Journal articles on the topic 'Variational critical problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Variational critical problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ambrosetti, Antonio. "Critical points and nonlinear variational problems." Mémoires de la Société mathématique de France 1 (1992): 1–139. http://dx.doi.org/10.24033/msmf.362.
Full textPrigozhin, Leonid. "Variational inequalities in critical-state problems." Physica D: Nonlinear Phenomena 197, no. 3-4 (2004): 197–210. http://dx.doi.org/10.1016/j.physd.2004.07.001.
Full textPrigozhin, L. "On the Bean critical-state model in superconductivity." European Journal of Applied Mathematics 7, no. 3 (1996): 237–47. http://dx.doi.org/10.1017/s0956792500002333.
Full textLeonardi, Salvatore, and Nikolaos S. Papageorgiou. "On a class of critical Robin problems." Forum Mathematicum 32, no. 1 (2020): 95–109. http://dx.doi.org/10.1515/forum-2019-0160.
Full textStupishin, Leonid U. "Variational Criteria for Critical Levels of Internal Energy of a Deformable Solids." Applied Mechanics and Materials 578-579 (July 2014): 1584–87. http://dx.doi.org/10.4028/www.scientific.net/amm.578-579.1584.
Full textAmbrosetti, A., J. Garcia Azorero, and I. Peral. "Elliptic Variational Problems in RN with Critical Growth." Journal of Differential Equations 168, no. 1 (2000): 10–32. http://dx.doi.org/10.1006/jdeq.2000.3875.
Full textHammouti, Omar, Said Taarabti, and Ravi Agarwal. "Anisotropic discrete boundary value problems." Applicable Analysis and Discrete Mathematics, no. 00 (2023): 8. http://dx.doi.org/10.2298/aadm220824008h.
Full textGazzola, Filippo. "Positive solutions of critical quasilinear elliptic problems in general domains." Abstract and Applied Analysis 3, no. 1-2 (1998): 65–84. http://dx.doi.org/10.1155/s108533759800044x.
Full textLi, Lin, and Stepan Tersian. "Fractional problems with critical nonlinearities by a sublinear perturbation." Fractional Calculus and Applied Analysis 23, no. 2 (2020): 484–503. http://dx.doi.org/10.1515/fca-2020-0023.
Full textDrissi, Amor, Abdeljabbar Ghanmi, and Dusan D. Repovs. "Singular p-biharmonic problems involving the Hardy-Sobolev exponent." Electronic Journal of Differential Equations 2023, no. 01-?? (2023): 61. http://dx.doi.org/10.58997/ejde.2023.61.
Full textKang, Dongsheng. "Quasilinear elliptic problems with critical exponents and Hardy terms in ℝN". Proceedings of the Edinburgh Mathematical Society 53, № 1 (2010): 175–93. http://dx.doi.org/10.1017/s0013091508000187.
Full textLian, Chun-Bo, Bei-Lei Zhang, and Bin Ge. "Multiple Solutions for Double Phase Problems with Hardy Type Potential." Mathematics 9, no. 4 (2021): 376. http://dx.doi.org/10.3390/math9040376.
Full textGhoussoub, Nassif, and Frédéric Robert. "Hardy-singular boundary mass and Sobolev-critical variational problems." Analysis & PDE 10, no. 5 (2017): 1017–79. http://dx.doi.org/10.2140/apde.2017.10.1017.
Full textChow, Shui-Nee, and Reiner Lauterbach. "A bifurcation theorem for critical points of variational problems." Nonlinear Analysis: Theory, Methods & Applications 12, no. 1 (1988): 51–61. http://dx.doi.org/10.1016/0362-546x(88)90012-0.
Full textChen, Yu. "G-α-preinvex functions and non-smooth vector optimization problems". Yugoslav Journal of Operations Research, № 00 (2021): 8. http://dx.doi.org/10.2298/yjor200527008c.
Full textKhodabakhshi, Mehdi, Abdolmohammad Aminpour, and Mohamad Tavani. "Infinitely many weak solutions for some elliptic problems in RN." Publications de l'Institut Math?matique (Belgrade) 100, no. 114 (2016): 271–78. http://dx.doi.org/10.2298/pim1614271k.
Full textLiu, Shibo. "Multiple solutions for elliptic resonant problems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 138, no. 6 (2008): 1281–89. http://dx.doi.org/10.1017/s0308210507000443.
Full textWei, Yongfang, Suiming Shang, and Zhanbing Bai. "Applications of variational methods to some three-point boundary value problems with instantaneous and noninstantaneous impulses." Nonlinear Analysis: Modelling and Control 27 (February 4, 2022): 1–13. http://dx.doi.org/10.15388/namc.2022.27.26253.
