Journal articles on the topic 'Vat photopolymerization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Vat photopolymerization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Xiangjia, and Yong Chen. "Vat-Photopolymerization-Based Ceramic Manufacturing." Journal of Materials Engineering and Performance 30, no. 7 (July 2021): 4819–36. http://dx.doi.org/10.1007/s11665-021-05920-z.
Full textShaukat, Usman, Elisabeth Rossegger, and Sandra Schlögl. "A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization." Polymers 14, no. 12 (June 16, 2022): 2449. http://dx.doi.org/10.3390/polym14122449.
Full textRieger, Thomas, Tim Schubert, Julian Schurr, Andreas Kopp, Michael Schwenkel, Dirk Sellmer, Alexander Wolff, Juliane Meese-Marktscheffel, Timo Bernthaler, and Gerhard Schneider. "Vat Photopolymerization of Cemented Carbide Specimen." Materials 14, no. 24 (December 11, 2021): 7631. http://dx.doi.org/10.3390/ma14247631.
Full textAndreu, Alberto, Pei-Chen Su, Jeong-Hwan Kim, Chin Siang Ng, Sanglae Kim, Insup Kim, Jiho Lee, Jinhong Noh, Alamelu Suriya Subramanian, and Yong-Jin Yoon. "4D printing materials for vat photopolymerization." Additive Manufacturing 44 (August 2021): 102024. http://dx.doi.org/10.1016/j.addma.2021.102024.
Full textWilts, Emily M., Allison M. Pekkanen, B. Tyler White, Viswanath Meenakshisundaram, Donald C. Aduba, Christopher B. Williams, and Timothy E. Long. "Vat photopolymerization of charged monomers: 3D printing with supramolecular interactions." Polymer Chemistry 10, no. 12 (2019): 1442–51. http://dx.doi.org/10.1039/c8py01792a.
Full textVallabh, Chaitanya Krishna Prasad, Yue Zhang, and Xiayun Zhao. "In-situ ultrasonic monitoring for Vat Photopolymerization." Additive Manufacturing 55 (July 2022): 102801. http://dx.doi.org/10.1016/j.addma.2022.102801.
Full textNath, Shukantu Dev, and Sabrina Nilufar. "Performance Evaluation of Sandwich Structures Printed by Vat Photopolymerization." Polymers 14, no. 8 (April 8, 2022): 1513. http://dx.doi.org/10.3390/polym14081513.
Full textSchwarzer-Fischer, Eric, Anne Günther, Sven Roszeitis, and Tassilo Moritz. "Combining Zirconia and Titanium Suboxides by Vat Photopolymerization." Materials 14, no. 9 (May 4, 2021): 2394. http://dx.doi.org/10.3390/ma14092394.
Full textSun, Ke, Xiaotong Peng, Zengkang Gan, Wei Chen, Xiaolin Li, Tao Gong, and Pu Xiao. "3D Printing/Vat Photopolymerization of Photopolymers Activated by Novel Organic Dyes as Photoinitiators." Catalysts 12, no. 10 (October 19, 2022): 1272. http://dx.doi.org/10.3390/catal12101272.
Full textZhang, Feng, Liya Zhu, Zongan Li, Shiyan Wang, Jianping Shi, Wenlai Tang, Na Li, and Jiquan Yang. "The recent development of vat photopolymerization: A review." Additive Manufacturing 48 (December 2021): 102423. http://dx.doi.org/10.1016/j.addma.2021.102423.
Full textSirrine, Justin M., Alisa Zlatanic, Viswanath Meenakshisundaram, Jamie M. Messman, Christopher B. Williams, Petar R. Dvornic, and Timothy E. Long. "3D Printing Amorphous Polysiloxane Terpolymers via Vat Photopolymerization." Macromolecular Chemistry and Physics 220, no. 4 (January 7, 2019): 1800425. http://dx.doi.org/10.1002/macp.201800425.
Full textMaturi, Mirko, Chiara Spanu, Natalia Fernández-Delgado, Sergio I. Molina, Mauro Comes Franchini, Erica Locatelli, and Alberto Sanz de León. "Fatty acid – functionalized cellulose nanocomposites for vat photopolymerization." Additive Manufacturing 61 (January 2023): 103342. http://dx.doi.org/10.1016/j.addma.2022.103342.
