Academic literature on the topic 'Variational calculus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Variational calculus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Variational calculus"
Bangerezako, Gaspard. "Variational q-calculus." Journal of Mathematical Analysis and Applications 289, no. 2 (January 2004): 650–65. http://dx.doi.org/10.1016/j.jmaa.2003.09.004.
Full textAldrovandi, R., and R. A. Kraenkel. "On exterior variational calculus." Journal of Physics A: Mathematical and General 21, no. 6 (March 21, 1988): 1329–39. http://dx.doi.org/10.1088/0305-4470/21/6/010.
Full textSaunders, David J. "Jets and the variational calculus." Communications in Mathematics 29, no. 1 (April 30, 2021): 91–114. http://dx.doi.org/10.2478/cm-2021-0004.
Full textMassa, Enrico, Danilo Bruno, Gianvittorio Luria, and Enrico Pagani. "Geometric constrained variational calculus. II: The second variation (Part I)." International Journal of Geometric Methods in Modern Physics 13, no. 01 (January 2016): 1550132. http://dx.doi.org/10.1142/s0219887815501327.
Full textM. C. Brito da Cruz, Artur, Natália Martins, and Delfim F. M. Torres. "Hahn's symmetric quantum variational calculus." Numerical Algebra, Control & Optimization 3, no. 1 (2013): 77–94. http://dx.doi.org/10.3934/naco.2013.3.77.
Full textMartínez, Eduardo. "Variational calculus on Lie algebroids." ESAIM: Control, Optimisation and Calculus of Variations 14, no. 2 (March 20, 2008): 356–80. http://dx.doi.org/10.1051/cocv:2007056.
Full textUglanov, A. V. "Variational calculus on Banach spaces." Sbornik: Mathematics 191, no. 10 (October 31, 2000): 1527–40. http://dx.doi.org/10.1070/sm2000v191n10abeh000518.
Full textBrito da Cruz, Artur M. C., and Natália Martins. "The q-symmetric variational calculus." Computers & Mathematics with Applications 64, no. 7 (October 2012): 2241–50. http://dx.doi.org/10.1016/j.camwa.2012.01.076.
Full textMalinowska, A. B., and D. F. M. Torres. "The Hahn Quantum Variational Calculus." Journal of Optimization Theory and Applications 147, no. 3 (July 20, 2010): 419–42. http://dx.doi.org/10.1007/s10957-010-9730-1.
Full textJonckheere, E. "Variational calculus for descriptor problems." IEEE Transactions on Automatic Control 33, no. 5 (May 1988): 491–95. http://dx.doi.org/10.1109/9.1236.
Full textDissertations / Theses on the topic "Variational calculus"
Mazure, Marie-Laurence. "Analyse varationnelle des formes quadratiques convexes." Toulouse 3, 1986. http://www.theses.fr/1986TOU30109.
Full textHillyard, Cinnamon. "A Maple Package for the Variational Calculus." DigitalCommons@USU, 1992. https://digitalcommons.usu.edu/etd/7124.
Full textIqbal, Zamin. "Variational methods in solid mechanics." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301901.
Full textBotelho, Fabio Silva. "Variational Convex Analysis." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/28351.
Full textPh. D.
Muller, Stefan. "Variational problems in mechanics and analysis." Thesis, Heriot-Watt University, 1989. http://hdl.handle.net/10399/925.
Full textHanisch, Florian. "Variational problems on supermanifolds." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2012/5975/.
Full textIn dieser Dissertation wird die Formulierung von Variationsproblemen auf Supermannigfaltigkeiten diskutiert. Supermannigfaltigkeiten enthalten sowohl bosonische als auch fermionische Freiheitsgrade. Fermionische Felder nehmen Werte im ungeraden Teil einer Grassmannalgebra an, sie antikommutieren deshalb untereinander. Eine systematische Behandlung dieser Grassmann-Parameter erfordert jedoch die Beschreibung von Räumen durch Funktoren, z.B. von der Kategorie der Grassmannalgebren in diejenige der Mengen (der topologischen Räume, Mannigfaltigkeiten, ...). Nach einer Einführung in das allgemeine Konzept dieses Zugangs verwenden wir es um eine Beschreibung der resultierenden Supermannigfaltigkeit der Felder bzw. Abbildungen anzugeben. Wir zeigen, dass jede Abbildung eindeutig durch eine Familie von Differentialoperatoren geeigneter Ordnung charakterisiert wird. Darüber hinaus beweisen wir, dass jede solche Abbildung eineindeutig durch ihre Komponentenfelder, d.h. durch die Koeffizienten einer Taylorentwickelung bzgl. von ungeraden Koordinaten bestimmt ist. Im Allgemeinen sind Komponentenfelder nur lokal definiert. Wir stellen einen Weg vor, der diese Einschränkung umgeht: Durch das Vergrößern der betreffenden Supermannigfaltigkeit ist es immer möglich, mit globalen Koordinaten zu arbeiten. Schließlich wenden wir diesen Formalismus an, um Variationsprobleme zu untersuchen, genauer betrachten wir eine super-Version der Geodäte und eine Verallgemeinerung von harmonischen Abbildungen auf Supermannigfaltigkeiten. Bewegungsgleichungen werden von Energiefunktionalen abgeleitet und wir zeigen, wie sie sich in Komponenten zerlegen lassen. Schließlich kann in Spezialfällen die Existenz von kritischen Punkten gezeigt werden, indem das Problem auf Gleichungen der gewöhnlichen geometrischen Analysis reduziert wird. Es kann dann gezeigt werden, dass die Lösungen dieser Gleichungen sich zu kritischen Punkten im betreffenden Funktor-Raum der Felder zusammensetzt.
