Dissertations / Theses on the topic 'Vegetation mapping – Remote sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Vegetation mapping – Remote sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lymburner, Leo. "Mapping riparian vegetation functions using remote sensing and terrain analysis." Connect to thesis, 2005. http://repository.unimelb.edu.au/10187/2821.
Full textHeumann, Benjamin W. "Mapping vegetation phenology in the Sahel and Soudan, Africa, 1982 to 2005." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101139.
Full textMayr, Thomas. "The evaluation of PMI data for vegetation mapping in the Somerset Levels." Thesis, Cranfield University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281899.
Full textPalm, Fredrik. "Urban Vegetation Mapping Using Remote Sensing Techniques : A Comparison of Methods." Thesis, Stockholms universitet, Institutionen för naturgeografi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117108.
Full textMiglhorance, Edmar. "Mapping Wild Leek with UAV and Satellite Remote Sensing." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38865.
Full textHassan, Bukar. "Applications of remote sensing to arid grasslands : experimental and Nigerian case studies." Thesis, Bangor University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329703.
Full textKamalesh, Vidhya Lakshmi. "Vegetation parameter retrieval from hyperspectral, multiple view angle PROBA/CHRIS data." Thesis, Swansea University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678514.
Full textHurst, Rebecca Jeanne. "Use of satellite imagery to measure cover of prairie vegetation for the detection of change." Thesis, Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/hurst/HurstR0506.pdf.
Full textKoon, Michael. "A spatial and temporal analysis of conifers using remote sensing and GIS." Huntington, WV : [Marshall University Libraries], 2004. http://www.marshall.edu/etd/descript.asp?ref=401.
Full textTitle from document title page. Document formatted into pages; contains viii, 40 p. including illustrations. Includes abstract. Includes bibliographical references (p. 39-40).
Sulieman, Hussein Mohamed. "Mapping and Modelling of Vegetation Changes in the Southern Gadarif Region, Sudan, Using Remote Sensing." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1199964393472-79860.
Full textAleong-Mackay, Kathryn. "Landsat imagery and small-scale vegetation maps : data supplementation and verification : a case study of the Maralal area, northern Kenya." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66182.
Full textCherrington, Emil. "Towards ecologically consistent remote sensing mapping of tree communities in French Guiana:." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222860.
Full textMehner, Henny. "The potential of high spatial resolution remote sensing for mapping upland vegetation using advanced classification methods." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417524.
Full textJackson, Anthony Edward. "Mapping the effects of dry sclerophyll vegetation within the battlespace using the Leica ADS40 and GIS." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16189/.
Full textBispo, Rafael Carlos 1982. "Utilização de dados do sensor Modis no monitoramento e mapeamento da cultura de café." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256799.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola
Made available in DSpace on 2018-08-22T16:59:27Z (GMT). No. of bitstreams: 1 Bispo_RafaelCarlos_M.pdf: 6682271 bytes, checksum: 3672bc3cd1d328c4edf329eabbd31ffe (MD5) Previous issue date: 2013
Resumo: A produção de café esteve intimamente ligada ao desenvolvimento econômico do Brasil e ainda hoje o café é um importante produto da agricultura nacional. O Estado de Minas Gerais responde atualmente por 52% de toda a área de café do Brasil. Dessa forma, dada a importância da cafeicultura para a economia brasileira, é necessário desenvolver e melhorar as metodologias para seu monitoramento. Dados de sensoriamento remoto podem fornecer informações para o monitoramento e o mapeamento de café de maneira mais rápida e menos onerosa do que os métodos convencionais. Nesse contexto, os objetivos desta pesquisa foram identificar a bienalidade da cultura de café por meio de dados do sensor MODIS, juntamente com dados de estações meteorológicas, entre os anos de 2004 a 2012, e avaliar a eficácia das imagens-fração derivadas do sensor MODIS no mapeamento automático das áreas de café do município de Monte Santo de Minas/MG. Foi utilizada uma série temporal com 163 imagens da banda NIR do MODIS, produto MOD13Q1, para se extrair os valores de refletância dos pixels com pelo menos 80% de café. Dados diários de temperatura e precipitação foram agrupados de acordo com a resolução temporal das imagens (16 dias) para o cálculo do balanço hídrico. Para o mapeamento das áreas de café, foram utilizadas imagens do MODIS, bandas MIR, NIR e RED, dos períodos seco e chuvoso. Através do Modelo Linear de Mistura Espectral foram derivadas imagens-fração de solo, café e água/sombra. Estas imagens-fração serviram como dados de entrada para a classificação automática supervisionada com o método SVM - Support Vector Machine. Os resultados mostraram que para o monitoramento do café os dados de refletância dos períodos de colheita apresentaram maior correlação com a alternância da quantidade da produção. A partir da matriz de erro montada entre as classificações e as máscaras de referência, observou-se que os melhores resultados de Exatidão Global e Índice Kappa foram obtidos na classificação do período seco, sendo 67% e 0,41, respectivamente. Análises estatísticas de correlação e coeficiente de variação aplicadas sobre as imagens-fração de café permitiram melhor compreensão da complexidade do mapeamento do café
