To see the other types of publications on this topic, follow the link: Vehicle Navigation.

Dissertations / Theses on the topic 'Vehicle Navigation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Vehicle Navigation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dryer, Jay E. (Jay Edward) 1970. "Robust autonomous vehicle navigation." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/91363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaparias, Ioannis. "Reliable dynamic in-vehicle navigation." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Friedman, Andrew D. "NAVIGATION AUTONOMY FOR UNMANNED SURFACE VEHICLE." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meira, Guilherme Tebaldi. "Stereo Vision-based Autonomous Vehicle Navigation." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/344.

Full text
Abstract:
Research efforts on the development of autonomous vehicles date back to the 1920s and recent announcements indicate that those cars are close to becoming commercially available. However, the most successful prototypes that are currently being demonstrated rely on an expensive set of sensors. This study investigates the use of an affordable vision system as a planner for the Robocart, an autonomous golf cart prototype developed by the Wireless Innovation Laboratory at WPI. The proposed approach relies on a stereo vision system composed of a pair of Raspberry Pi computers, each one equipped with a Camera Module. They are connected to a server and their clocks are synchronized using the Precision Time Protocol (PTP). The server uses timestamps to obtain a pair of simultaneously captured images. Images are processed to generate a disparity map using stereo matching and points in this map are reprojected to the 3D world as a point cloud. Then, an occupancy grid is built and used as input for an A* graph search that finds a collision-free path for the robot. Due to the non-holonomic constraints of a car-like robot, a Pure Pursuit algorithm is used as the control method to guide the robot along the computed path. The cameras are also used by a Visual Odometry algorithm that tracks points on a sequence of images to estimate the position and orientation of the vehicle. The algorithms were implemented using the C++ language and the open source library OpenCV. Tests in a controlled environment show promising results and the interfaces between the server and the Robocart have been defined, so that the proposed method can be used on the golf cart as soon as the mechanical systems are fully functional.
APA, Harvard, Vancouver, ISO, and other styles
5

Moore, Christopher, Dylan Crocker, Garret Coffman, and Bryce Nguyen. "Telemetry Network for Ground Vehicle Navigation." International Foundation for Telemetering, 2011. http://hdl.handle.net/10150/595750.

Full text
Abstract:
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada
This paper describes a short distance telemetry network which measures and relays time, space, and position information among a group of ground vehicles. The goal is to allow a lead vehicle to be under human control, or perhaps controlled using advanced autonomous path planning and navigation tools. The telemetry network will then allow a series of inexpensive, unmanned vehicles to follow the lead vehicle at a safe distance. Ultrasonic and infrared signals will be relayed between the vehicles, to allow the following vehicles to locate their position, and track the lead vehicle.
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Robert. "Terrain-aided navigation of an underwater vehicle." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Jun. "Short-term congestion prediction for vehicle navigation." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forbes, Nicholas Lloyd. "Behavioural adaptation to in-vehicle navigation systems." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10798/.

