Academic literature on the topic 'Vector autoregressive moving average'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vector autoregressive moving average.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vector autoregressive moving average"
Fitrianti, H., S. M. Belwawin, M. Riyana, and R. Amin. "Climate modeling using vector moving average autoregressive." IOP Conference Series: Earth and Environmental Science 343 (November 6, 2019): 012201. http://dx.doi.org/10.1088/1755-1315/343/1/012201.
Full textIwok, I. A., and E. H. Etuk. "On the Comparative Performance of Pure Vector Autoregressive-Moving Average and Vector Bilinear Autoregressive-Moving Average Time Series Models." Asian Journal of Mathematics & Statistics 2, no. 2 (April 15, 2009): 33–40. http://dx.doi.org/10.3923/ajms.2009.33.40.
Full textIwok, I. A., and E. H. Etuk. "On the Comparative Performance of Pure Vector Autoregressive-Moving Average and Vector Bilinear Autoregressive-Moving Average Time Series Models." Asian Journal of Mathematics & Statistics 3, no. 3 (June 15, 2010): 179–86. http://dx.doi.org/10.3923/ajms.2010.179.186.
Full textTsay, Ruey S. "Parsimonious Parameterization of Vector Autoregressive Moving Average Models." Journal of Business & Economic Statistics 7, no. 3 (July 1989): 327. http://dx.doi.org/10.2307/1391530.
Full textTsay, Ruey S. "Parsimonious Parameterization of Vector Autoregressive Moving Average Models." Journal of Business & Economic Statistics 7, no. 3 (July 1989): 327–41. http://dx.doi.org/10.1080/07350015.1989.10509742.
Full textAnggraeni, Wiwik, and Leivina Kartika Dewi. "PERAMALAN MENGGUNAKAN METODE VECTOR AUTOREGRESSIVE MOVING AVERAGE (VARMA)." JUTI: Jurnal Ilmiah Teknologi Informasi 7, no. 2 (July 1, 2008): 107. http://dx.doi.org/10.12962/j24068535.v7i2.a180.
Full textBen, Marta Garcia, Elena J. Martinez, and Victor J. Yohai. "Robust Estimation in Vector Autoregressive Moving-Average Models." Journal of Time Series Analysis 20, no. 4 (July 1999): 381–99. http://dx.doi.org/10.1111/1467-9892.00144.
Full textKoreisha, Sergio G., and Tarmo Pukkila. "The specification of vector autoregressive moving average models." Journal of Statistical Computation and Simulation 74, no. 8 (August 2004): 547–65. http://dx.doi.org/10.1080/00949650310001616559.
Full textYozgatligil, Ceylan, and William W. S. Wei. "Representation of Multiplicative Seasonal Vector Autoregressive Moving Average Models." American Statistician 63, no. 4 (November 2009): 328–34. http://dx.doi.org/10.1198/tast.2009.08040.
Full textJouini, Tarek. "Linear bootstrap methods for vector autoregressive moving-average models." Journal of Statistical Computation and Simulation 85, no. 11 (June 17, 2014): 2214–57. http://dx.doi.org/10.1080/00949655.2014.925898.
Full textDissertations / Theses on the topic "Vector autoregressive moving average"
Dong, Juntao. "Reinforcement Learning for Multiple Time Series: Forex Trading Application." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613745680121778.
Full textAkin, Serdar. "Do Riksbanken produce unbiased forecast of the inflation rate? : and can it be improved?" Thesis, Stockholms universitet, Nationalekonomiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-58708.
Full textZiedzor, Reginald. "GENERALIZED AUTOREGRESSIVE MOVING AVERAGE MODELS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2198.
Full textAlj, Abdelkamel. "Contribution to the estimation of VARMA models with time-dependent coefficients." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209651.