Abstract: Coffee production was closely linked to the economic development of Brazil and even today coffee is an important product of national agriculture. The State of Minas Gerais currently accounts for 52% of the whole area of coffee in Brazil. Thus, given the importance of the coffee crops to Brazilian economy, it is necessary to develop and improve methodologies for its monitoring. Then, remote sensing data can provide information for monitoring and mapping of coffee crops faster and cheaper than conventional methods. In this context, the objectives of this study were to identify the biennial yield of the coffee crop using data from MODIS and meteorological stations, over the period between 2004 and 2012, and assess the effectiveness of the fraction-images derived from MODIS in the automatic mapping of the areas of coffee in Monte Santo de Minas/MG. Were used a time series of 163 images of NIR band from MODIS, MOD13Q1 product, to extract the values of reflectance of pixels with at least 80% of coffee. Daily data of air temperature and precipitation were compiled to 16-day intervals to match the temporal resolution of MODIS imagery and to calculate the water balance. For coffee mapping, we used MODIS imagery, MIR, NIR and RED bands, of dry and rainy seasons. Through the Spectral Linear Mixing Model were derived fraction images of soil, coffee and water/shadow. These fraction images served as input data for supervised classification with SVM - Support Vector Machine approach. The results showed that for coffee monitoring the reflectance data of harvest period presented higher correlation with the alternation of coffee production. From the error matrix between the classifications and reference masks, it was observed that the best results of Overall Accuracy and Kappa Index were obtained in the classification of the dry season, with 67% and 0.41, respectively. Statistical analyses of correlation and coefficient of variation applied over images fraction of coffee allowed a better understanding about the complexity of mapping coffee
Mestrado
Planejamento e Desenvolvimento Rural Sustentável
Mestre em Engenharia Agrícola
Amundsen, Kelly J. "Mapping Riparian Vegetation in the Lower Colorado River Using Low Resolution Satellite Imagery." Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1292855785.
Full textWilliams, Danielle M. "Time series analysis of vegetation dynamics and burn scar mapping at Smoky Hill Air National Guard Range, Kansas using moderate resolution satellite imagery." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/34462.
Full textDepartment of Geography
J. M. Shawn Hutchinson
Military installations are important assets for the proper training of armed forces. To ensure the continued viability of training lands, management practices need to be implemented to sustain the necessary environmental conditions for safe and effective training. For this study two analyses were done, a contemporary burn history and a time series analysis. The study area is Smoky Hill Air National Guard Range (ANGR), an Impact Area (within the range) and a non-military Comparison Site. Landsat 5 TM / 7 ETM+ imagery was used to create an 11 year composite burn history image. NDVI values were derived from MODIS imagery for the time series analysis using the statistical package BFAST. Results from both studies were combined to make conclusions about training impacts at Smoky Hill ANGR and determine if BFAST is a viable environmental management tool. Based on this study the training within Smoky Hill ANGR does not seem to be having a negative effect on the overall vegetation condition. It was also discovered that BFAST was able to accurately detect known vegetation disturbances. BFAST is a viable environmental management tool if the limitations are understood.
Kaloki, McNichol Kitavi. "MAPPING VEGETATION STATUS AT LAKE NAKURU NATIONAL PARK AND SURROUNDS, KENYA." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1498015331943846.
Full textMcCall, David S. "Expanding the Application of Spectral Reflectance Measurement in Turfgrass Systems." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/77971.
Full textPh. D.
Rolfson, David, and University of Lethbridge Faculty of Arts and Science. "Collection of endmembers and their separability for spectral unmixing in rangeland applications." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, 2010, 2010. http://hdl.handle.net/10133/2527.
Full textxii, 93 leaves : ill. (some col.) ; 29 cm
Wang, Wei J. "Monitoring the impact of surface coal mining on vegetation in southwestern Indiana using remote sensing and GIS." Virtual Press, 2008. http://liblink.bsu.edu/uhtbin/catkey/1399198.