Full text
Abstract:
This PhD investigates driver behavioural adaptation to in-vehicle navigation systems (IVNS). Behavioural adaptation is receiving an increasing amount of research attention in traffic psychology, but few studies have directly considered the concept in relation to IVNS. The thesis aims were addressed using a range of quantitative and qualitative methodologies. Using two online surveys, over 1300 drivers (including over 1000 IVNS users) were sampled, to identify a range of positive, neutral and negative aspects of end-user behavioural adaptation to IVNS in terms of both safety and navigational efficiency. The first survey (N=450) aimed at drivers in general, showed that IVNS users believe they commit some common driving errors (e.g. misreading signs when leaving a roundabout) significantly less frequently than ordinary drivers who do not use these systems, but that they also feel they drive without fully attending to the road ahead significantly more frequently. The second survey (N=872) was aimed at IVNS users only, and further explored distracted driving. This survey found that the majority of IVNS users have interacted with their system while driving (e.g. to enter a destination), and that some do so frequently. It also showed that system reliability is a key issue affecting most current IVNS users, revealing that some drivers have followed inaccurate as well as illegal and potentially dangerous, system-generated route guidance information in a range of different contexts. A longitudinal diary study (N=20) then collected rich qualitative data from a sample of worker drivers who regularly used their IVNS in unfamiliar areas. The data collected illustrated the diverse contexts in which drivers experience aspects of behavioural adaptation to IVNS identified in the surveys. Both the IVNS user-survey and diary study also identified key demographic individual difference variables (most notably age and computing skill) that were associated with the extent to which driver’s experienced different manifestations of behavioural adaptation to IVNS. Moreover, other individual difference variables (e.g. complacency potential, system-trust, confidence) were found to be associated with more specific behavioural adaptations. Two simulator studies investigated system interaction while driving. The first (N=24) demonstrated the poor degree of correspondence between drivers’ perceptions of driving performance when entering destinations while driving (relative to normal driving) and objective performance differences between these conditions. The second simulator study (N=24) showed that safety and training based interventions designed to reduce the extent to which drivers use IVNS while driving or to improve their performance if they do had only a modest effect on dependent measures. This thesis represents the first attempt in the literature to bring together research from diverse areas of human factors and traffic psychology to consider behavioural adaptation to in-vehicle navigation systems. By associating a range of these issues with behavioural adaptation to IVNS, it has indirectly increased the scope of several salient, previous research findings. Moreover, by investigating many of these issues in depth, using both quantitative and qualitative methodological approaches, it has set the foundation for future work. Such work should aim to explore many of the issues raised, and develop effective remediating or mitigating intervention strategies for negative behavioural adaptations that could adversely affect driving safety, as well as to encourage and support those which may be considered more positive.
APA, Harvard, Vancouver, ISO, and other styles
9

Peterson, Kevin Robert. "Visual navigation for an autonomous mobile vehicle." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24105.

Full text
Abstract:
Approved for public release; distribution is unlimited
Image understanding for a mobile robotic vehicle is an important and complex task for ensuring safe navigation and extended autonomous operations. The goal of this work is to implement a working vision-based navigation control mechanism within a known environment onboard the autonomous mobile vehicle Yamabico-II. Although installing a working hardware system was not accomplished, the image processing, model description, pattern matching, and positional correction methods have all been implemented and tested on a graphics workstation. A novel approach for straight-edge feature extraction based upon a least squares fitting of edge-related pixels is presented and implemented for the image processing task. A simple method for determining the camera's location and orientation (pose) follows by matching the vertical extracted edges from an image with the linear features of a two-dimensional view of the modeled environment based upon an estimated pose of the robot. Image processing, construction of the two-dimensional view of the model, and pose determination are conducted sequentially in less than one minute for a 646 x 486 pixel image on a 35 MHz processor. The pose determination results have been tested to be accurate to within a few inches for translational error and within one degree rotational error.
APA, Harvard, Vancouver, ISO, and other styles
10

Visser, Wynand. "Automation and navigation of a terrestrial vehicle." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20263.

