Academic literature on the topic 'Vehicle Navigation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vehicle Navigation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vehicle Navigation"
Moussa, Mohamed, Shady Zahran, Mostafa Mostafa, Adel Moussa, Naser El-Sheimy, and Mohamed Elhabiby. "Optical and Mass Flow Sensors for Aiding Vehicle Navigation in GNSS Denied Environment." Sensors 20, no. 22 (November 17, 2020): 6567. http://dx.doi.org/10.3390/s20226567.
Full textRamesh, R., V. Bala Naga Jyothi, N. Vedachalam, G. A. Ramadass, and M. A. Atmanand. "Development and Performance Validation of a Navigation System for an Underwater Vehicle." Journal of Navigation 69, no. 5 (January 26, 2016): 1097–113. http://dx.doi.org/10.1017/s0373463315001058.
Full textLi, Ningbo, Yanbin Gao, Ye Wang, Zhejun Liu, Lianwu Guan, and Xin Liu. "A Low-Cost Underground Garage Navigation Switching Algorithm Based on Kalman Filtering." Sensors 19, no. 8 (April 18, 2019): 1861. http://dx.doi.org/10.3390/s19081861.
Full textKaradeniz Kartal, Seda, M. Kemal Leblebicioglu, and Emre Ege. "Experimental test of the acoustic-based navigation and system identification of an unmanned underwater survey vehicle (SAGA)." Transactions of the Institute of Measurement and Control 40, no. 8 (May 2018): 2476–87. http://dx.doi.org/10.1177/0142331218756727.
Full textKaradeniz Kartal, Seda, M. Kemal Leblebicioglu, and Emre Ege. "Experimental test of vision-based navigation and system identification of an unmanned underwater survey vehicle (SAGA) for the yaw motion." Transactions of the Institute of Measurement and Control 41, no. 8 (January 31, 2019): 2160–70. http://dx.doi.org/10.1177/0142331219826524.
Full textJuhari, Khairul Anuar, Mohd Rizal Salleh, Mohd Nazrin Muhamad, and Teruaki Ito. "208 NAVIGATION SYSTEM FOR UNMANNED GROUND VEHICLE." Proceedings of Manufacturing Systems Division Conference 2013 (2013): 53–54. http://dx.doi.org/10.1299/jsmemsd.2013.53.
Full textIslam, Mhafuzul, Mashrur Chowdhury, Hongda Li, and Hongxin Hu. "Vision-Based Navigation of Autonomous Vehicles in Roadway Environments with Unexpected Hazards." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 12 (July 31, 2019): 494–507. http://dx.doi.org/10.1177/0361198119855606.
Full textElsheikh, Mohamed, Walid Abdelfatah, Aboelmagd Nourledin, Umar Iqbal, and Michael Korenberg. "Low-Cost Real-Time PPP/INS Integration for Automated Land Vehicles." Sensors 19, no. 22 (November 9, 2019): 4896. http://dx.doi.org/10.3390/s19224896.
Full textMiller, Paul A., Jay A. Farrell, Yuanyuan Zhao, and Vladimir Djapic. "Autonomous Underwater Vehicle Navigation." IEEE Journal of Oceanic Engineering 35, no. 3 (July 2010): 663–78. http://dx.doi.org/10.1109/joe.2010.2052691.
Full textCampbell, N. W., M. R. Pout, M. D. J. Priestly, E. L. Dagless, and B. T. Thomas. "Autonomous road vehicle navigation." Engineering Applications of Artificial Intelligence 7, no. 2 (April 1994): 177–90. http://dx.doi.org/10.1016/0952-1976(94)90022-1.
Full textDissertations / Theses on the topic "Vehicle Navigation"
Dryer, Jay E. (Jay Edward) 1970. "Robust autonomous vehicle navigation." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/91363.
Full textKaparias, Ioannis. "Reliable dynamic in-vehicle navigation." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498652.
Full textFriedman, Andrew D. "NAVIGATION AUTONOMY FOR UNMANNED SURFACE VEHICLE." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192451.