Full textDepartment of Geography
Yadav, Shweta. "SATELLITE-BASED APPROACH FOR MONITORING AND MAPPING THE SUBMERGED AQUATIC VEGETATION IN THE EUTROPHIC SHALLOW BASIN OF LAKE BIWA, JAPAN." Kyoto University, 2017. http://hdl.handle.net/2433/227617.
Full textSmit, Walter J. (Walter Johan). "A comparison of selected satellite remote sensing techniques for mapping fire scars in limestone fynbos." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52064.
Full textENGLISH ABSTRACT: There are many reasons to conserve fynbos. Not only does fynbos form part of the Cape floral kingdom, one of the richest floral kingdoms in the world, but the contribution that it makes to the regional economy through utilisation, education, recreation and tourist opportunities is immeasurable. Fire plays an integral role in fynbos ecosystems. According to Van Wilgen, Richardson & Seydack (1994: 322) " ... managing fynbos equates to managing fire". Therefore managers need accurate fire information about a fynbos area to manage it properly. This is where satellite remote sensing can provide the manager with useful information about the fire regime. In other words, satellite remote sensing can help a manager establish where and when an area has burnt. Using readily available satellite data, this study attempts to establish (through comparison) what techniques would be most suitable and affordable to compile a fire information database. Landsat Thematic Mapper data from 1990 - 1996 of the southwestern Cape was used and compared with existing fire records of the area. The results show that techniques such as supervised and unsupervised classification are reliable in identifying burnt areas, but a major drawback of these techniques is that they require a large amount of user input and knowledge. They are thus not regarded as simple or easily repeatable. - The' more simple techniques like image differencing and image ratioing were also found to be reliable in identifying burnt areas. These techniques require less user input and in some instances less data (image bands) to produce similar (or better) results than supervised and unsupervised classification techniques. The results show that differencing temporally different Images, obtained from applying principle components analysis, produces reliable results with very little confusion and little user input. Using such a technique could enable users to procure only two bands of Landsat data and still produce reliable fire information for managing a fynbos ecosystem.
AFRIKAANSE OPSOMMING: Daar is verskeie redes waarom fynbos bewaar moet word. Nie net vorm dit deel van een van die rykste blommeryke in die wereld nie, maar die bydrae wat dit tot die streeksekonomie maak, deur die benutting van veldblomme en die geleenthede wat dit bied vir toerisme en ontspanning, is enorm. Vuur speel 'n belangrike rol in die bestuur van fynbos ekosisteme. Soos beklemtoon deur Van Wilgen, Richardson & Seydack (1994: 322) se stelling: " ... managing fynbos equates to managing fire". Om hierdie rede is dit belangrik dat 'n bestuurder akkurate inligting oor die verspreiding van veldbrande moet he. Satellietafstandwaarneming kan hier 'n belangrike rol speel deur sulke inligting te verskaf Deur gebruik te maak van maklik bekombare satellietdata, poog hierdie studie om te bepaal (d.m.v. vergelyking) watter tegnieke die mees geskikte is in terme van bekostigbaarheid en gebruikersvriendelikheid. Landsat Thematic Mapper data van 1990 tot 1996 van die suidwes-Kaap is gebruik en vergelyk met bestaande branddata van die studiegebied. Daar is gevind dat tegnieke soos gerigte en nie-gerigte klassifikasie in staat is om gebrande dele betroubaar uit te ken. Hierdie tegnieke verg egter baie insette en kennis van die gebruiker en is ook nie maklik om jaar na jaar te herhaal nie. Daarom word hierdie tegnieke nie aanbeveel nie. Daar is gevind dat die eenvoudiger tegnieke soos veranderingsanalise ook gebrande dele betroubaar kon uitken. Hierdie tegnieke het die voordeel dat die gebruiker nie baie' kennis van die gebied hoef te he nie en ook nie so baie insette hoef te lewer nie. Hierdie tegnieke word bo gerigte en nie-gerigte klassifikasie aanbeveel. - Die resultate dui daarop dat betroubare resultate verkry kan word deur tempo reel verskillende beeIde, verkry deur hoofkomponentanalise, van mekaar af te trek. Hierdie tegniek vereis relatief min gebruikersinsette en daar kan selfs met slegs twee Landsat bande gewerk word. So 'n tegniek kan beslis 'n bekostigbare en effektiewe manier wees om nodige inligting vir die bestuur van 'n fynbos ekosisteem te bekom.
Hickson, Benjamin. "Using Classification and Regression Tree and Valley Bottom Modeling Techniques to Identify Riparian Vegetation in Pinal County, Arizona." The University of Arizona, 2015. http://hdl.handle.net/10150/626257.