Full text
Abstract:
Thesis (MScEng)--Stellenbosch University, 2012
ENGLISH ABSTRACT: This thesis presents the design and implementation of an autonomous navigational system and the automation of a practical demonstrator vehicle. It validates the proposed navigation architecture using simple functional navigational modules on the said vehicle. The proposed navigation architecture is a hierarchical structure, with a mission planner at the top, followed by the route planner, the path planner and a vehicle controller with the vehicle hardware at the base. A vehicle state estimator and mapping module runs in parallel to provide feedback data. The controls of an all terrain vehicle are electrically actuated and equipped with feedback sensors to form a complete drive-by-wire solution. A steering controller and velocity control state machine are designed and implemented on an existing on-board controller that includes a six degrees-of-freedom kinematic state estimator. A lidar scanner detects obstacles. The lidar data is mapped in real time to a local three-dimensional occupancy grid using a Bayesian update process. Each lidar beam is projected within the occupancy grid and the occupancy state of a ected cells is updated. A lidar simulation environment is created to test the mapping module before practical implementation. For planning purposes, the three-dimensional occupancy grid is converted to a two-dimensional drivability map. The path planner is an adapted rapidly exploring random tree (RRT) planner, that assumes Dubins car kinematics for the vehicle. The path planner optimises a cost function based on path length and a risk factor that is derived from the drivability map. A simple mission planner that accepts user-de ned waypoints as objectives is implemented. Practical tests veri ed the potential of the navigational structure implemented in this thesis.
AFRIKAANSE OPSOMMING: In hierdie tesis word die ontwerp en implementering van 'n outonome navigasiestelsel weergegee, asook die outomatisering van 'n praktiese demonstrasievoertuig. Dit regverdig die voorgestelde navigasie-argitektuur op die bogenoemde voertuig deur gebruik te maak van eenvoudige, funksionele navigasie-modules. Die voorgestelde navigasie-argitektuur is 'n hi erargiese struktuur, met die missie-beplanner aan die bo-punt, gevolg deur die roetebeplanner, die padbeplanner en voertuigbeheerder, met die voertuighardeware as basisvlak. 'n Voertuigtoestandsafskatter en karteringsmodule loop in parallel om terugvoer te voorsien. Die kontroles van 'n vierwiel-motor ets is elektries geaktueer en met terugvoersensors toegerus om volledig rekenaarbeheerd te wees. 'n Stuur-beheerder en 'n snelheid-toestandmasjien is ontwerp en ge mplementeer op 'n bestaande aanboordverwerker wat 'n kinematiese toestandsafskatter in ses grade van vryheid insluit. 'n Lidar-skandeerder registreer hindernisse. Die lidar-data word in re ele tyd na 'n lokale drie-dimensionele besettingsrooster geprojekteer deur middel van 'n Bayesiese opdateringsproses. Elke lidar-straal word in die besettingsrooster geprojekteer en die besettingstoestand van betrokke selle word opdateer. 'n Lidar-simulasie-omgewing is geskep om die karteringsmodule te toets voor dit ge mplementeer word. Die drie-dimensionele besettingsrooster word na 'n twee-dimensionele rybaarheidskaart verwerk vir beplanningsdoeleindes. Die padbeplanner is 'n aangepaste spoedig-ontdekkende-lukrake-boom en neem Dubinskar kinematika vir die voertuig aan. Die padbeplanner optimeer 'n koste-funksie, gebaseer op padlengte en 'n risiko-faktor, wat vanaf die rybaarheidskaart verkry word. 'n Eenvoudige missie-beplanner, wat via-punte as doelstellings neem, is ge mplementeer. Praktiese toetsritte veri eer die potensiaal van die navigasiestruktuur, soos hier beskryf.
APA, Harvard, Vancouver, ISO, and other styles
11

Tsakiri, Maria. "GPS and DR for land vehicle navigation." Thesis, University of Nottingham, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ferreira, Leandro. "Localization and navigation in an autonomous vehicle." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11672.