Full textvectoriels ou VARMA, `a coefficients dépendant du temps, et avec une matrice de covariance
des innovations dépendant du temps. Ces modèles sont appel´es tdVARMA. Les éléments
des matrices des coefficients et de la matrice de covariance sont des fonctions déterministes
du temps dépendant d’un petit nombre de paramètres. Une première partie de la thèse
est consacrée à l’étude des propriétés asymptotiques de l’estimateur du quasi-maximum
de vraisemblance gaussienne. La convergence presque sûre et la normalité asymptotique
de cet estimateur sont démontrées sous certaine hypothèses vérifiables, dans le cas o`u les
coefficients dépendent du temps t mais pas de la taille des séries n. Avant cela nous considérons les propriétés asymptotiques des estimateurs de modèles non-stationnaires assez
généraux, pour une fonction de pénalité générale. Nous passons ensuite à l’application de
ces théorèmes en considérant que la fonction de pénalité est la fonction de vraisemblance
gaussienne (Chapitre 2). L’étude du comportement asymptotique de l’estimateur lorsque
les coefficients du modèle dépendent du temps t et aussi de n fait l’objet du Chapitre 3.
Dans ce cas, nous utilisons une loi faible des grands nombres et un théorème central limite
pour des tableaux de différences de martingales. Ensuite, nous présentons des conditions
qui assurent la consistance faible et la normalité asymptotique. Les principaux
résultats asymptotiques sont illustrés par des expériences de simulation et des exemples
dans la littérature. La deuxième partie de cette thèse est consacrée à un algorithme qui nous
permet d’évaluer la fonction de vraisemblance exacte d’un processus tdVARMA d’ordre (p, q) gaussien. Notre algorithme est basé sur la factorisation de Cholesky d’une matrice
bande partitionnée. Le point de départ est une généralisation au cas multivarié de Mélard
(1982) pour évaluer la fonction de vraisemblance exacte d’un modèle ARMA(p, q) univarié. Aussi, nous utilisons quelques résultats de Jonasson et Ferrando (2008) ainsi que les programmes Matlab de Jonasson (2008) dans le cadre d’une fonction de vraisemblance
gaussienne de modèles VARMA à coefficients constants. Par ailleurs, nous déduisons que
le nombre d’opérations requis pour l’évaluation de la fonction de vraisemblance en fonction de p, q et n est approximativement le double par rapport à un modèle VARMA à coefficients
constants. L’implémentation de cet algorithme a été testée en comparant ses résultats avec
d’autres programmes et logiciels très connus. L’utilisation des modèles VARMA à coefficients
dépendant du temps apparaît particulièrement adaptée pour la dynamique de quelques
séries financières en mettant en évidence l’existence de la dépendance des paramètres en
fonction du temps.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Akgun, Burcin. "Identification Of Periodic Autoregressive Moving Average Models." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1083682/index.pdf.
Full textChong, Ching Yee. "Portmanteau testing for nonstationary autoregressive moving-average models /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20CHONG.
Full textIncludes bibliographical references (leaves 37-39). Also available in electronic version. Access restricted to campus users.
Mohammadipour, Maryam. "Intermittent demand forecasting with integer autoregressive moving average models." Thesis, Bucks New University, 2009. http://bucks.collections.crest.ac.uk/9586/.
Full textSCHER, Vinícius Teodoro. "Portmanteau testing inference in beta autoregressive moving average models." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/26891.
Full textApproved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-09-24T20:48:15Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Vinícius Teodoro Scher.pdf: 902853 bytes, checksum: 8ce4def07864471ce7717ce6d128d086 (MD5)
Made available in DSpace on 2018-09-24T20:48:15Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Vinícius Teodoro Scher.pdf: 902853 bytes, checksum: 8ce4def07864471ce7717ce6d128d086 (MD5) Previous issue date: 2017-08-02
CAPES
The class of beta autoregressive moving average (bARMA) models is useful for modeling time series data that assume values in the standard unit interval, such as rates and proportions. This thesis is composed of two main and independent chapters. In the first part, we consider portmanteau testing inference in the class of bARMA models. To that end, we use tests that have been developed for Gaussian models, such as the Ljung and Box, Monti, Dufour and Roy, Kwan and Sim, and Lin and McLeod tests. We also consider bootstrap variants of the Ljung and Box, Monti, Dufour and Roy, and Kwan and Sim tests. Moreover, we propose two new test statistics which, like the Monti statistic, are based on residual partial autocorrelations. Additionally, we present and discuss results from Monte Carlo simulations and an empirical application. The second part of the thesis focuses on the recursive nature of bARMA loglikelihood derivatives under moving average dynamics. We provide closed form expressions for the relevant derivatives by considering errors in the predictor scale.