Full textSulieman, Hussein Mohamed. "Mapping and Modelling of Vegetation Changes in the Southern Gadarif Region, Sudan, Using Remote Sensing: Land-Use Impacts on Biophysical Processes." Doctoral thesis, Dresden TUDpress, 2007. http://deposit.d-nb.de/cgi-bin/dokserv?id=3058481&prov=M&dok_var=1&dok_ext=htm.
Full textVargas, Juan Jose Quiros. "Multispectral aerial images to phenotype yield potential and tree inventory mapping: case studies in dry pea (Pisum sativum) and apple (Malus domestica) nursery." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-28022018-180550/.
Full textA coleta de dados de campo envolve processos de grande consumo em tempo e dinheiro, ademais de levar o risco de possíveis erros de medição. Com o avanço tecnológico nos últimos anos, surgiram ferramentas de sensoriamento remoto de baixo custo para facilitar procedimentos de medição em campo, sendo uma das técnicas mais conhecidas o uso de câmeras multiespectrales acopladas a um ARP. Essas ferramentas são complementadas pela implementação de procedimentos em programas SIG e de processamento de imagens, a partir dos quais são desenvolvidas metodologias que visam extrair valores alvo desde um determinado conjunto original de dados. Neste trabalho, foram utilizadas imagens multiespectrais no desenvolvimento de dois estudos de caso: (1) para estimativa de produtividade em parcelas para pesquisa de ervilha, e (2) para contagem de plantas em um viveiro de maçã plantado diretamente no solo; ambos os campos localizados no estado de Washington, EUA. No primeiro caso, foi criada uma metodologia confiável e replicável para estimativa de produtividade como técnica de fenotipagem de alto rendimento; enquanto no segundo caso, foi desenvolvido um algoritmo capaz de identificar o número de plantas de maçã com mais de 95% de exatidão. Em ambos os estudos, o sensoriamento remoto é usado como uma ferramenta eficiente e prática na melhora de operações de campo.
Mashimbye, Zama Eric. "Remote sensing-based identification and mapping of salinised irrigated land between Upington and Keimoes along the lower Orange River, South Africa." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1647.
Full textMazumdar, Deepayan Dutta. "Multiangular crop differentiation and LAI estimation using PROSAIL model inversion." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, c2011, 2011. http://hdl.handle.net/10133/3103.
Full textxiii, 161 leaves : ill., map ; 29 cm
Sulieman, Hussein Mohamed [Verfasser]. "Mapping and modelling of vegetation changes in the Southern Gadarif Region, Sudan, using remote sensing : land-use impacts on biophysical processes / Hussein Mohamed Sulieman." Dresden : TUDpress, 2008. http://d-nb.info/997493739/34.
Full textKidane, Dawit K. "Rule-based land cover classification model : expert system integration of image and non-image spatial data." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50445.
Full textENGLISH ABSTRACT: Remote sensing and image processing tools provide speedy and up-to-date information on land resources. Although remote sensing is the most effective means of land cover and land use mapping, it is not without limitations. The accuracy of image analysis depends on a number of factors, of which the image classifier used is probably the most significant. It is noted that there is no perfect classifier, but some robust classifiers achieve higher accuracy results than others. For certain land cover/uses, discrimination based only on spectral properties is extremely difficult and often produces poor results. The use of ancillary data can improve the classification process. Some classifiers incorporate ancillary data before or after the classification process, which limits the full utilization of the information contained in the ancillary data. Expert classification, on the other hand, makes better use of ancillary data by incorporating data directly into the classification process. In this study an expert classification model was developed based on spatial operations designed to identify a specific land cover/use, by integrating both spectral and available ancillary data. Ancillary data were derived either from the spectral channels or from other spatial data sources such as DEM (Digital Elevation Model) and topographical maps. The model was developed in ERDAS Imagine image-processing software, using the expert engineer as a final integrator of the different constituent spatial operations. An attempt was made to identify the Level I land cover classes in the South African National Land Cover classification scheme hierarchy. Rules were determined on the basis of expert knowledge or statistical calculations of mean and variance on training samples. Although rules could be determined by using statistical applications, such as the classification analysis regression tree (CART), the absence of adequate and accurate training data for all land cover classes and the fact that all land cover classes do not require the same predictor variables makes this option less desirable. The result of the accuracy assessment showed that the overall classification accuracy was 84.3% and kappa statistics 0.829. Although this level of accuracy might be suitable for most applications, the model is flexible enough to be improved further.