Full text
Abstract:
Mestrado em Engenharia Electrónica e Telecomunicações
A área da condução autónoma tem sido palco de grandes desenvolvimentos nos últimos anos. Não só se tem visto um grande impulso na investigação, existindo já um número considerável de carros autónomos, mas também no mercado, com vários sistemas de condução assistida a equipar veículos comercializados. No trabalho realizado no âmbito desta dissertação, foram abordados e implementados vários tópicos relevantes para condução autónoma. Nomeadamente, foram implementados sistemas de mapeamento, localização e navegação num veículo autónomo dotado de um sistema de locomoção Ackerman. O veículo é capaz de construir o mapa da pista e de usar esse mapa para navegar. O mecanismo de mapeamento é supervisionado, no sentido em que o veículo tem de ser remotamente controlado de modo a cobrir a totalidade da pista. A localização do veículo na pista é realizado usando um filtro de partículas, usando um modelo de movimento adequado ao seu tipo de locomoção. O planeamento de percurso faz-se a dois níveis. A um nível mais alto, definem-se pontos de passagem na pista que estabelecem o percurso geral a realizar pelo veículo. A definição destes pontos está diretamente relacionada com a concretização de tarefas impostas ao veículo. A um nível mais baixo, o percurso entre pontos adjacentes anteriores é detalhado numa sequência mais fina de pontos de passagem que tem em consideração as limitações do modelo Ackerman da locomoção do veículo. A navegação é adaptativa, no sentido em que se adequa à existência de obstáculos, entretanto detetados pelo sistema sensorial do veículo. O sistema sensorial do veículo é essencialmente baseado num dispositivo com visão RGB-D (Kinect) montado num suporte com dois graus de liberdade (pan&tilt). Este sistema é usado concorrentemente para ver a estrada e os obstáculos que nela possam existir e para detetar e identificar sinais de trânsito que aparecem na pista. A aquisição e processamento dos dados sensoriais e a sua transformação em informação (localização do veículo na pista, deteção e localização de obstáculos, deteção e identificação dos sinais de trânsito) foi trabalho realizado pelo autor. Um agente de software foi desenvolvido para gerir o acesso concorrente ao dispositivo de visão. O veículo desenvolvido participou na Competição de Condução Autónoma, do Festival Nacional de Robótica, edição de 2013, tendo alcançado o primeiro lugar.
The autonomous driving field has been a stage of major developments in the last years. Not only has been seen a major push in the research, already existing several self driving cars, but also in the market, with several assisted driving systems equipped in commercialized vehicles. In the work developed in the scope of this dissertation, it were approached and developed several relevant topics to the autonomous driving problem. Namely, it were implemented mapping systems, localization and navigation in an autonomous vehicle with an Ackerman locomotion system. The vehicle is capable of building the map of the track and use that map to navigate. The mapping mechanism is supervised, the vehicle has to be remotely controlled to cover the entire track. The localization of the vehicle in the track is accomplished using a particle filter, using the adequate motion model to its locomotion system. The path planning is performed at two levels. At a higher level, the overall course to be performed by the vehicle is defined by passage points. At a lower level, the path between the aforementioned points is detailed in a thiner sequence of points that take into account the limitations of the Ackerman motion model. The navigation is adaptive since it adapts to the existence of the obstacles detected by the robot’s sensory system. The vehicle’s sensory system is essentially based on a device with RGB-D vision system (Kinect) mounted over a structure with two degrees of freedom (pan&tilt). This system is concurrently used to see the track and the obstacles that may exist and to detect and identify traffic signs that appear on the track. The acquisition and processing of the sensory data and its transformation in information (localization of the vehicle in the track, detection and localization of obstacles, detection and identification of traffic signs) was work developed by the author. A software agent was developed to manage the concurrent access to the vision device. The developed vehicle participated in the Autonomous Driving Competition, from the Portuguese Robotics Open, 2013 edition, having achieved the first place.
APA, Harvard, Vancouver, ISO, and other styles
13

Schworer, Ian Josef. "Navigation and Control of an Autonomous Vehicle." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32634.