A classe de modelos beta autorregressivos de médias móveis (bARMA) é útil para modelar dados que assumem valores no intervalo unitário padrão, como taxas e proporções. A presente dissertação tem como tema tal classe de models e é composta por dois capítulos principais e independentes. Na primeira parte, consideramos inferências baseadas em testes portmanteau na classe de modelos bARMA. Para tanto, utilizamos testes que foram desenvolvidos para modelos gaussianos, como os testes de Ljung e Box, Monti, Dufour e Roy, Kwan e Sim, e Lin e McLeod. Também consideramos variantes bootstrap dos testes de Ljung e Box, Monti, Dufour e Roy and Kwan e Sim. Adicionalmente, propomos duas novas estatísticas de testes que, tal qual a estatística de Monti, são baseadas em autocorrelações parciais dos resíduos. Apresentamos e discutimos resultados de simulações de Monte Carlo e uma aplicação empírica. A segunda parte da dissertação aborda a natureza recursiva das derivadas da função de log-verossimilhança bARMA sob dinâmica de médias móveis. Nós fornecemos expressões em forma fechada para as derivadas relevantes considerando erros na escala do preditor.
Leser, Christoph. "On stationary and nonstationary fatigue load modeling using autoregressive moving average (ARMA) models." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/29319.
Full textPh. D.
Hanh, Nguyen T. "Lasso for Autoregressive and Moving Average Coeffients via Residuals of Unobservable Time Series." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo154471227291601.
Full textBooks on the topic "Vector autoregressive moving average"
Biekpe, Nicholas. Financial forecasts: Bilinear autoregressive moving average models. [Belfast]: Accountingand Finance Division, School of Finance and Information, Queen's University of Belfast, 1993.
Find full textBurridge, P. Forecasting and signal extraction in autoregressive-moving average models. University of Warwick Department of Economics, 1986.
Find full textRathmanner, Steven Clifford. Image texture generation using autoregressive integrated moving average (ARIMA) models. 1987.
Find full textPeramalan jangka pendek harga sayuran di daerah konsumen; aplikasi model autoregressive integrated moving average (arima): Laporan penelitian. Bandung: Lembaga Penelitian, Universitas Padjadjaran, 2000.
Find full textMcCleary, Richard, David McDowall, and Bradley J. Bartos. ARIMA Algebra. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190661557.003.0002.
Full textMcCleary, Richard, David McDowall, and Bradley J. Bartos. Noise Modeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190661557.003.0003.
Full textGereziher, Hayelom Yrgaw, and Naser Yenus Nuru. Structural estimates of the South African sacrifice ratio. 12th ed. UNU-WIDER, 2021. http://dx.doi.org/10.35188/unu-wider/2021/946-4.
Full textMcCleary, Richard, David McDowall, and Bradley Bartos. Design and Analysis of Time Series Experiments. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190661557.001.0001.
Full textMcCleary, Richard, David McDowall, and Bradley J. Bartos. Intervention Modeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190661557.003.0005.
Full textMcDowall, David, Richard McCleary, and Bradley J. Bartos. Interrupted Time Series Analysis. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190943943.001.0001.
Full textBook chapters on the topic "Vector autoregressive moving average"
Lütkepohl, Helmut. "Vector Autoregressive Moving Average Processes." In Introduction to Multiple Time Series Analysis, 217–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-61695-2_6.
Full textLütkepohl, Helmut. "Vector Autoregressive Moving Average Processes." In New Introduction to Multiple Time Series Analysis, 419–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27752-1_11.
Full textLütkepohl, Helmut. "Vector Autoregressive Moving Average Processes." In Introduction to Multiple Time Series Analysis, 217–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02691-5_6.
Full textHosoya, Yuzo, Kosuke Oya, Taro Takimoto, and Ryo Kinoshita. "Inference Based on the Vector Autoregressive and Moving Average Model." In Characterizing Interdependencies of Multiple Time Series, 65–102. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6436-4_4.