AFRIKAANSE OPSOMMING: Afstandswaameming-en beeldverwerkingstegnieke kan akkurate informasie oorbodemhulpbronne weergee. Alhoewel afstandswaameming die mees effektiewe manier van grondbedekking en grondgebruikkartering is, is dit nie sonder beperkinge nie. Die akkuraatheid van beeldverwerking is afhanklik van verskeie faktore, waarvan die beeld klassifiseerder wat gebruik word, waarskynlik die belangrikste faktor is. Dit is welbekend dat daar geen perfekte klassifiseerder is nie, alhoewel sekere kragtige klassifiseerders hoër akkuraatheid as ander behaal. Vir sekere grondbedekking en -gebruike is uitkenning gebaseer op spektrale eienskappe uiters moeilik en dikwels word swak resultate behaal. Die gebruik van aanvullende data, kan die klassifikasieproses verbeter. Sommige klassifiseerders inkorporeer aanvullende data voor of na die klassifikasieproses, wat die volle aanwending van die informasie in die aanvullende data beperk. Deskundige klassifikasie, aan die ander kant, maak beter gebruik van aanvullende data deurdat dit data direk in die klassifikasieproses inkorporeer. Tydens hierdie studie is 'n deskundige klassifikasiemodel ontwikkel gebaseer op ruimtelike verwerkings, wat ontwerp is om spesifieke grondbedekking en -gebruike te identifiseer. Laasgenoemde is behaal deur beide spektrale en beskikbare aanvullende data te integreer. Aanvullende data is afgelei van, óf spektrale eienskappe, óf ander ruimtelike bronne soos 'n DEM (Digitale Elevasie Model) en topografiese kaarte. Die model is ontwikkel in ERDAS Imagine beeldverwerking sagteware, waar die 'expert engineer' as finale integreerder van die verskillende samestellende ruimtelike verwerkings gebruik is. 'n Poging is aangewend om die Klas I grondbedekkingklasse, in die Suid-Afrikaanse Nasionale Grondbedekking klassifikasiesisteem te identifiseer. Reëls is vasgestel aan die hand van deskundige begrippe of eenvoudige statistiese berekeninge van die gemiddelde en variansie van opleidingsdata. Alhoewel reëls met behulp van statistiese toepassings, soos die 'classification analysis regression tree (CART)' vasgestel kon word, maak die afwesigheid van genoegsame en akkurate opleidingsdata vir al die grondbedekkingsklasse hierdie opsie minder aantreklik. Bykomend tot laasgenoemde, vereis alle grondbedekkingsklasse nie dieselfde voorspellingsveranderlikes nie. Die resultaat van hierdie akkuraatheidsskatting toon dat die algehele klassifikasie-akkuraatheid 84.3% was en die kappa statistieke 0.829. Alhoewel hierdie vlak van akkuraatheid vir die meeste toepassings geskik is, is die model aanpasbaar genoeg om verder te verbeter.
Thapa, Vivek. "Analysis of the One-Horned Rhinoceros (Rhinoceros Unicornis) Habitat in the Royal Chitwan National Park, Nepal." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4926/.
Full textNewton, Ian Paul. "Recent transformations in West-Coast Renosterveld: patterns, processes and ecological significance." Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8396_1263521893.
Full textThis 
thesis 
examines 
the 
changes 
that 
have 
occurred 
within 
West-Coast Renosterveld within 
the 
last 350 years, and assesses 
the viability of 
the 
remaining fragments.