Full textPagac, Marek, Jiri Hajnys, Quoc-Phu Ma, Lukas Jancar, Jan Jansa, Petr Stefek, and Jakub Mesicek. "A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing." Polymers 13, no. 4 (February 17, 2021): 598. http://dx.doi.org/10.3390/polym13040598.
Full textde Camargo, Italo, João Fiore Parreira Lovo, Rogério Erbereli, Eduardo Bock, and Carlos Fortulan. "Fabrication of ceramics using photosensitive slurries: A comparison between UV-casting replication and vat photopolymerization 3D printing." Processing and Application of Ceramics 16, no. 2 (2022): 153–59. http://dx.doi.org/10.2298/pac2202153c.
Full textAznarte Garcia, Elisa, Ahmed Jawad Qureshi, and Cagri Ayranci. "A study on material-process interaction and optimization for VAT-photopolymerization processes." Rapid Prototyping Journal 24, no. 9 (November 12, 2018): 1479–85. http://dx.doi.org/10.1108/rpj-10-2017-0195.
Full textChartrain, Nicholas A., Christopher B. Williams, and Abby R. Whittington. "A review on fabricating tissue scaffolds using vat photopolymerization." Acta Biomaterialia 74 (July 2018): 90–111. http://dx.doi.org/10.1016/j.actbio.2018.05.010.
Full textStraathof, Michiel H., Chris A. Driel, Joost N. J. Lingen, Bastiaan L. J. Ingenhut, A. Tessa Cate, and Hessel H. Maalderink. "Development of Propellant Compositions for Vat Photopolymerization Additive Manufacturing." Propellants, Explosives, Pyrotechnics 45, no. 1 (December 4, 2019): 36–52. http://dx.doi.org/10.1002/prep.201900176.
Full textBachmann, Joel, Elisabeth Gleis, Stefan Schmölzer, Gabriele Fruhmann, and Olaf Hinrichsen. "Photo-DSC method for liquid samples used in vat photopolymerization." Analytica Chimica Acta 1153 (April 2021): 338268. http://dx.doi.org/10.1016/j.aca.2021.338268.
Full textBao, Yinyin. "Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing." Macromolecular Rapid Communications 43, no. 14 (July 2022): 2270042. http://dx.doi.org/10.1002/marc.202270042.
Full textNohut, Serkan, and Martin Schwentenwein. "Vat Photopolymerization Additive Manufacturing of Functionally Graded Materials: A Review." Journal of Manufacturing and Materials Processing 6, no. 1 (January 21, 2022): 17. http://dx.doi.org/10.3390/jmmp6010017.
Full textMartinez Maciel, Ana C., Alexis Maurel, Sreeprasad T. Sreenivasan, and Eric MacDonald. "3D Printing of Lithium-Ion Battery Components Via Vat Photopolymerization." ECS Meeting Abstracts MA2021-02, no. 1 (October 19, 2021): 55. http://dx.doi.org/10.1149/ma2021-02155mtgabs.
Full textDiptanshu, Guanxiong Miao, and Chao Ma. "Vat photopolymerization 3D printing of ceramics: Effects of fine powder." Manufacturing Letters 21 (August 2019): 20–23. http://dx.doi.org/10.1016/j.mfglet.2019.07.001.
Full textVidakis, Nectarios, Markos Petousis, Nikolaos Michailidis, Vassilis Papadakis, Apostolos Korlos, Nikolaos Mountakis, and Apostolos Argyros. "Multi-Functional 3D-Printed Vat Photopolymerization Biomedical-Grade Resin Reinforced with Binary Nano Inclusions: The Effect of Cellulose Nanofibers and Antimicrobial Nanoparticle Agents." Polymers 14, no. 9 (May 6, 2022): 1903. http://dx.doi.org/10.3390/polym14091903.
Full textSalmi, Mika. "Additive Manufacturing Processes in Medical Applications." Materials 14, no. 1 (January 3, 2021): 191. http://dx.doi.org/10.3390/ma14010191.
Full textFang, Zizheng, Runzhi Lu, Jiada Chen, Qian Zhao, and Jingjun Wu. "Vat photopolymerization of tough glassy polymers with multiple shape memory performances." Additive Manufacturing 59 (November 2022): 103171. http://dx.doi.org/10.1016/j.addma.2022.103171.
Full textWang, Jia-Chang, Manuel Ruilova, and Sheng-Jen Hsieh. "A web-based platform for automated vat photopolymerization additive manufacturing process." International Journal of Advanced Manufacturing Technology 119, no. 3-4 (November 23, 2021): 2721–42. http://dx.doi.org/10.1007/s00170-021-08318-2.