Full textRibeiro, Bruno. "Critical elliptic problems in ℝ2 involving resonance in high-order eigenvalues". Communications in Contemporary Mathematics 17, № 01 (2014): 1450008. http://dx.doi.org/10.1142/s0219199714500084.
Full textBéhi, Droh Arsène, and Assohoun Adjé. "A Variational Method for Multivalued Boundary Value Problems." Abstract and Applied Analysis 2020 (January 21, 2020): 1–8. http://dx.doi.org/10.1155/2020/8463263.
Full textKyritsi, Sophia Th, and Nikolaos S. Papageorgiou. "Multiple Solutions for Nonlinear Periodic Problems." Canadian Mathematical Bulletin 56, no. 2 (2013): 366–77. http://dx.doi.org/10.4153/cmb-2011-154-5.
Full textKaid, Rachida, Atika Matallah, and Sofiane Messirdi. "Multiple solutions to p-Kirchhoff type problems involving critical Sobolev exponent in R^N." MATHEMATICA 65 (88), no. 1 (2023): 75–84. http://dx.doi.org/10.24193/mathcluj.2023.1.08.
Full textYang, Dianwu. "A Variational Principle for Three-Point Boundary Value Problems with Impulse." Abstract and Applied Analysis 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/840408.
Full textGalewski, Marek, and Donal O'Regan. "ON WELL POSED IMPULSIVE BOUNDARY VALUE PROBLEMS FOR P(T)-LAPLACIAN'S." Mathematical Modelling and Analysis 18, no. 2 (2013): 161–75. http://dx.doi.org/10.3846/13926292.2013.779600.
Full textAlves, C. O., Ana Maria Bertone, and J. V. Goncalves. "A Variational Approach to Discontinuous Problems with Critical Sobolev Exponents." Journal of Mathematical Analysis and Applications 265, no. 1 (2002): 103–27. http://dx.doi.org/10.1006/jmaa.2001.7698.
Full textMishra, S. K., and Vivek Laha. "On V-r-invexity and vector variational-like inequalities." Filomat 26, no. 5 (2012): 1065–73. http://dx.doi.org/10.2298/fil1205065m.
Full textShibata, Tetsutaro. "Asymptotic formulas and critical exponents for two-parameter nonlinear eigenvalue problems." Abstract and Applied Analysis 2003, no. 11 (2003): 671–84. http://dx.doi.org/10.1155/s1085337503212045.
Full textAlves, Claudianor O., Daniel C. de Morais Filho та Marco A. S. Souto. "Multiplicity of positive solutions for a class of problems with critical growth in ℝN". Proceedings of the Edinburgh Mathematical Society 52, № 1 (2009): 1–21. http://dx.doi.org/10.1017/s0013091507000028.
Full textBadiale, Marino, and Alessio Pomponio. "Bifurcation results for semilinear elliptic problems in RN." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 134, no. 1 (2004): 11–32. http://dx.doi.org/10.1017/s0308210500003048.
Full textChen, Ching-yu, and Tsung-fang Wu. "Multiple positive solutions for indefinite semilinear elliptic problems involving a critical Sobolev exponent." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144, no. 4 (2014): 691–709. http://dx.doi.org/10.1017/s0308210512000133.
Full textShen, Yansheng. "Existence of Solutions for Choquard Type Elliptic Problems with Doubly Critical Nonlinearities." Advanced Nonlinear Studies 21, no. 1 (2019): 77–93. http://dx.doi.org/10.1515/ans-2019-2056.
Full textPapageorgiou, Nikolaos S., Calogero Vetro, and Francesca Vetro. "Multiple solutions for semilinear Robin problems with superlinear reaction and no symmetries." Electronic Journal of Differential Equations 2021, no. 01-104 (2021): 12. http://dx.doi.org/10.58997/ejde.2021.12.
Full textCarriao, Paulo Cesar, Augusto Cesar dos Reis Costa, Olimpio Hiroshi Miyagaki, and Andre Vicente. "Kirchhoff-type problems with critical Sobolev exponent in a hyperbolic space." Electronic Journal of Differential Equations 2021, no. 01-104 (2022): 3. http://dx.doi.org/10.58997/ejde.2021.53.
Full textMatallah, Atika, Safia Benmansour, and Hayat Benchira. "Existence and nonexistence of nontrivial solutions for a class of p-Kirchhoff type problems with critical Sobolev exponent." Filomat 36, no. 9 (2022): 2971–79. http://dx.doi.org/10.2298/fil2209971m.