Young, Andrea Ferraz. "Aplicação de indices relativos de vegetação e temperatura para estudo das mudanças do uso e ocupação do solo : estudo de caso de Curitiba (PR), 1986 a 2002." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/257217.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola
Made available in DSpace on 2018-08-04T21:25:50Z (GMT). No. of bitstreams: 1 Young_AndreaFerraz_D.pdf: 5424705 bytes, checksum: b08f7c9f1dc2da967b94bfb55bad34dd (MD5) Previous issue date: 2005
Resumo: O objetivo principal do trabalho foi o de criar índices relativos de vegetação e temperatura da superfície, sensíveis a mudanças, que sintetizassem as alterações ocorridas nos padrões da cobertura vegetal e urbanização, em função das transformações evidenciadas no tecido urbano do município de Curitiba (PR). Baseando-se na análise dos resultados obtidos através do cálculo desses índices, procedeu-se a análise conjunta com os dados de população. Portanto, esse processo envolveu o estudo dos padrões de uso do solo, das interações entre as diferentes classes inseridas na paisagem e de como esses padrões e interações mudam ao longo do tempo. Assim sendo, três regiões de Curitiba foram selecionadas por meio da definição de critérios específicos e comparadas em termos de mudanças de padrões e tendências.Imagens Landsat TM e ETM+ foram utilizadas para identificar diferentes padrões de cobertura da terra fornecendo uma classificação do uso do solo. Para isolar as áreas com vegetação das superfícies urbanas construídas, o Índice de Vegetação por Diferença Normalizada (NDVI) foi utilizado como um indicador da presença de vegetação, a partir do qual o índice de vegetação relativo (NDVI-R) foi criado. Ao mesmo tempo, valores das bandas termais do satélite Landsat (bandas 6) foram extraídos como indicadores das diferenças termais entre usos do solo, servido de base para a proposição de um índice de temperatura relativo (DN-R), que foi comparado com o índice de vegetação relativo (NDVI-R). Um banco de dados identificando as principais características da população de cada região foi construído, servindo de suporte para a análise entre as variáveis, fornecendo cenários da realidade e subseqüentes conflitos causados pelas mudanças na paisagem. Através da aplicação dessas técnicas foi possível verificar a importância do tamanho e distribuição das áreas de vegetação na caracterização das áreas urbanizadas e semi-urbanizadas. Esta abordagem comparativa demonstrou como a paisagem pode ser derivada do imageamento por satélite fornecendo uma representação das mudanças ocorridas na estrutura espacial urbana. Além disso, demonstrou como o rápido crescimento populacional e o desenvolvimento urbano tendem a competir com condições ambientais mais sensíveis, tais como parques e áreas de proteção ambiental. Todo o processo envolveu mudanças na composição, estrutura e função da paisagem, que ocorreu sobre um pano de fundo de manchas naturais remanescentes alteradas pelas transformações da morfologia urbana. A maioria dessas alterações evidencia mudanças no micro clima. Certamente, a análise das distribuições espaciais forneceu novos esclarecimentos sobre a estrutura da paisagem, que poderão ser explorados no planejamento do uso do solo. Esta é uma abordagem que fornece uma nova direção e oportunidade de pesquisa no que se refere a questões ambientais relativas ao processo de tomada de decisão, endereçada a objetivos ambientais com vistas ao desenvolvimento sócio-econômico, especialmente porque ressalta-se o fato de que não apenas os atributos físicos dos elementos da paisagem, mas também suas configurações espaciais são importantes determinantes na dinâmica do uso do solo
Abstract: The aim of this study was to propose relative vegetation and temperature indices which could reflect the changes occurred in the vegetation cover and urbanization patterns caused by transformations along the city of Curitiba (PR). Based on the results of these analysis it was achieved the analysis of the mainly population characteristics. Thus, it involved the study of land use patterns, the interactions between them within the landscape, and how these patterns and interactions change over the time. Therefore, three areas of Curitiba were selected by specific criteria and were studied and compared in terms of changing patterns and tendencies. Landsat TM and ETM+ images were used to identify different patterns of land cover providing a land use classification. In order to separate vegetated from built-up surfaces, the Normalized Difference Vegetation Index (NDVI) was used as an indicator of vegetation presence, from of what the relative vegetation index (NDVI-R) was created. At the same time, values from the thermal band (band 6) of Landsat satellite were extracted as an indicator of thermal differences between land uses, based on that a relative temperature index (DN-R) was proposed and compared with the relative vegetation index (NDVI-R). A database was built identifying the main characteristics of population of each area, serving as support for an analysis between variables, providing scenarios for subsequent conflicts caused by landscape changes. By applying these techniques it was possible to verify the importance of the size and distribution of the vegetated areas in characterizing urbanized and semi urbanized areas. This comparative approach has demonstrated how landscape can be derived from satellite imagery providing a representation of changes in the urban spatial structure. Besides, it has showed how the rapid population growth and urban development trends along the city compete with sensitive environmental conditions in areas such as municipal parks and conservation areas. Every process involved changes in landscape composition, structure and function, which occurred on a backdrop of natural remaining patches altered by transformations of urban morphology. Most of these changes shows up micro climate changes. Certainly, the analysis of spatial distributions provided new insights about the landscape structure, which could be exploited in the land use planning. This is an approach that provides a new direction and research opportunity in terms of environmental issues on the agenda of policy makers, addressed towards environmental goals for social-economic development proposals specially because it highlighted the fact that not only the physical attributes of the landscape elements but also their spatial configuration were important determinants of land use dynamics
Doutorado
Planejamento e Desenvolvimento Rural Sustentável
Doutor em Engenharia Agrícola
Schwieder, Marcel. "Landsat derived land surface phenology metrics for the characterization of natural vegetation in the Brazilian savanna." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19368.
