Contents
Academic literature on the topic 'Vectorisation dynamique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vectorisation dynamique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vectorisation dynamique"
Bovet, Jeanne. "Du plurilinguisme comme fiction identitaire : à la rencontre de l’intime." 43, no. 1 (August 22, 2007): 43–62. http://dx.doi.org/10.7202/016297ar.
Full textDissertations / Theses on the topic "Vectorisation dynamique"
Raouche, Sana. "Dynamique d’organisation des micelles de caséine et de structuration des gels laitiers : vectorisation de minéraux." Montpellier 2, 2007. http://www.theses.fr/2007MON20226.
Full textIron deficiency is the most frequent nutritional disorder with serious consequences on physical and mental health at individual and nation levels. The aim of the PhD was to solve the technological problems involved in the iron fortification of the dairy products. The work firstly lay in the optimization of the carbonation process and thus in the use of milk as iron vehicle. The reversible acidification process by CO2 injection was studied and optimized. This process, without modifying milk ionic strength, brings elements of comprehension with regard to the dynamic of caseins micelles organization and dairy gel structuring. Micellar calcium phosphate (MCP) reorganization is governed by the carbonation pH, while caseins organization depends on the temperature of treatment. On opposite to enzymatic gelation, “acid” curd formation depends neither on the MCP salt form, nor on caseins organization within micelles in the range of carbonation parameters studied. Reconstituted skimmed milks fortified with FeCl2 and FeCl3 up to 20mmol Fe/kg and subjected or not to carbonation were studied within one day of storage at 30°C. 57Fe Mössbauer spectrometry shows that iron is involved in octahedral coordination with Pi and Po. The carbonation (i) improves the binding yield of iron to casein micelles (ii) the milk rennet clotting time, and (iii) accelerates Fe2+ oxidation. Bioavailability evaluation results are promising but have to be handled with caution
Bonhenry, Daniel. "Vectorisation de peptides et de fonctionnelles à visées thérapeutiques à travers des membranes biologiques." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0151/document.
Full textThe transfer of a lysine amino acid analog across phospholipid membrane models was investigated using molecular dynamics simulations. The evolution of the protonation state of this small peptide as a function of its position inside the membrane was studied by determining the local pKa by means of free energy calculations. Permeability and mean first time passage were evaluated and showed that the transferoccurs on the sub-ms time scale. Comparative studies were conducted to evaluate the changes in the local pKa arising from the differences in the phospholipid chemical structure. We compared hence the effect of the ether vs ester linkage of the lipid head group as well as the linear vs branched lipid tails. The study reveals that protonated lysine residues can be buried further inside ether lipid membrane than ester lipid membrane while branched lipids are found to stabilize less the charged form compared to their un-branched lipid chain counterparts. As a result, the permeability and the transfer rate across a membrane constituted by ether lipid was found to slower than in membranes constituted by esterified lipids. Finally, multidimensionnal free-energy surfaces for the transfer of the peptide in its both states, charged and neutral, were estimated. The coordination of the amine with the water molecules in its first hydration shell with the projection of the distance from the center of the membrane were used as reaction coordinates. New possibilities for the deprotonation reaction were found, the latter appearing closer to the headgroup region. This finding suggests that if the lysine analog were less coordinated by water molecule a deprotonation is possible in the headgroup region
Gallavardin, Thibault. "Chromophores à absorption multiphotonique pour l'imagerie et la photothérapie dynamique : synthèse, vectorisation, greffage sur nanoparticules d'or et propriétés spectroscopiques." Lyon, Ecole normale supérieure, 2010. http://www.theses.fr/2010ENSL0606.
Full textPhotodynamic therapy (PDT) is a therapeutic method which allows the specific targeting of lesions by the localized irradiation of photosensitizers. Biphotonic excitation should improve this method by increasing its penetration depth in biological tissues and restricting strictly its activity at the focal point of a laser. However, few biphotonic dyes has been optimized for biological applications because it are generally constituted by extended pi-conjugated chains which make them very hydrophobic. Nanometric drug delivery agents should be of great interest to tackle this problem thanks to their preferential accumulation in tumors. Gold nanoparticles are still more interesting because they possess intrinsic optical properties which may influence the efficiency of photosensitizers and imaging agents at their vicinity
Gallet, Camille. "Étude de transformations et d’optimisations de code parallèle statique ou dynamique pour architecture "many-core"." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066747/document.
Full textSince the 60s to the present, the evolution of supercomputers faced three revolutions : (i) the arrival of the transistors to replace triodes, (ii) the appearance of the vector calculations, and (iii) the clusters. These currently consist of standards processors that have benefited of increased computing power via an increase in the frequency, the proliferation of cores on the chip and expansion of computing units (SIMD instruction set). A recent example involving a large number of cores and vector units wide (512-bit) is the co-proceseur Intel Xeon Phi. To maximize computing performance on these chips by better exploiting these SIMD instructions, it is necessary to reorganize the body of the loop nests taking into account irregular aspects (control flow and data flow). To this end, this thesis proposes to extend the transformation named Deep Jam to extract the regularity of an irregular code and facilitate vectorization. This thesis presents our extension and application of a multi-material hydrodynamic mini-application, HydroMM. Thus, these studies show that it is possible to achieve a significant performance gain on uneven codes
Casciola, Maura. "Interaction of pulsed electric fields with membrane models for controlled release of drugs." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0017/document.