Full textRuiz-Garzón, Gabriel, Rafaela Osuna-Gómez, Antonio Rufián-Lizana, and Beatriz Hernández-Jiménez. "Approximate Efficient Solutions of the Vector Optimization Problem on Hadamard Manifolds via Vector Variational Inequalities." Mathematics 8, no. 12 (2020): 2196. http://dx.doi.org/10.3390/math8122196.
Full textPapageorgiou, Nikolaos S., and Vicenţiu D. Rădulescu. "Semilinear Robin problems resonant at both zero and infinity." Forum Mathematicum 30, no. 1 (2018): 237–51. http://dx.doi.org/10.1515/forum-2016-0264.
Full textBelaouidel, Hassan, Mustapha Haddaoui, and Najib Tsouli. "Results of singular Direchelet problem involving the $p(x)$-laplacian with critical growth." Boletim da Sociedade Paranaense de Matemática 41 (December 23, 2022): 1–18. http://dx.doi.org/10.5269/bspm.52984.
Full textPiccione, Paolo, and Daniel V. Tausk. "Lagrangian and Hamiltonian formalism for constrained variational problems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, no. 6 (2002): 1417–37. http://dx.doi.org/10.1017/s0308210500002183.
Full textBorysiuk, Viktor, and Olha Michuta. "Application of Quantum Computing in Optimization Problems." Modeling, Control and Information Technologies, no. 7 (December 7, 2024): 123–24. https://doi.org/10.31713/mcit.2024.033.
Full textEl Mokhtar, M. E. O., S. Benmansour, and A. Matallah. "On Nonlocal Elliptic Problems of the Kirchhoff Type Involving the Hardy Potential and Critical Nonlinearity." Journal of Applied Mathematics 2023 (August 24, 2023): 1–6. http://dx.doi.org/10.1155/2023/2997093.
Full textOUERGHI, HAIKEL, KHALD BENALI, and AMOR DRISSI. "EXISTENCE OF SOLUTIONS FOR NONHOMOGENEOUS DIRICHLET PROBLEMS IN ORLICZ-SOBOLEV SPACES." Journal of Science and Arts 24, no. 4 (2024): 881–94. https://doi.org/10.46939/j.sci.arts-24.4-a11.
Full textYang, Lianwu. "Existence and Multiple Solutions for Higher Order Difference Dirichlet Boundary Value Problems." International Journal of Nonlinear Sciences and Numerical Simulation 19, no. 5 (2018): 539–44. http://dx.doi.org/10.1515/ijnsns-2017-0176.
Full textWysocki, K. "Multiple critical points for variational problems on partially ordered Hilbert spaces." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 7, no. 4 (1990): 287–304. http://dx.doi.org/10.1016/s0294-1449(16)30293-1.
Full textLiang, Sihua, Giovanni Molica Bisci, and Binlin Zhang. "Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents." Nonlinear Analysis: Modelling and Control 27 (March 28, 2022): 1–20. http://dx.doi.org/10.15388/namc.2022.27.26575.
Full textAIZICOVICI, SERGIU, NIKOLAOS S. PAPAGEORGIOU, and VASILE STAICU. "NODAL AND MULTIPLE SOLUTIONS FOR NONLINEAR PERIODIC PROBLEMS WITH COMPETING NONLINEARITIES." Communications in Contemporary Mathematics 15, no. 03 (2013): 1350001. http://dx.doi.org/10.1142/s0219199713500016.
Full textHadjian, Armin, and Juan J. Nieto. "Existence of solutions of Dirichlet problems for one dimensional fractional equations." AIMS Mathematics 7, no. 4 (2022): 6034–49. http://dx.doi.org/10.3934/math.2022336.
Full textCarl, Siegfried, and Dumitru Motreanu. "Sign-Changing Solutions for Nonlinear Elliptic Problems Depending on Parameters." International Journal of Differential Equations 2010 (2010): 1–33. http://dx.doi.org/10.1155/2010/536236.
Full textHeidari Tavani, Mohammad Reza. "Existence Results for A Perturbed Fourth-Order Equation." Journal of the Indonesian Mathematical Society 23, no. 2 (2017): 55–65. http://dx.doi.org/10.22342/jims.23.2.498.55-65.
Full textAbd, Ghazwa F., and Radhi A. Zaboon. "Approximate Solution of a Reduced-Type Index- k Hessenberg Differential-Algebraic Control System." Journal of Applied Mathematics 2021 (October 11, 2021): 1–13. http://dx.doi.org/10.1155/2021/9706255.
Full textShokooh, Saeid, Ghasem A. Afrouzi, and John R. Graef. "Infinitely many solutions for non-homogeneous Neumann problems in Orlicz-Sobolev spaces." Mathematica Slovaca 68, no. 4 (2018): 867–80. http://dx.doi.org/10.1515/ms-2017-0151.
Full text