Full textThe Brazilian savanna, known as the Cerrado, covers around 24% of Brazil. It is characterized by a unique biodiversity and a strong gradient in vegetation structure. Land-use changes have led to almost half of the Cerrado being converted into cultivated land. The mapping of ecological processes is, therefore, an important prerequisite for supporting nature conservation policies based on spatially explicit information and for deepening our understanding of ecosystem dynamics. New sensors, freely available data, and advances in data processing allow the analysis of large data sets and thus for the first time to capture seasonal vegetation dynamics over large extents with a high spatial detail. This thesis aimed to analyze the benefits of Landsat based land surface phenological (LSP) metrics, for the characterization of Cerrado vegetation, regarding its structural and phenological diversity, and to assess their relation to above ground carbon. The results revealed that LSP metrics enable to capture the seasonal dynamics of photosynthetically active vegetation and are beneficial for the mapping of vegetation physiognomies. However, the results also revealed limitations of hard classification approaches for mapping vegetation gradients in complex ecosystems. Based on similarities in LSP metrics, which were for the first time derived for the whole extent of the Cerrado, LSP archetypes were proposed, which revealed the spatial patterns of LSP diversity at a 30 m spatial resolution and offer potential to enhance current mapping concepts. Further, LSP metrics facilitated the spatially explicit quantification of AGC in three study areas in the central Cerrado and should thus be considered as a valuable variable for future carbon estimations. Overall, the insights highlight that Landsat based LSP metrics are beneficial for ecosystem monitoring approaches, which are crucial to design sustainable land management strategies that maintain key ecosystem functions and services.
Tamstorf, Mikkel P. "Satellitbaseret vegetationskortlægning i Vestgrønland." [København] : Miljø- og Energiministeriet, Danmarks Miljøundersøgelser, 2001. http://www.dmu.dk/1_viden/2_Publikationer/3_Ovrige/rapporter/PHD_mpt.pdf.
Full textDeblauwe, Vincent. "Modulation des structures de végétation auto-organisées en milieu aride." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210121.
Full textL’auto-organisation de la végétation fut particulièrement bien étudiée dans le cas des structures périodiques connues dès les années '50 sous le nom de brousses tigrées. Depuis les années '90, un pas en avant dans la compréhension de ce phénomène fut accompli grâce au développement de modèles mécanistes de la dynamique de la phytomasse et des ressources, émanant du cadre théorique de l'auto-organisation des structures dissipatives. Ces modèles se rejoignent sur un ensemble de prédictions robustes et vérifiables concernant la formation, le maintien et la modulation par l'environnement des structures macroscopiques. Durant le même laps de temps, notre niveau d’analyse a connu une expansion sans précédent, à la fois dans le temps et dans l’espace, grâce au développement de l’imagerie satellitaire et des outils d’analyse spatiale. Nous nous trouvons dès lors à un moment charnière pour la validation macroscopique des théories d’auto-organisation des végétations en milieu aride.
Le présent travail s'articule en quatre études, chacune traitant d'une prédiction différente. Nous avons mis en évidence les principales variables responsables de la formation des structures et de leur modulation en termes d’échelle et de géométrie. Enfin avons démontré la mobilité des structures sous l’effet d’une pente de terrain.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Strawbridge, Fiona. "Passive microwave remote sensing of vegetation." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242948.
Full textCazals, Cécile. "Apport des données Sentinel-1 pour la cartographie des milieux humides." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1226/document.
Full textWetlands are threatened by climate change and the anthropization of natural environments. Satellite remote sensing is useful for environmental monitoring at large areas. However, when it comes to the study of hydrological dynamics, a significant temporal resolution is essential. The latter is difficult to reach with optical satellite imagery because of the cloud cover that masks the ground. Radar sensors are well suited to the characterization of hydrological dynamics thanks to the sensitivity of their measurements in the presence of water, whatever the vegetation in place. As a result, all Synthetic Aperture Radar (SAR) acquisitions are available, both day and night, regardless of cloud cover.Satellite radar remote sensing has gone through a revolution with the launch of the Sentinel-1A satellite, followed by its twins Sentinel-1B by the European Space Agency as part of the Copernicus program in 2014. These sensors acquire C-band data (λ = 5.6 cm) on a regular basis on Europe and their distribution is free for all users. Their temporal frequency initially of 12 days has decreased to 6 days from the end of 2016. This work aims at evaluating the potential of these data with high temporal resolution for the monitoring of water bodies and wetlands.The first part of this thesis focuses on water bodies mapping. We found confusion in the C-band radar response between water surfaces and that of some bare soils. We showed that the winter period is the least ambiguous and that the VH polarization is the most suitable for the mapping of water surfaces. Four methods of water detection have been compared. It appears that the use of unsupervised methods without a priori data is not conceivable and that the methods taking into account the spatial neighborhood give better results. Temporal filtering has been developed and has improved detection and avoided confusion between bare soil and permanent water surfaces. Water surfaces of more than 0.5 ha are more than 80% likely to be detected.A second part of this thesis is devoted to the monitoring of wet grasslands by radar remote sensing. The use of fully polarimetric data has shown that the VV/VH partial polarimetry configuration available on the Sentinel-1 sensor is able to characterize the prairial floods with or without vegetation. A method taking into account the temporal neighborhood allowed to process a series of 14 Sentinel-1 images to obtain 14 flood maps. The accuracy of floods maps at the intra-parcel scale has been estimated, it appears that if the precision is relatively good (80%), but the recall is rather low (40%). This method allow to establish intra- and inter-annual monitoring.This thesis has shown the potential of high temporal resolution radar images for the mapping of the water surfaces and for the monitoring of a wetland meadow
Akkok, Inci. "Geological Mapping Using Remote Sensing Technologies." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610626/index.pdf.