Full textElectroporation (EP) is a technique used to affect the integrity of plasma cell membranes and/or internal organelles, consequence of the application of an external pulsed electric field of sufficient energy content, tuned by its strength and duration. It is proven by extensive indirect experimental and in silico evidences that this phenomenon results in the permeabilization of membrane structures by aqueous pores, allowing the transport of poorly- or non-permeant molecules, e.g. salts, ions, genetic material, and any other small solutes present. Applications of the techniques range from electrochemoterapy DNA vaccination and gene regulation. The electric pulses used in EP are categorized in two main families: msPEF, the length of the pulses is in the µs- ms scale and the amplitude in the order of kV/cm, their effect takes place mainly at the plasma cell membrane of cells; nsPEFs, higher magnitude (MV/m) over ns time scale, they act are able to permeabilize internal organelles as well as the plasma cell membrane, presenting the advantage of avoiding undesired thermal effects. Molecular dynamics simulations allow the microscopic description, with atomic resolution, of the membrane structure and its interaction with the surrounding solution, providing a substantial support to experimental findings. A considerable amount of work have been devoted to describe some of the aspects of EP using MD, (e.g. the pore formation, its evolution and reseal, the role of water and of lipid headgroups, …) nevertheless outstanding questions remain unexplored: • How does the composition of the bilayer affect the EP threshold? • What are the morphology, size and conductance of pores formed? • What are the mechanisms and time scales of translocation of small molecules through the electropores? • Is there any difference when modeling nsPEFs and msPEFs? As part of the present work, using MD simulations and comparing our results to other findings from our group, we addressed some relevant questions. We quantified the EP threshold of libid bilayes for the increasing concentration of cholesterol (0, 20, 30, 50 mol %) when the two protocol to model nsPEFs and msPEFs are exploited. The results obtained applying the two approaches indicate that in both cases an increase in cholesterol concentration requires a higher transmembrane voltage to porate the membrane bilayer. We developed a procedure, mimicking msPEFs, to stabilize electropores under different transmembrane voltages in mechanical condition similar to experiments for a time long enough to determine the pore dimension, its conductance and selectivity to ion species. We employed the same method to investigate the transport of small charged molecules, used in drug delivery, comparing our findings with similar studies conducted under nsPEFs conditions with the attempt to rationalize the molecular uptake. Interestingly we found that that the dynamic of the transport process takes place in the same time scale (nanosecond) that for nsPEFs. Despite the fact that nsPEFs have the advantage to affect both cell membranes and internal organelles and to further reduce thermal effects, the possibility to exploit nsPEFs for drug delivery is an ongoing research since the ability to reliably deliver to biological loads these ultra-short intense pulses is not trivial. Particular attention must be paid in the design of microchambers to realize a broadband devices to transmit without attenuation and distortion nsPEF, which exhibit large spectral components, i.e. spanning from MHz up to GHz. An important part of the current work has been devoted to the design (with Finite Element Method) of an exposure device, based on microwave propagating systems, able to deliver pulses down to 1 ns with rise and fall time of 0.5 ns
Moulayes, El-Akra Naram. "Synthèse et étude de sondes photoactivables dérivées de la chlorophylle et de l'oestradiol pour la thérapie photodynamique." Toulouse 3, 2006. http://www.theses.fr/2006TOU30107.
Full textHallou, Nabil. "Runtime optimization of binary through vectorization transformations." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S120/document.
Full textIn many cases, applications are not optimized for the hardware on which they run. This is due to backward compatibility of ISA that guarantees the functionality but not the best exploitation of the hardware. Many reasons contribute to this unsatisfying situation such as legacy code, commercial code distributed in binary form, or deployment on compute farms. Our work focuses on maximizing the CPU efficiency for the SIMD extensions. The first contribution is a lightweight binary translation mechanism that does not include a vectorizer, but instead leverages what a static vectorizer previously did. We show that many loops compiled for x86 SSE can be dynamically converted to the more recent and more powerful AVX; as well as, how correctness is maintained with regards to challenges such as data dependencies and reductions. We obtain speedups in line with those of a native compiler targeting AVX. The second contribution is a runtime auto-vectorization of scalar loops. For this purpose, we use open source frame-works that we have tuned and integrated to (1) dynamically lift the x86 binary into the Intermediate Representation form of the LLVM compiler, (2) abstract hot loops in the polyhedral model, (3) use the power of this mathematical framework to vectorize them, and (4) finally compile them back into executable form using the LLVM Just-In-Time compiler. In most cases, the obtained speedups are close to the number of elements that can be simultaneously processed by the SIMD unit. The re-vectorizer and auto-vectorizer are implemented inside a dynamic optimization platform; it is completely transparent to the user, does not require any rewriting of the binaries, and operates during program execution
Kalathingal, Sajith. "Transforming TLP into DLP with the dynamic inter-thread vectorization architecture." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S133/document.
