Journal articles on the topic 'Variational Autoencoders (VAEs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Variational Autoencoders (VAEs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Singh, Aman, and Tokunbo Ogunfunmi. "An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications." Entropy 24, no. 1 (2021): 55. http://dx.doi.org/10.3390/e24010055.
Full textLyu, Zhuoyue, Safinah Ali, and Cynthia Breazeal. "Introducing Variational Autoencoders to High School Students." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12801–9. http://dx.doi.org/10.1609/aaai.v36i11.21559.
Full textNugroho, Herminarto, Meredita Susanty, Ade Irawan, Muhamad Koyimatu, and Ariana Yunita. "Fully Convolutional Variational Autoencoder For Feature Extraction Of Fire Detection System." Jurnal Ilmu Komputer dan Informasi 13, no. 1 (2020): 9. http://dx.doi.org/10.21609/jiki.v13i1.761.
Full textPapadopoulos, Dimitris, and Vangelis D. Karalis. "Variational Autoencoders for Data Augmentation in Clinical Studies." Applied Sciences 13, no. 15 (2023): 8793. http://dx.doi.org/10.3390/app13158793.
Full textKiran, Vadduri Uday. "HAVAE – An Advanced Approach for Malware Detection Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 12, no. 3 (2024): 2740–46. http://dx.doi.org/10.22214/ijraset.2024.59303.
Full textBattey, C. J., Gabrielle C. Coffing, and Andrew D. Kern. "Visualizing population structure with variational autoencoders." G3 Genes|Genomes|Genetics 11, no. 1 (2021): 1–11. http://dx.doi.org/10.1093/g3journal/jkaa036.
Full textPotu, Rakshitha Reddy, Naalla Sushma, Baru Shiva Kumar, and Aruna Kumari Kumbhagiri. "Real Image Restoration Using VAEs." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (2022): 889–98. http://dx.doi.org/10.22214/ijraset.2022.43964.
Full textYang, FengLei, Fei Liu, and ShanShan Liu. "Collaborative Filtering Based on a Variational Gaussian Mixture Model." Future Internet 13, no. 2 (2021): 37. http://dx.doi.org/10.3390/fi13020037.
Full textAkkari, Nissrine, Fabien Casenave, Elie Hachem, and David Ryckelynck. "A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders." Fluids 7, no. 10 (2022): 334. http://dx.doi.org/10.3390/fluids7100334.
Full textWang, Ziyang. "Addressing Posterior Collapse in Variational Autoencoders with β-VAE". Highlights in Science, Engineering and Technology 57 (11 липня 2023): 161–67. http://dx.doi.org/10.54097/hset.v57i.9995.
Full textLiu, Jianing. "Research on the Application of Variational Autoencoder in Image Generation." ITM Web of Conferences 70 (2025): 02001. https://doi.org/10.1051/itmconf/20257002001.
Full textAgarwal, Aman. "Application of Music Retrieval & Generation." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem34003.
Full textMohamed, Mahmoud. "Comparative Evaluation of VAEs, VAE-GANs and AAEs for Anomaly Detection in Network Intrusion Data." EMITTER International Journal of Engineering Technology 11, no. 2 (2023): 160–73. http://dx.doi.org/10.24003/emitter.v11i2.817.
Full textSheng, Xin, Linli Xu, Junliang Guo, Jingchang Liu, Ruoyu Zhao, and Yinlong Xu. "IntroVNMT: An Introspective Model for Variational Neural Machine Translation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 05 (2020): 8830–37. http://dx.doi.org/10.1609/aaai.v34i05.6411.
Full textWei, Ruoqi, and Ausif Mahmood. "Optimizing Few-Shot Learning Based on Variational Autoencoders." Entropy 23, no. 11 (2021): 1390. http://dx.doi.org/10.3390/e23111390.
Full textRivero, Daniel, Iván Ramírez-Morales, Enrique Fernandez-Blanco, Norberto Ezquerra, and Alejandro Pazos. "Classical Music Prediction and Composition by Means of Variational Autoencoders." Applied Sciences 10, no. 9 (2020): 3053. http://dx.doi.org/10.3390/app10093053.
Full textBasit, Jamshaid, Danish Hanif, and Madiha Arshad. "Quantum Variational Autoencoders for Predictive Analytics in High Frequency Trading Enhancing Market Anomaly Detection." International Journal of Emerging Multidisciplinaries: Computer Science & Artificial Intelligence 3, no. 1 (2024): 21. http://dx.doi.org/10.54938/ijemdcsai.2024.03.1.319.