Full text
Abstract:
The navigation and control of an autonomous vehicle is a highly complex task. Making a vehicle intelligent and able to operate â unmannedâ requires extensive theoretical as well as practical knowledge. An autonomous vehicle must be able to make decisions and respond to situations completely on its own. Navigation and control serves as the major limitation of the overall performance, accuracy and robustness of an autonomous vehicle. This thesis will address this problem and propose a unique navigation and control scheme for an autonomous lawn mower (ALM). Navigation is a key aspect when designing an autonomous vehicle. An autonomous vehicle must be able to sense its location, navigate its way toward its destination, and avoid obstacles it encounters. Since this thesis attempts to automate the lawn mowing process, it will present a navigational algorithm that covers a bounded region in a systematic way, while avoiding obstacles. This algorithm has many applications including search and rescue, floor cleaning, and lawn mowing. Furthermore, the robustness and utility of this algorithm is demonstrated in a 3D simulation. This thesis will specifically study the dynamics of a two-wheeled differential drive vehicle. Using this dynamic model, various control techniques can then be applied to control the movement of the vehicle. This thesis will consider both open loop and closed loop control schemes. Optimal control, path following, and trajectory tracking are all considered, simulated, and evaluated as practical solutions for control of an ALM. To design and build an autonomous vehicle requires the integration of many sensors, actuators, and controllers. Software serves as the glue to fuse all these devices together. This thesis will suggest various sensors and actuators that could be used to physically implement an ALM. This thesis will also describe the operation of each sensor and actuator, present the software used to control the system, and discuss physical limitations and constraints that might be encountered while building an ALM.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
14

Lu, Yang. "RFID-Assisted Vehicle Navigation Based on Vanets." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1610359420814424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bingxin, Yi, Zhang Qishan, and Ding Shengxi. "INTELLIGENT VEHICLE NAVIGATION SYSTEM CONNECTED WITH INTERNET." International Foundation for Telemetering, 2003. http://hdl.handle.net/10150/606700.

Full text
Abstract:
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada
The intelligent vehicle navigation system is a multifunctional and complex integrated system that uses autonomous vehicle navigation, geography information, database system, computer technology, multimedia technology and wireless communication. In this paper, an autonomous navigation system based on embedded hardware and embedded operation system that is Linux is proposed. The system has advantages of low cost, small mass, multifunction and high stability, especially connecting with Internet.
APA, Harvard, Vancouver, ISO, and other styles
16

Kayirhan, Alp. "Sonar based navigation of an autonomous underwater vehicle." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA283525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Toazza, Denny Antonio, and Tae Hyun Kim. "Navigation Control of an Unmanned Aerial Vehicle (UAV)." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-3730.

Full text
Abstract:

The thesis covers a new navigation algorithm for UAV to fly through several given GPS coordinates without any human interference. The UAV first gets its current position from GPS receiver via Bluetooth connection with the navigator computer. With this GPS point, it draws an optimal trajectory to next destination. During the flight, the navigator computer issues the information about which direction to turn and how much to turn. This information will be used to steer the airplane servos.

The algorithm is programmed in Java LeJOS. It uses built-in Java classes about GPS and Bluetooth. The main computer, where the navigation program runs, is a LEGO Mindstorms NXT and it is used a GPSlim240 from HOLUX as a GPS receiver.

APA, Harvard, Vancouver, ISO, and other styles
18

Juriga, Jacob T. "Terrain aided navigation for REMUS autonomous underwater vehicle." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42654.

Full text
Abstract:
Approved for public release; distribution is unlimited
This research investigates the ability to create an undersea bathymetry map and navigate relative to the map. This is known as terrain aided navigation (TAN). In our particular case, the goal was for an autonomous underwater vehicle (AUV) to reduce positional uncertainty through the use of downward-looking swath sonar and employing TAN techniques. This is considered important for undersea operations where positioning systems such as GPS are either not available or difficult to put in place. There are several challenges associated with TAN that are presented: The image processing necessary to extract altitude data from the sonar image, the initial building of the bathymetry map, incorporating a system and measurement model that takes into consideration AUV motion and sensor uncertainty and near-optimal, real-time estimation algorithms. The thesis presents a methodology coupled with analysis on datasets collected from joint Naval Postgraduate School/National Aeronautical Space Administration experimentation conducted at the Aquarius undersea habitat near Key Largo, Florida. .
APA, Harvard, Vancouver, ISO, and other styles
19

Tobler, Chad Karl. "Development of an autonomous navigation technology test vehicle." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fulton, Thomas F. (Thomas Friedrich) 1970. "Acoustic navigation for the autonomous underwater vehicle REMUS." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/88342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jones, Philip Andrew. "Techniques in Kalman Filtering for Autonomous Vehicle Navigation." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/78128.