Full textYetkin, Erdem. "Alteration mapping by remote mapping by remote sensing Application to Hasandağ- Melendiz volcanic complex /." Ankara : METU, 2003. http://etd.lib.metu.edu.tr/upload/1090927/index.pdf.
Full textSheffield, Kathryn Jane, and kathryn sheffield@dpi vic gov au. "Multi-spectral remote sensing of native vegetation condition." RMIT University. Mathematical and Geospatial Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091110.112816.
Full textAl, Sghair Fathi Goma. "Remote sensing and GIS for wetland vegetation study." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4581/.
Full textDandois, Jonathan P. "Remote sensing of vegetation structure using computer vision." Thesis, University of Maryland, Baltimore County, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3637314.
Full textHigh-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology—allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
Beckett, Heath. "Remote sensing of water stress in fynbos vegetation." Bachelor's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/25902.
Full textFlaherty, Silvia Susana. "Red squirrel habitat mapping using remote sensing." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7607.
Full textMcGonigle, Chris. "Mapping benthic habitat using acoustic remote sensing." Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551582.
Full textTooke, Thoreau Rory. "Remote sensing applications for vegetation management in urban environments." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/11502.
Full textStephen, Haroon. "Microwave Remote Sensing of Saharan Ergs and Amazon Vegetation." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1461.pdf.
Full textTyoda, Zipho. "Landslide susceptibility mapping : remote sensing and GIS approach." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/79856.
Full textLandslide susceptibility maps are important for development planning and disaster management. The current synthesis of landslide susceptibility maps largely applies GIS and remote sensing techniques. One of the most critical stages on landslide susceptibility mapping is the selection of landslide causative factors and weighting of the selected causative factors, in accordance to their influence to slope instability. GIS is ideal when deriving static factors i.e. slope and aspect and most importantly in the synthesis of landslide susceptibility maps. The integration of landslide causative thematic maps requires the selection of the weighting method; in order to weight the causative thematic maps in accordance to their influence to slope instability. Landslide susceptibility mapping is based on the assumption that future landslides will occur under similar circumstances as historic landslides. The weight of evidence method is ideal for landslide susceptibility mapping, as it calculates the weights of the causative thematic maps using known landslides points. This method was applied in an area within the Western Cape province of South Africa, the area is known to be highly susceptible to landslide occurrences. A prediction rate of 80.37% was achieved. The map combination approach was also applied and achieved a prediction rate of 50.98%. Satellite remote sensing techniques can be used to derive the thematic information needed to synthesize landslide susceptibility maps and to monitor the variable parameters influencing landslide susceptibility. Satellite remote sensing techniques can contribute to landslide investigation at three distinct phases namely: (1) detection and classification of landslides (2) monitoring landslide movement and identification of conditions leading up to an event (3) analysis and prediction of slope failures. Various sources of remote sensing data can contribute to these phases. Although the detection and classification of landslides through the remote sensing techniques is important to define landslide controlling parameters, the ideal is to use remote sensing data for monitoring of areas susceptible to landslide occurrence in an effort to provide an early warning. In this regard, optical remote sensing data was used successfully to monitor the variable conditions (vegetation health and productivity) that make an area susceptible to landslide occurrence.
Jones, Gwawr Angharad. "Coastal habitat mapping and monitoring utilising remote sensing." Thesis, Aberystwyth University, 2017. http://hdl.handle.net/2160/cfb598d7-9bb7-44a7-8725-bcf13d81657b.
Full text