Full textKuang, Shenfen, Jie Song, Shangjiu Wang, and Huafeng Zhu. "Variational Autoencoding with Conditional Iterative Sampling for Missing Data Imputation." Mathematics 12, no. 20 (2024): 3288. http://dx.doi.org/10.3390/math12203288.
Full textGonzalez, Adrian. "Artificial Intelligence as an Art Director." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 16, no. 1 (2020): 337–39. http://dx.doi.org/10.1609/aiide.v16i1.7454.
Full textNarula, Anushka. "A Comparative Study of GANs and VAEs for Image Generation." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 02 (2025): 1–9. https://doi.org/10.55041/ijsrem41480.
Full textRosalina, Rosalina, and Genta Sahuri. "MIDI-based generative neural networks with variational autoencoders for innovative music creation." International Journal of Advances in Applied Sciences 13, no. 2 (2024): 360. http://dx.doi.org/10.11591/ijaas.v13.i2.pp360-370.
Full textRosalina and Sahuri Genta. "MIDI-based generative neural networks with variational autoencoders for innovative music creation." International Journal of Advances in Applied Sciences (IJAAS) 13, no. 2 (2024): 360–70. https://doi.org/10.11591/ijaas.v13.i2.pp360-370.
Full textShukla, Abhishek. "Innovative Ways of Utilizing Generative AI for Graphical Big Data Analysis." Journal of Artificial Intelligence & Cloud Computing 3, no. 1 (2024): 1–3. http://dx.doi.org/10.47363/jaicc/2024(3)222.
Full textXenaki, Angeliki, Yan Pailhas, and Alessandro Monti. "Platform motion estimation in multiple-input multiple-output synthetic aperture sonar with coupled variational autoencoders." Journal of the Acoustical Society of America 154, no. 4_supplement (2023): A305. http://dx.doi.org/10.1121/10.0023610.
Full textPratella, David, Samira Ait-El-Mkadem Saadi, Sylvie Bannwarth, Véronique Paquis-Fluckinger, and Silvia Bottini. "A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases." International Journal of Molecular Sciences 22, no. 19 (2021): 10891. http://dx.doi.org/10.3390/ijms221910891.
Full textRadicioni, Luca, Francesco Morgan Bono, and Simone Cinquemani. "Vibration-Based Anomaly Detection in Industrial Machines: A Comparison of Autoencoders and Latent Spaces." Machines 13, no. 2 (2025): 139. https://doi.org/10.3390/machines13020139.
Full textSengodan, Boopathi Chettiagounder, Prince Mary Stanislaus, Sivakumar Sabapathy Arumugam, et al. "Variational Autoencoders for Network Lifetime Enhancement in Wireless Sensors." Sensors 24, no. 17 (2024): 5630. http://dx.doi.org/10.3390/s24175630.
Full textYang, Zhihan, Anurag Sarkar, and Seth Cooper. "Game Level Clustering and Generation Using Gaussian Mixture VAEs." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 16, no. 1 (2020): 137–43. http://dx.doi.org/10.1609/aiide.v16i1.7422.
Full textXie, Yaopeng. "AI-driven automatic generation and rendering of game characters." Applied and Computational Engineering 82, no. 1 (2024): 137–41. http://dx.doi.org/10.54254/2755-2721/82/20241022.
Full textSatyadhar Joshi. "Enhancing structured finance risk models (Leland-Toft and Box-Cox) using GenAI (VAEs GANs)." International Journal of Science and Research Archive 14, no. 1 (2025): 1618–30. https://doi.org/10.30574/ijsra.2025.14.1.0306.
Full textLi, Zhongwei, Xue Zhu, Ziqi Xin, Fangming Guo, Xingshuai Cui, and Leiquan Wang. "Variational Generative Adversarial Network with Crossed Spatial and Spectral Interactions for Hyperspectral Image Classification." Remote Sensing 13, no. 16 (2021): 3131. http://dx.doi.org/10.3390/rs13163131.
Full textDittadi, Andrea, Frederik K. Drachmann, and Thomas Bolander. "Planning from Pixels in Atari with Learned Symbolic Representations." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 6 (2021): 4941–49. http://dx.doi.org/10.1609/aaai.v35i6.16627.
Full textZhu, Jun-Jie, Ning-Jie Zhang, Ting Wei, and Hai-Feng Chen. "Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Autoencoder." International Journal of Molecular Sciences 24, no. 8 (2023): 6896. http://dx.doi.org/10.3390/ijms24086896.
Full textAkuzawa, Kei, Yusuke Iwasawa, and Yutaka Matsuo. "Information-theoretic regularization for learning global features by sequential VAE." Machine Learning 110, no. 8 (2021): 2239–66. http://dx.doi.org/10.1007/s10994-021-06032-4.