黃志榮 and Chi-wing Wong. "On Cartan form and equivalence of variational problems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31220071.
Full textWong, Chi-wing. "On Cartan form and equivalence of variational problems /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19472602.
Full textOKASSA, EUGENE. "Geometrie des points proches et applications." Toulouse 3, 1989. http://www.theses.fr/1989TOU30003.
Full textForclaz, A. "Variational methods in materials science." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249532.
Full textBooks on the topic "Variational calculus"
Bourguignon, Jean-Pierre. Variational Calculus. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18307-2.
Full textMalinowska, Agnieszka B., and Delfim F. M. Torres. Quantum Variational Calculus. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02747-0.
Full textConvexity methods in variational calculus. Letchworth, Hertfordshire, England: Research Studies Press, 1985.
Find full textTroutman, John L. Variational Calculus and Optimal Control. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0737-5.
Full textMoiseiwitsch, Benjamin Lawrence. Variational principles. Mineola, N.Y: Dover Publications, 2004.
Find full textSchmidt, Werner H., Knut Heier, Leonhard Bittner, and Roland Bulirsch, eds. Variational Calculus, Optimal Control and Applications. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8802-8.
Full textBook chapters on the topic "Variational calculus"
da Costa, Newton C. A., and Francisco Antonio Doria. "Variational Calculus." In Synthese Library, 25–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83837-9_3.
Full textBoltyanski, V., H. Martini, and V. Soltan. "Nonclassical Variational Calculus." In Geometric Methods and Optimization Problems, 1–230. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5319-9_1.
Full textMalinowska, Agnieszka B., and Delfim F. M. Torres. "The Classical Calculus of Variations." In Quantum Variational Calculus, 1–7. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02747-0_1.
Full textMalinowska, Agnieszka B., and Delfim F. M. Torres. "The Hahn Quantum Variational Calculus." In Quantum Variational Calculus, 9–54. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02747-0_2.
Full textMalinowska, Agnieszka B., and Delfim F. M. Torres. "The Power Quantum Calculus." In Quantum Variational Calculus, 55–77. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02747-0_3.
Full textMalinowska, Agnieszka B., and Delfim F. M. Torres. "Conclusion." In Quantum Variational Calculus, 79–81. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02747-0_4.
Full textFournier, G., and M. Willem. "Relative Category and The Calculus of Variations." In Variational Methods, 95–104. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4757-1080-9_7.
Full textMladenov, Ivaïlo M., and Mariana Hadzhilazova. "Geometry and Variational Calculus." In The Many Faces of Elastica, 1–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61244-7_1.
Full textGórecki, Henryk. "Elements of Variational Calculus." In Optimization and Control of Dynamic Systems, 373–414. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62646-8_9.
Full textRomano, Antonio, and Addolorata Marasco. "Variational Calculus with Applications." In Classical Mechanics with Mathematica®, 599–619. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77595-1_27.
Full textConference papers on the topic "Variational calculus"
Arroyo, Josu, Oscar J. Garay, Eduardo García-Río, and Ramón Vázquez-Lorenzo. "An experimental trip to the Calculus of Variations." In CURVATURE AND VARIATIONAL MODELING IN PHYSICS AND BIOPHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.2918092.
Full textOdzijewicz, Tatiana, Agnieszka B. Malinowska, and Delfim F. M. Torres. "Variable order fractional variational calculus for double integrals." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426489.
Full textChen, Sheng, Martin Erwig, and Eric Walkingshaw. "An error-tolerant type system for variational lambda calculus." In the 17th ACM SIGPLAN international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2364527.2364535.
Full textForero, Manuel G., Andrés F. Navarro, and Sergio L. Miranda. "Inpainting method based on variational calculus and sparse matrices." In Applications of Digital Image Processing XLIV, edited by Andrew G. Tescher and Touradj Ebrahimi. SPIE, 2021. http://dx.doi.org/10.1117/12.2594537.
Full textChirikjian, Gregory S. "Signal Classification in Quotient Spaces via Globally Optimal Variational Calculus." In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. http://dx.doi.org/10.1109/cvprw.2017.103.
Full textLEE, K. S. "SOME PROPERTIES OF A RANDOM FIELD DERIVED BY VARIATIONAL CALCULUS." In Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810267_0009.
Full textOZAKI, T., T. DOHI, and N. KAIO. "OPTIMAL INSPECTION POLICIES WITH AN EQUALITY CONSTRAINT BASED ON THE VARIATIONAL CALCULUS." In Proceedings of the 2004 Asian International Workshop (AIWARM 2004). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702685_0049.
Full textHarsha, N. R. Sree, and Allen L. Garner. "Multi-Dimensional Space-Charge Limited Current Using Variational Calculus and Vacuum Capacitance." In 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588615.
Full textAgrawal, Om P., Md Mehedi Hasan, and X. W. Tangpong. "A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48768.
Full textKumar, Sumit, and Rajib Kumar Jha. "Enhancement of high dynamic range images using variational calculus regularizer with stochastic resonance." In the Tenth Indian Conference. New York, New York, USA: ACM Press, 2016. http://dx.doi.org/10.1145/3009977.3010039.
Full textReports on the topic "Variational calculus"
Chernyak, Vladimir Y., Michael Chertkov, Joris Bierkens, and Hilbert J. Kappen. Optimal Stochastic Control as Non-equilibrium Statistical Mechanics: Calculus of Variations over Density and Current. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1086764.
Full textDufour, Quentin, David Pontille, and Didier Torny. Contracter à l’heure de la publication en accès ouvert. Une analyse systématique des accords transformants. Ministère de l'enseignement supérieur et de la recherche, April 2021. http://dx.doi.org/10.52949/2.
Full text