Full textMeira, Guilherme Tebaldi. "Stereo Vision-based Autonomous Vehicle Navigation." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/344.
Full textMoore, Christopher, Dylan Crocker, Garret Coffman, and Bryce Nguyen. "Telemetry Network for Ground Vehicle Navigation." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595750.
Full textThis paper describes a short distance telemetry network which measures and relays time, space, and position information among a group of ground vehicles. The goal is to allow a lead vehicle to be under human control, or perhaps controlled using advanced autonomous path planning and navigation tools. The telemetry network will then allow a series of inexpensive, unmanned vehicles to follow the lead vehicle at a safe distance. Ultrasonic and infrared signals will be relayed between the vehicles, to allow the following vehicles to locate their position, and track the lead vehicle.
Smith, Robert. "Terrain-aided navigation of an underwater vehicle." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244626.
Full textHu, Jun. "Short-term congestion prediction for vehicle navigation." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535007.
Full textForbes, Nicholas Lloyd. "Behavioural adaptation to in-vehicle navigation systems." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10798/.
Full textPeterson, Kevin Robert. "Visual navigation for an autonomous mobile vehicle." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24105.
Full textImage understanding for a mobile robotic vehicle is an important and complex task for ensuring safe navigation and extended autonomous operations. The goal of this work is to implement a working vision-based navigation control mechanism within a known environment onboard the autonomous mobile vehicle Yamabico-II. Although installing a working hardware system was not accomplished, the image processing, model description, pattern matching, and positional correction methods have all been implemented and tested on a graphics workstation. A novel approach for straight-edge feature extraction based upon a least squares fitting of edge-related pixels is presented and implemented for the image processing task. A simple method for determining the camera's location and orientation (pose) follows by matching the vertical extracted edges from an image with the linear features of a two-dimensional view of the modeled environment based upon an estimated pose of the robot. Image processing, construction of the two-dimensional view of the model, and pose determination are conducted sequentially in less than one minute for a 646 x 486 pixel image on a 35 MHz processor. The pose determination results have been tested to be accurate to within a few inches for translational error and within one degree rotational error.
Visser, Wynand. "Automation and navigation of a terrestrial vehicle." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20263.
Full textENGLISH ABSTRACT: This thesis presents the design and implementation of an autonomous navigational system and the automation of a practical demonstrator vehicle. It validates the proposed navigation architecture using simple functional navigational modules on the said vehicle. The proposed navigation architecture is a hierarchical structure, with a mission planner at the top, followed by the route planner, the path planner and a vehicle controller with the vehicle hardware at the base. A vehicle state estimator and mapping module runs in parallel to provide feedback data. The controls of an all terrain vehicle are electrically actuated and equipped with feedback sensors to form a complete drive-by-wire solution. A steering controller and velocity control state machine are designed and implemented on an existing on-board controller that includes a six degrees-of-freedom kinematic state estimator. A lidar scanner detects obstacles. The lidar data is mapped in real time to a local three-dimensional occupancy grid using a Bayesian update process. Each lidar beam is projected within the occupancy grid and the occupancy state of a ected cells is updated. A lidar simulation environment is created to test the mapping module before practical implementation. For planning purposes, the three-dimensional occupancy grid is converted to a two-dimensional drivability map. The path planner is an adapted rapidly exploring random tree (RRT) planner, that assumes Dubins car kinematics for the vehicle. The path planner optimises a cost function based on path length and a risk factor that is derived from the drivability map. A simple mission planner that accepts user-de ned waypoints as objectives is implemented. Practical tests veri ed the potential of the navigational structure implemented in this thesis.