Full textMany modern microprocessors implement Simultaneous Multi-Threading (SMT) to improve the overall efficiency of superscalar CPU. SMT hides long latency operations by executing instructions from multiple threads simultaneously. SMT may execute threads of different processes, threads of the same processes or any combination of them. When the threads are from the same process, they often execute the same instructions with different data most of the time, especially in the case of Single-Program Multiple Data (SPMD) applications.Traditional SMT architecture exploit thread-level parallelism and with the use of SIMD execution units, they also support explicit data-level parallelism. SIMD execution is power efficient as the total number of instructions required to execute a complete program is significantly reduced. This instruction reduction is a factor of the width of SIMD execution units and the vectorization efficiency. Static vectorization efficiency depends on the programmer skill and the compiler. Often, the programs are not optimized for vectorization and hence it results in inefficient static vectorization by the compiler.In this thesis, we propose the Dynamic Inter-Thread vectorization Architecture (DITVA) to leverage the implicit data-level parallelism in SPMD applications by assembling dynamic vector instructions at runtime. DITVA optimizes an SIMD-enabled in-order SMT processor with inter-thread vectorization execution mode. When the threads are running in lockstep, similar instructions across threads are dynamically vectorized to form a SIMD instruction. The threads in the convergent paths share an instruction stream. When all the threads are in the convergent path, there is only a single stream of instructions. To optimize the performance in such cases, DITVA statically groups threads into fixed-size independently scheduled warps. DITVA leverages existing SIMD units and maintains binary compatibility with existing CPU architectures
Bouramtane, Soukaina. "Vectorisation cellulaire et adressage mitochondrial de photosensibilisateurs par des nanoparticules formées de xylane de bois de feuillus : nouvelle voie de valorisation d'hémicellulose pour une application en PDT." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0094.
Full textThe most used photosensitizers in photodynamic therapy (PDT) are porphyrins and their derivatives. However, these compounds often suffer from low solubility in physiological media and a lack of selectivity towards cancer cells which limits their clinical uses. One of the most promising strategies to overcome these problems is the use of nanoparticles as a vector of photosensitizers (PS). In this context, we have developed xylan-based nanoparticles for targeted delivery of porphyrins. Two types of nanoparticles have been studied: core-shell hybrid nanoparticles, and organic nanoparticles. In a first study, xylan-porphyrins were used to coat silica nanoparticles (SNPs). Indeed, the presence of glucuronic acid groups on xylan allows the formation of ionic bonds on the surface of the SNPs made cationic by ammonium salts. The biological evaluation of these nano-objects has shown that the combination of porphyrins with nanoparticles increases their photodynamic activity. In addition, mitochondrial targeting with triphenylphosphonium (TPP) increases significantly therapeutic efficacy of this PS. In a second approach, we have demonstrated that xylans-porphyrins can form nanoparticles fully organic by self-assembly in. Different nanoobjects with variable degree of substitution in porphyrins have been obtained and characterized. In parallel, 100% natural nanoparticles from chestnut xylan and natural chlorine, pheophorbide a were obtained and characterized. The biological evaluation of these nanoparticles is in progress and preliminary results are very encouraging
Maherani, Behnoush. "Encapsulation et vectorisation de molécules biofonctionnelles par des nanoliposomes : étude des propriétés physico-chimiques et des mécanismes de transfert à travers la membrane liposomale." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0098/document.
Full textFrom a molecular point of view, transport of small molecules across lipid bilayers is a fundamental and functional process. The release of efficacious dose of bioactive-entrapped in liposome depends on different parameters such as liposome permeability, bioactive structural properties and strength of liposome / bioactive interaction. The aim of this study was investigation the possible mechanisms of hydrophilic molecules transfer through liposomal bilayer. Calcein was chosen as model of hydrophilic drugs. In the first step, we optimized liposome formulation by considering its physicochemical properties (size, encapsulation efficiency, fluidity and etc.) by different methods such as DSC, TEM, SAXS, DLS, NMR and Spectroufluremtere. The reported results show that mean size, zeta potential, Tc, entrapment efficiency and fluidity were influenced by liposome lipid composition. Then, we tried to investigate hydrophilic bioactive agents? interaction with liposome by Raman Spectroscopy, Langmuir Balance and Differential Scanning Calorimetry. The obtained results indicated that calcein is being able to interact with the choline polar-head group of the lipids but probability it could intercalate into the acyl chains and disturb the chain order. Finally, the permeability of calcein across some liposome membranes was first evaluated on the basis of the first-order kinetics by spectrofluorometer. Second, the composition/fluidity effect of liposome as well as the incubation temperature/pH effect was investigated. Furthermore, a model simulating the conditions of digestion was developed to estimate the partition coefficient and to determine the mechanism transfer through liposomal bilayer by using AFM and STED methods. The results confirmed that calcein permeates slowly through liposomal membrane by diffusion without liposome disruption