Full textWilts, Emily M., Aleena Gula, Corey Davis, Nicholas Chartrain, Christopher B. Williams, and Timothy E. Long. "Vat photopolymerization of liquid, biodegradable PLGA-based oligomers as tissue scaffolds." European Polymer Journal 130 (May 2020): 109693. http://dx.doi.org/10.1016/j.eurpolymj.2020.109693.
Full textClay, Anthony M., Joshua R. Mitchell, Zachary R. Boelter, and John J. La Scala. "Superior Properties through Feedstock Development for Vat Photopolymerization Additive Manufacturing of High-Performance Biobased Feedstocks." Materials 14, no. 17 (August 26, 2021): 4843. http://dx.doi.org/10.3390/ma14174843.
Full textPazhamannil, Ribin Varghese, and P. Govindan. "Current state and future scope of additive manufacturing technologies via vat photopolymerization." Materials Today: Proceedings 43 (2021): 130–36. http://dx.doi.org/10.1016/j.matpr.2020.11.225.
Full textCao, Yueqi, Xiaojing Xu, Zheng Qin, Chong He, Liwen Yan, Feng Hou, Jiachen Liu, and Anran Guo. "Vat photopolymerization 3D printing of thermal insulating mullite fiber-based porous ceramics." Additive Manufacturing 60 (December 2022): 103235. http://dx.doi.org/10.1016/j.addma.2022.103235.
Full textPeterson, Gregory I., Johanna J. Schwartz, Di Zhang, Benjamin M. Weiss, Mark A. Ganter, Duane W. Storti, and Andrew J. Boydston. "Production of Materials with Spatially-Controlled Cross-Link Density via Vat Photopolymerization." ACS Applied Materials & Interfaces 8, no. 42 (October 11, 2016): 29037–43. http://dx.doi.org/10.1021/acsami.6b09768.
Full textMeenakshisundaram, Viswanath, Logan D. Sturm, and Christopher B. Williams. "Modeling A Scanning-Mask Projection Vat Photopolymerization System For Multiscale Additive Manufacturing." Journal of Materials Processing Technology 279 (May 2020): 116546. http://dx.doi.org/10.1016/j.jmatprotec.2019.116546.
Full textWestbeek, S., J. J. C. Remmers, J. A. W. van Dommelen, and M. G. D. Geers. "Multi-scale process simulation for additive manufacturing through particle filled vat photopolymerization." Computational Materials Science 180 (July 2020): 109647. http://dx.doi.org/10.1016/j.commatsci.2020.109647.
Full textNaik, Dayakar L., and Ravi Kiran. "On anisotropy, strain rate and size effects in vat photopolymerization based specimens." Additive Manufacturing 23 (October 2018): 181–96. http://dx.doi.org/10.1016/j.addma.2018.08.021.
Full textXu, Han, Shuai Chen, Fuyuan Luo, Huachao Mao, and Yong Chen. "A numerically controlled shape memory alloy wire bending process using vat photopolymerization." Journal of Manufacturing Processes 56 (August 2020): 1322–30. http://dx.doi.org/10.1016/j.jmapro.2020.04.027.
Full textSameni, Farzaneh, Basar Ozkan, Sarah Karmel, Daniel S. Engstrøm, and Ehsan Sabet. "Large Scale Vat-Photopolymerization of Investment Casting Master Patterns: The Total Solution." Polymers 14, no. 21 (October 29, 2022): 4593. http://dx.doi.org/10.3390/polym14214593.
Full textShah, Mussadiq, Abid Ullah, Kashif Azher, Asif Ur Rehman, Wang Juan, Nizami Aktürk, Celal Sami Tüfekci, and Metin U. Salamci. "Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications." RSC Advances 13, no. 2 (2023): 1456–96. http://dx.doi.org/10.1039/d2ra06522c.
Full textWang, Chengyun, Huaqiang Gong, Han Wu, Qingxin Jin, Wei Wei, Jiahua Liang, Bingheng Lu, Shenggui Chen, and Yu Long. "Optimized sintering strategy for lunar regolith simulant particles bound via vat photopolymerization." Materials Chemistry and Physics 297 (March 2023): 127393. http://dx.doi.org/10.1016/j.matchemphys.2023.127393.