Full text
Abstract:
This thesis examines the design and implementation of the navigation solution for an autonomous ground vehicle suited with global position system (GPS) receivers, an inertial measurement unit (IMU), and wheel speed sensors (WSS) using the framework of Kalman filtering (KF). To demonstrate the flexibility of the KF several methods are explored and implemented such as constraints, multi-rate data, and cascading filters to augment the measurement matrix of a main filter. GPS and IMU navigation are discussed, along with common errors and disadvantages of each type of navigation system. It is shown that the coupling of sensors, constraints, and self-alignment techniques provide an accurate solution to the navigation problem for an autonomous vehicle. Filter divergence is discussed during times when the states are unobservable. Post processed data is analyzed to demonstrate performance under several test cases, such as GPS outage, and the effect that the initial calibration and alignment has on the accuracy of the solution.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
22

Morimoto, Eiji. "Vision Based Navigation System for Autonomous Transportation Vehicle." Kyoto University, 2003. http://hdl.handle.net/2433/148981.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第10255号
農博第1327号
新制||農||866(附属図書館)
学位論文||H15||N3776(農学部図書室)
UT51-2003-H676
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 梅田 幹雄, 教授 笈田 昭, 教授 池田 善郎
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
23

Shengxi, Ding, Zhang Bo, Tan Jingchang, and Zeng Dayi. "THE STUDY OF EMBEDDED INTELLIGENT VEHICLE NAVIGATION SYSTEM*." International Foundation for Telemetering, 2002. http://hdl.handle.net/10150/607541.

Full text
Abstract:
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California
The intelligent vehicle navigation system is the multifunctional and complex integrate system that involved in auto positioning technology, geography information system and digital map database, computer technology, multimedia and wireless communication technology. In this paper, the autonomous navigation system based on the embedded hardware and embedded software platform is proposed. The system has advantages of low cost, low power consumption, multifunction and high stability and reliability.
APA, Harvard, Vancouver, ISO, and other styles
24

Jönsson, Kenny. "Position Estimation of Remotely Operated Underwater Vehicle." Thesis, Linköping University, Automatic Control, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57518.

Full text
Abstract:

This thesis aims the problem of underwater vehicle positioning. The vehicle usedwas a Saab Seaeye Falcon which was equipped with a Doppler Velocity Log(DVL)manufactured by RD Instruments and an inertial measurement unit (IMU) fromXsense. During the work several different Extended Kalman Filter (EKF) havebeen tested both with a hydrodynamic model of the vehicle and a model withconstant acceleration and constant angular velocity. The filters were tested withdata from test runs in lake Vättern. The EKF with constant acceleration andconstant angular velocity appeared to be the better one. The misalignment of thesensors were also tried to be estimated but with poor result.

APA, Harvard, Vancouver, ISO, and other styles
25

Guerra, Roberto J. "Self-guided micro vehicle an autonomous vehicle with gps navigation and 802.11b communications /." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Putney, Joseph Satoru. "Reactive Navigation of an Autonomous Ground Vehicle Using Dynamic Expanding Zones." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33224.

Full text
Abstract:
Autonomous navigation of mobile robots through unstructured terrain presents many challenges. The task becomes even more difficult with increasing obstacle density, at higher speeds, and when a priori knowledge of the terrain is not available. Reactive navigation schemas are often dismissed as overly simplistic or considered to be inferior to deliberative approaches for off-road navigation. The Potential Field algorithm has been a popular reactive approach for low speed, highly maneuverable mobile robots. However, as vehicle speeds increase, Potential Fields becomes less effective at avoiding obstacles. The traditional shortcomings of the Potential Field approach can be largely overcome by using dynamically expanding perception zones to help track objects of immediate interest. This newly developed technique is hereafter referred to as the Dynamic Expanding Zones (DEZ) algorithm. In this approach, the Potential Field algorithm is used for waypoint navigation and the DEZ algorithm is used for obstacle avoidance. This combination of methods facilitates high-speed navigation in obstaclerich environments at a fraction of the computational cost and complexity of deliberative methods. The DEZ reactive navigation algorithm is believed to represent a fundamental contribution to the body of knowledge in the area of high-speed reactive navigation. This method was implemented on the Virginia Tech DARPA Grand Challenge vehicles. The results of this implementation are presented as a case study to demonstrate the efficacy of the newly developed DEZ approach.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
27

