.
Full textTrentin, Matteo. "Estensione a due stadi di modelli VAE per la generazione di immagini." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19138/.
Full textReinholdsen, Fredrik. "A Blind Constellation Agnostic VAE Channel Equalizer and Non Data-Assisted Synchronization." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86062.
Full textCarlsson, Filip, and Philip Lindgren. "Deep Scenario Generation of Financial Markets." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273631.
Full textLousseief, Elias. "MahlerNet : Unbounded Orchestral Music with Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264993.
Full textBranca, Danilo. "Generazione di attributi facciali mediante Feature-wise Linear Modulation." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20361/.
Full textDi, Felice Marco. "Unsupervised anomaly detection in HPC systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textHameed, Khurram. "Computer vision based classification of fruits and vegetables for self-checkout at supermarkets." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2519.
Full textBook chapters on the topic "Variational Autoencoders (VAEs)"
Vishnu Shankar, S., S. R. Naffees Gowsar, and M. Manjubala. "Variational Autoencoders (VAEs)." In Information Systems Engineering and Management. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-91660-1_3.
Full textMostofi, Fatemeh, Onur Behzat Tokdemir, and Vedat Toğan. "Leveraging Variational Autoencoder for Improved Construction Progress Prediction Performance." In Lecture Notes in Civil Engineering. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_51.
Full textHou, Fangli, Jun Ma, Jack C. P. Cheng, and Helen H. L. Kwok. "Early Detection and Reconstruction of Abnormal Data Using Hybrid VAE-LSTM Framework." In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality. Firenze University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0289-3.93.
Full textHou, Fangli, Jun Ma, Jack C. P. Cheng, and Helen H. L. Kwok. "Early Detection and Reconstruction of Abnormal Data Using Hybrid VAE-LSTM Framework." In CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality. Firenze University Press, 2023. http://dx.doi.org/10.36253/10.36253/979-12-215-0289-3.93.
Full textPurkait, Pulak, Christopher Zach, and Ian Reid. "SG-VAE: Scene Grammar Variational Autoencoder to Generate New Indoor Scenes." In Computer Vision – ECCV 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58586-0_10.
Full textGandikota, Rohit, and Deepak Mishra. "HD-VAE-GAN: Hiding Data with Variational Autoencoder Generative Adversarial Networks." In Communications in Computer and Information Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31407-0_3.
Full textOjha, Nikhil, Indrajeet Kumar Sinha, and Krishna Pratap Singh. "VAE-AD: Unsupervised Variational Autoencoder for Anomaly Detection in Hyperspectral Images." In Communications in Computer and Information Science. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1648-1_11.
Full textKim, Seunghwan, and Seungkyu Lee. "Beta-Sigma VAE: Separating Beta and Decoder Variance in Gaussian Variational Autoencoder." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78389-0_24.
Full textMukesh, K., Srisurya Ippatapu Venkata, Spandana Chereddy, E. Anbazhagan, and I. R. Oviya. "A Variational Autoencoder—General Adversarial Networks (VAE-GAN) Based Model for Ligand Designing." In International Conference on Innovative Computing and Communications. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2821-5_64.
Full textCovaci, Emanuel, Flavia Costi, and Darian M. Onchis. "ESM-VAE: Bias Reduction in EEG Models via Synthetic Data Generation with Variational Autoencoders." In Lecture Notes in Computer Science. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-6008-7_15.
Full textConference papers on the topic "Variational Autoencoders (VAEs)"
Mohamed, Aezeden, Rainier Nii, Kipas Binga, Alok Kumar Pandey, J. Karpagam, and T. J. Nnadhini. "3D Object Reconstruction from 2D Images Using Variational Autoencoders (VAE)." In 2025 International Conference on Automation and Computation (AUTOCOM). IEEE, 2025. https://doi.org/10.1109/autocom64127.2025.10957632.
Full textPucci, Rita, and Niki Martinel. "CE-VAE: Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement." In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2025. https://doi.org/10.1109/wacv61041.2025.00212.
Full textZhong, Cheng, Junlin Wu, Ziming Feng, Boan Chen, and Junchi Yan. "Towards Green VAE: A Light Pixel-weighting Technique to Enhance Variational AutoEncoder." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10887908.
Full textSaha, Surojit, Sarang Joshi, and Ross Whitaker. "ARD-VAE: A Statistical Formulation to Find the Relevant Latent Dimensions of Variational Autoencoders." In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2025. https://doi.org/10.1109/wacv61041.2025.00096.
Full textWijanarko, Hansen, Evelyne Calista, Li-Fen Chen, and Yong-Sheng Chen. "Tri-VAE: Triplet Variational Autoencoder for Unsupervised Anomaly Detection in Brain Tumor MRI." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00397.
Full textAmbekar, Namrata Govind, and Surmila Thokchom. "UL-VAE: An Unsupervised Learning Approach for Zero-day Malware Detection Using Variational Autoencoder." In 2024 International Conference on Computational Intelligence and Network Systems (CINS). IEEE, 2024. https://doi.org/10.1109/cins63881.2024.10864450.
Full textR, Naveen Kumar, Surendran R, and Sumathy K. "Improved AI-Generated Multitrack Music with Variational Autoencoders (VAE) for Harmonious Balance Compared to Recurrent Neural Network for Coherence." In 2024 4th International Conference on Advancement in Electronics & Communication Engineering (AECE). IEEE, 2024. https://doi.org/10.1109/aece62803.2024.10911702.
Full textYang, Chen. "Attn-VAE-GAN:Text-Driven High-Fidelity Image Generation Model with Deep Fusion of Self-Attention and Variational Autoencoder." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651077.
Full textFan, Yiming, Peiyuan Zhou, David Forrester, Brian Ju, and Fotis Kopsaftopoulos. "Evaluation of Local and Global Diagnostics for the Integration of Stochastic Time Series Models and Variational Autoencoders: Experimental Assessment on a Full Scale Helicopter Blade." In Vertical Flight Society 80th Annual Forum & Technology Display. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1371.
Full textJamal, Arshad, R. Kanesaraj Ramasamy, and Junaidi Abdullah. "Generative AI Respiratory and Cardiac Sound Separation Using Variational Autoencoders (VAEs)." In International Conference on Sustainable Computing and Green Technologies. MDPI, 2025. https://doi.org/10.3390/cmsf2025010009.
Full text