Full textNeusser, Klaus. "Stationary Time Series Models: Vector Autoregressive Moving-Average Processes (VARMA Processes)." In Springer Texts in Business and Economics, 215–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32862-1_12.
Full textNeusser, Klaus. "Autoregressive Moving-Average Models." In Springer Texts in Business and Economics, 25–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32862-1_2.
Full textJones, Richard H. "Autoregressive Moving Average Errors." In Longitudinal Data with Serial Correlation, 120–38. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4489-4_6.
Full textTiao, George C. "Univariate Autoregressive Moving-Average Models." In Wiley Series in Probability and Statistics, 53–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118032978.ch3.
Full textHassler, Uwe. "Autoregressive Moving Average Processes (ARMA)." In Stochastic Processes and Calculus, 45–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23428-1_3.
Full textNerlove, Marc. "Autoregressive and Moving-Average Time-Series Processes." In The New Palgrave Dictionary of Economics, 608–15. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_623.
Full textConference papers on the topic "Vector autoregressive moving average"
Koulocheris, Dimitris V., and Vasilis K. Dertimanis. "Parametric Identification of Vehicle’s Vertical Dynamics Using Vector Autoregressive Moving Average Models." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95515.
Full textCaraka, Rezzy Eko, Sakhinah Abu Bakar, and Muhammad Tahmid. "Rainfall forecasting multi kernel support vector regression seasonal autoregressive integrated moving average (MKSVR-SARIMA)." In THE 2018 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2018 Postgraduate Colloquium. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5111221.
Full textCai, Xia. "Vector Autoregressive Weighting Reversion Strategy for Online Portfolio Selection." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/616.
Full textQiao, Zongliang, Jianxin Zhou, Fengqi Si, Zhigao Xu, and Lei Zhang. "Fault diagnosis of slurry pH data base on autoregressive integrated moving average and least squares support vector machines." In 2013 9th International Conference on Natural Computation (ICNC). IEEE, 2013. http://dx.doi.org/10.1109/icnc.2013.6817959.
Full textGholamhossein, Maryam, Ameneh Vatani, Najmeh Daroogheh, and K. Khorasani. "Prediction of the Jet Engine Performance Deterioration." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87936.
Full textVorwald, John, Alan Schwartz, Christopher Kent, and Phong Nguyen. "Forecasting Optimal Time-of-Arrival for Carrier Landings Using Prior Ship Motion." In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83218.
Full textLarbi, N., and J. Lardies. "Modal Parameters Estimation and Model Order Selection of a Structure Excited by a Random Force." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8095.
Full textI.A. Almghari, Khaled, and Adnan Elsibakhi. "Using Support Vector Machine "SVM" and Autoregressive Integrated Moving Average "ARIMA" to predict number of males and females who will be have Stroke at European Gaza Hospital." In المؤتمر العلمي الدولي العاشر. شبكة المؤتمرات العربية, 2019. http://dx.doi.org/10.24897/acn.64.68.405.
Full textHu, Zhen, and Sankaran Mahadevan. "Time-Dependent Reliability Analysis Using a New Multivariate Stochastic Load Model." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59185.
Full textJiang, P., I. Bychkov, J. Liu, and A. Hmelnov. "Predicting of air pollutant concentrations based on spatio-temporal attention convolutional LSTM networks." In 1st International Workshop on Advanced Information and Computation Technologies and Systems 2020. Crossref, 2021. http://dx.doi.org/10.47350/aicts.2020.09.
Full textReports on the topic "Vector autoregressive moving average"
Block, H. W., N. A. Langberg, and D. S. Stoffer. Bivariate Exponential and Geometric Autoregressive and Autoregressive Moving Average Models. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada185591.
Full textCarriere, R., and R. L. Moses. High Resolution Radar Target Modeling Using ARMA (Autoregressive Moving Average)Models. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada218212.
Full textSwope, Gerald W. Likelihood Ratio Test for the Equivalence of Two Autoregressive Moving-Average Time Series. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada370599.
Full text