Full textFiedor, Paweł, Maciej Pilch, Patryk Szymaszek, Anna Chachaj-Brekiesz, Mariusz Galek, and Joanna Ortyl. "Photochemical Study of a New Bimolecular Photoinitiating System for Vat Photopolymerization 3D Printing Techniques under Visible Light." Catalysts 10, no. 3 (March 2, 2020): 284. http://dx.doi.org/10.3390/catal10030284.
Full textYadav, Pradeep Kumar, and Jitendra Bhaskar. "Surface Performance Analysis of in House Developed Digital Light Processing based 3D Printer." International Journal of Advance Research and Innovation 8, no. 4 (2020): 138–42. http://dx.doi.org/10.51976/ijari.842022.
Full textBowers, Lauren N., Aleksandr B. Stefaniak, Alycia K. Knepp, Ryan F. LeBouf, Stephen B. Martin, Anand C. Ranpara, Dru A. Burns, and M. Abbas Virji. "Potential for Exposure to Particles and Gases throughout Vat Photopolymerization Additive Manufacturing Processes." Buildings 12, no. 8 (August 12, 2022): 1222. http://dx.doi.org/10.3390/buildings12081222.
Full textMaurel, Alexis, Ana C. Martinez Maciel, Stephane Panier, Sylvie Grugeon, Loic Dupont, Sreeprasad T. Sreenivasan, and Eric MacDonald. "Lithium-Ion Battery 3D Printing: From Thermoplastic Material Extrusion to Vat Photopolymerization Process." ECS Meeting Abstracts MA2021-02, no. 1 (October 19, 2021): 30. http://dx.doi.org/10.1149/ma2021-02130mtgabs.
Full textSantos, Ericles Otávio, Pedro Lima Emmerich Oliveira, Thaís Pereira de Mello, André Luis Souza dos Santos, Carlos Nelson Elias, Sung-Hwan Choi, and Amanda Cunha Regal de Castro. "Surface Characteristics and Microbiological Analysis of a Vat-Photopolymerization Additive-Manufacturing Dental Resin." Materials 15, no. 2 (January 6, 2022): 425. http://dx.doi.org/10.3390/ma15020425.
Full textHafkamp, Thomas, Gregor van Baars, Bram de Jager, and Pascal Etman. "A feasibility study on process monitoring and control in vat photopolymerization of ceramics." Mechatronics 56 (December 2018): 220–41. http://dx.doi.org/10.1016/j.mechatronics.2018.02.006.
Full textAduba, Donald C., Evan D. Margaretta, Alexandra E. C. Marnot, Katherine V. Heifferon, Wyatt R. Surbey, Nicholas A. Chartrain, Abby R. Whittington, Timothy E. Long, and Christopher B. Williams. "Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications." Materials Today Communications 19 (June 2019): 204–11. http://dx.doi.org/10.1016/j.mtcomm.2019.01.003.
Full textWeems, Andrew C., Kayla R. Delle Chiaie, Rachel Yee, and Andrew P. Dove. "Selective Reactivity of Myrcene for Vat Photopolymerization 3D Printing and Postfabrication Surface Modification." Biomacromolecules 21, no. 1 (October 7, 2019): 163–70. http://dx.doi.org/10.1021/acs.biomac.9b01125.
Full textGuerra Silva, Rafael, María Josefina Torres, and Jorge Zahr Viñuela. "A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing." Polymers 13, no. 13 (June 30, 2021): 2163. http://dx.doi.org/10.3390/polym13132163.
Full textSun, Ke, Shaohui Liu, Corentin Pigot, Damien Brunel, Bernadette Graff, Malek Nechab, Didier Gigmes, et al. "Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites." Catalysts 10, no. 10 (October 15, 2020): 1196. http://dx.doi.org/10.3390/catal10101196.
Full textCamargo, Italo Leite de, Mateus Mota Morais, Carlos Alberto Fortulan, and Marcia Cristina Branciforti. "A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization." Ceramics International 47, no. 9 (May 2021): 11906–21. http://dx.doi.org/10.1016/j.ceramint.2021.01.031.
Full textZhao, Wenyu, Ziya Wang, Jianpeng Zhang, Xiaopu Wang, Yingtian Xu, Ning Ding, and Zhengchun Peng. "Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function." Advanced Materials Technologies 6, no. 8 (April 28, 2021): 2001218. http://dx.doi.org/10.1002/admt.202001218.
Full text