Full textSidulova, Mariia, and Chung Hyuk Park. "Conditional Variational Autoencoder for Functional Connectivity Analysis of Autism Spectrum Disorder Functional Magnetic Resonance Imaging Data: A Comparative Study." Bioengineering 10, no. 10 (2023): 1209. http://dx.doi.org/10.3390/bioengineering10101209.
Full textMiller, Tymoteusz, Irmina Durlik, Adrianna Łobodzińska, and Ewelina Kostecka. "GENERATIVE AI: A TOOL FOR ADDRESSING DATA SCARCITY IN SCIENTIFIC RESEARCH." Grail of Science, no. 43 (September 15, 2024): 301–7. http://dx.doi.org/10.36074/grail-of-science.06.09.2024.039.
Full textSeberger, John S., and Aubrey Slaughter. "The Mystics and Magic of Latent Space: Becoming the Unseen." Magic, Vol. 5, no. 1 (2020): 88–93. http://dx.doi.org/10.47659/m8.088.art.
Full textJ, Akarsh. "Language Enabled Image Originator." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem34747.
Full textFeugang Nteumagné, Bienvenue, Hermann Azemtsa Donfack, and Celestin Wafo Soh. "Variational Autoencoders for Completing the Volatility Surfaces." Journal of Risk and Financial Management 18, no. 5 (2025): 239. https://doi.org/10.3390/jrfm18050239.
Full textYe, Fei, and Adrian G. Bors. "Lifelong Generative Modelling Using Dynamic Expansion Graph Model." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 8 (2022): 8857–65. http://dx.doi.org/10.1609/aaai.v36i8.20867.
Full textLiu, Yijing, Shuyu Lin, and Ronald Clark. "Towards Consistent Variational Auto-Encoding (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13869–70. http://dx.doi.org/10.1609/aaai.v34i10.7207.
Full textThorne, Ben, Lloyd Knox, and Karthik Prabhu. "A generative model of galactic dust emission using variational autoencoders." Monthly Notices of the Royal Astronomical Society 504, no. 2 (2021): 2603–13. http://dx.doi.org/10.1093/mnras/stab1011.
Full textSantosh, Kumar. "Generative AI in the Categorisation of Paediatric Pneumonia on Chest Radiographs." International Journal of Current Science Research and Review 08, no. 02 (2025): 712–17. https://doi.org/10.5281/zenodo.14843157.
Full textObi, E. D., J. A. Yentumi, D. Mbatuegwu, O. I. Omotuyi, O. O. Ajayi, and A. Nwokoro. "LAIgnd: Revolutionizing Drug Discovery with Advanced AI-Driven Molecule Generation." Advances in Multidisciplinary & Scientific Research Journal Publication 15, no. 4 (2024): 1–10. http://dx.doi.org/10.22624/aims/cisdi/v15n3p4.
Full textSadiq, Saad, Mei-Ling Shyu, and Daniel J. Feaster. "Counterfactual Autoencoder for Unsupervised Semantic Learning." International Journal of Multimedia Data Engineering and Management 9, no. 4 (2018): 1–20. http://dx.doi.org/10.4018/ijmdem.2018100101.
Full textPapadopoulos, Dimitris, and Vangelis D. Karalis. "Introducing an Artificial Neural Network for Virtually Increasing the Sample Size of Bioequivalence Studies." Applied Sciences 14, no. 7 (2024): 2970. http://dx.doi.org/10.3390/app14072970.
Full textZou, Jincheng, Guorong Chen, Jian Wang, Bao Zhang, Hong Hu, and Cong Liu. "A Hierarchical Latent Modulation Approach for Controlled Text Generation." Mathematics 13, no. 5 (2025): 713. https://doi.org/10.3390/math13050713.
Full textZhou, Jingxi. "Text to Image Generation: A Literature Review Focus on the Diffusion Model." ITM Web of Conferences 73 (2025): 02037. https://doi.org/10.1051/itmconf/20257302037.
Full textHuang, Jing, and Tao Duan. "Deep learning-based approaches for cellular mechanics analysis and secure data sharing in biomechanics." Molecular & Cellular Biomechanics 22, no. 4 (2025): 1059. https://doi.org/10.62617/mcb1059.
Full textAdithya Jakkaraju, Venugopal Muraleedharan Mini. "Ethical Synthetic Data Generation via Fairness-Aware Generative Models." Journal of Information Systems Engineering and Management 10, no. 24s (2025): 740–52. https://doi.org/10.52783/jisem.v10i24s.3988.
Full text