AFRIKAANSE OPSOMMING: In hierdie tesis word die ontwerp en implementering van 'n outonome navigasiestelsel weergegee, asook die outomatisering van 'n praktiese demonstrasievoertuig. Dit regverdig die voorgestelde navigasie-argitektuur op die bogenoemde voertuig deur gebruik te maak van eenvoudige, funksionele navigasie-modules. Die voorgestelde navigasie-argitektuur is 'n hi erargiese struktuur, met die missie-beplanner aan die bo-punt, gevolg deur die roetebeplanner, die padbeplanner en voertuigbeheerder, met die voertuighardeware as basisvlak. 'n Voertuigtoestandsafskatter en karteringsmodule loop in parallel om terugvoer te voorsien. Die kontroles van 'n vierwiel-motor ets is elektries geaktueer en met terugvoersensors toegerus om volledig rekenaarbeheerd te wees. 'n Stuur-beheerder en 'n snelheid-toestandmasjien is ontwerp en ge mplementeer op 'n bestaande aanboordverwerker wat 'n kinematiese toestandsafskatter in ses grade van vryheid insluit. 'n Lidar-skandeerder registreer hindernisse. Die lidar-data word in re ele tyd na 'n lokale drie-dimensionele besettingsrooster geprojekteer deur middel van 'n Bayesiese opdateringsproses. Elke lidar-straal word in die besettingsrooster geprojekteer en die besettingstoestand van betrokke selle word opdateer. 'n Lidar-simulasie-omgewing is geskep om die karteringsmodule te toets voor dit ge mplementeer word. Die drie-dimensionele besettingsrooster word na 'n twee-dimensionele rybaarheidskaart verwerk vir beplanningsdoeleindes. Die padbeplanner is 'n aangepaste spoedig-ontdekkende-lukrake-boom en neem Dubinskar kinematika vir die voertuig aan. Die padbeplanner optimeer 'n koste-funksie, gebaseer op padlengte en 'n risiko-faktor, wat vanaf die rybaarheidskaart verkry word. 'n Eenvoudige missie-beplanner, wat via-punte as doelstellings neem, is ge mplementeer. Praktiese toetsritte veri eer die potensiaal van die navigasiestruktuur, soos hier beskryf.
Books on the topic "Vehicle Navigation"
Diamadopoulos. Lane support algorithms for autonomous vehicle navigation. Manchester: UMIST, 1996.
Find full textDriankov, Dimiter, and Alessandro Saffiotti, eds. Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1835-2.
Full textPeterson, Kevin Robert. Visual navigation for an autonomous mobile vehicle. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textLi, Xuefeng, and Chaobing Li. Navigation and Guidance of Orbital Transfer Vehicle. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6334-3.
Full textVehicle Navigation and Information Systems Conference (2nd 1991 Dearborn, Mich.). VNIS'91: Vehicle navigation & information systems : conference proceedings. Warrendale: Society of Automotive Engineers, 1991.
Find full textSchiffbauer, William H. A locomotion emulator for testing mine vehicle navigation. Washington: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Find full textKayirhan, Alp. Sonar based navigation of an autonomous underwater vehicle. Monterey, Calif: Naval Postgraduate School, 1994.
Find full textEngineers, Society of Automotive, and Vehicular Technology Society, eds. Vehicle Navigation & Information Systems Conference proceedings: VNIS '91. Warrendale, PA: Society of Automotive Engineers, 1991.
Find full textMcKeon, James Bernard. Incorporation of GPS/INS small autonomous underwater vehicle navigation. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textBook chapters on the topic "Vehicle Navigation"
Hofmann-Wellenhof, Bernhard, Klaus Legat, and Manfred Wieser. "Vehicle and traffic management." In Navigation, 337–59. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6078-7_15.
Full textNg, Tian Seng. "Vehicle Navigation Computing." In Robotic Vehicles: Systems and Technology, 43–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6687-9_6.
Full textRaspopov, Vladimir Y., Alexander V. Nebylov, Sukrit Sharan, and Bijay Agarwal. "Unmanned Aerospace Vehicle Navigation." In Aerospace Navigation Systems, 321–60. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119163060.ch10.
Full textLeonard, John J., and Alexander Bahr. "Autonomous Underwater Vehicle Navigation." In Springer Handbook of Ocean Engineering, 341–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16649-0_14.
Full textDickmanns, Ernst-Dieter. "Vehicle Guidance by Computer Vision." In High Precision Navigation, 86–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_5.
Full textSharp, Ian, and Kegen Yu. "NLOS Mitigation for Vehicle Tracking." In Navigation: Science and Technology, 505–30. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8791-2_16.
Full textCheng, Hong. "Vehicle Navigation Using Global Views." In Autonomous Intelligent Vehicles, 109–21. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2280-7_8.
Full textLanger, Dirk, and Charles E. Thorpe. "Sonar-Based Outdoor Vehicle Navigation." In Intelligent Unmanned Ground Vehicles, 159–85. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_9.
Full textNilsson, John-Olof, Dave Zachariah, and Isaac Skog. "Global Navigation Satellite Systems: An Enabler for In-Vehicle Navigation." In Handbook of Intelligent Vehicles, 311–42. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-085-4_13.
Full textZhang, Xiubin, and Muhammad Mansoor Khan. "Intelligent Vehicle Navigation and Traffic System." In Principles of Intelligent Automobiles, 175–209. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2484-0_5.
Full textConference papers on the topic "Vehicle Navigation"
Avram, Camelia, Adina Astilean, and Dan Radu. "Vehicle Navigation System." In 26th Conference on Modelling and Simulation. ECMS, 2012. http://dx.doi.org/10.7148/2012-0236-0240.
Full textSha, Wenjie, Daehan Kwak, Badri Nath, and Liviu Iftode. "Social vehicle navigation." In the 14th Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2444776.2444798.
Full textChen, Cheng-wu, Ke Qiu, and Tsu-shuan Chang. "Land vehicle navigation." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272771.
Full textKrage, Mark K. "The TravTek Driver Information System." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912820.
Full textDingus, Thomas A., Janeth T. Carpenter, Francis E. Szczublewski, Mark K. Krage, Linda G. Means, and Rebecca N. Fleischman. "Human Factors Engineering the TravTek Driver Interface." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912821.
Full textRupert, Robert L. "The TravTek Traffic Management Center and Traffic Information Network." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912822.
Full textTaylor, Kent B. "TravTek - Information and Services Center." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912823.
Full textRilett, L. R., M. Van Aerde, G. MacKinnon, and M. Krage. "Simulating the TravTek Route Guidance Logic Using the Integration Traffic Model." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912824.
Full textBanks, K. M. "Datatrak Automatic Vehicle Location System in Operational Use in the UK." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912825.
Full textMcLellan, James F., Edward J. Krakiwsky, David R. Huff, Ellen L. Kitagawa, and Michael R. Gervais. "Fleet Management Trials in Western Canada." In Vehicle Navigation & Instrument Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/912826.
Full textReports on the topic "Vehicle Navigation"
Rosenfeld, Azriel, and Lary S. Davis. Autonomous Vehicle Navigation. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada170379.
Full textMiller, P. A., J. Farrell, Y. Zhao, and V. Djapic. Autonomous Underwater Vehicle Navigation. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada485442.
Full textRiseman, Edward M., and Allen R. Hanson. Dynamic Image Interpretation for Autonomous Vehicle Navigation. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada213172.
Full textMorrow, J. D. Optimal sensor fusion for land vehicle navigation. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6242453.
Full textHarguess, Josh, and Shawn Strange. Infrared Stereo Calibration for Unmanned Ground Vehicle Navigation. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada607968.
Full textThorpe, Charles, Martial Hebert, Dean Pomerleau, Anthony Stentz, and Takeo Kanade. Unmanned Ground Vehicle System Perception for Outdoor Navigation. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada352124.
Full textFOGLER, ROBERT J. Multi- and Hyper-Spectral Sensing for Autonomous Ground Vehicle Navigation. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/820893.
Full textKahn, Aaron D., and Daniel J. Edwards. Navigation, Guidance and Control For the CICADA Expendable Micro Air Vehicle. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada623280.
Full textBraasch, Michael S. Unmanned Aerial Vehicle (UAV) Swarming and Formation Flight Navigation VIA LIDAR/INS. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada456221.
Full textHirokawa, Rui, Naoyuki Kajiwara, and Junichi Takiguchi. Carrier-Phase GPS/DR/LS Hybrid Navigation for an Autonomous Ground Vehicle. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0283.
Full text