Van, Reet Alan R. "Contour tracking control for the REMUS autonomous underwater vehicle." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Jun%5FVanReet.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Massey, James Patrick. "Control and waypoint navigation of an autonomous ground vehicle." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3862.

Full text
Abstract:
This thesis describes the initial development of the Texas A&M Autonomous Ground Vehicle test platform and waypoint following software, including the associated controller design. The original goal of the team responsible for the development of the vehicle was to enter the DARPA Grand Challenge in October 2005. A 2004 Ford F150 4x4 pickup was chosen as the vehicle platform and was modified with a 6” suspension lift and 35” tires, as well as a commercial drive-by-wire system. The waypoint following software, the design of which is described in this thesis, is written in C and successfully drives the vehicle on a course defined by GPS waypoints at speeds up to 50 mph. It uses various heuristics to determine desired speeds and headings and uses control feedback to guide the vehicle towards these desired states. A vehicle dynamics simulator was also developed for software testing. Ultimately, this software will accept commands from advanced obstacle avoidance software so that the vehicle can navigate in true off-road terrain.
APA, Harvard, Vancouver, ISO, and other styles
29

Sethuramasamyraja, Balaji. "GPS Based Waypoint Navigation for an Autonomous Guided Vehicle – Bearcat III." Cincinnati, Ohio : University of Cincinnati, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1055874201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gul, Ugur Dogan. "Navigation And Path Planning Of An Unmanned Underwater Vehicle." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614706/index.pdf.

Full text
Abstract:
Due to the conditions peculiar to underwater, distinctive approaches are required to solve the navigation and path planning problem of an unmanned underwater vehicle (UUV). In this study, first of all, a detailed 6 degrees-of-freedom (DOF) mathematical model is formed, including the coupled non-linear forces and moments acting on an underwater vehicle. The hydrodynamic coefficients which correspond to the geometry of the vehicle which the model is based on are calculated using the strip theory. After the mathematical model is obtained, by applying appropriate linearization on the model, &ldquo
Linear Quadratic Regulator (LQR)&rdquo
control method is implemented to govern the surge, heave, pitch and yaw motions of the underwater vehicle. Path planning algorithm of the vehicle is based on tracking the waypoints. Permutation of the waypoints is obtained by solving the &ldquo
Travelling Salesman Problem (TSP)&rdquo
via genetic algorithm. Linked with that, &ldquo
Rapidly-Exploring Random Trees (RRT)&rdquo
algorithm is introduced into the path planning algorithm to avoid collisions in environments with obstacles. Underwater navigation solution is based on the &ldquo
Inertial Navigation System (INS)&rdquo
outputs, located on the vehicle. To correct the long-term drift of the inertial solution, &ldquo
Kalman Filter&rdquo
based integration algorithm is used and external aids such as &ldquo
Global Navigation Satellite System (GNSS)&rdquo
, &ldquo
Ultra-Short Baseline (USBL)&rdquo
acoustic navigation system and attitude sensors have been utilized. The control method, path planning and navigation algorithms used in this study are verified by simulation results.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhao, Yueming. "Key Technologies in Low-cost Integrated Vehicle Navigation Systems." Doctoral thesis, KTH, Geodesi och geoinformatik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131420.

Full text
Abstract:
Vehicle navigation systems incorporate on-board sensors/signal receivers and provide necessary positioning and guidance information for land, marine, airborne and space vehicles. Among different navigation solutions, the Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in recent decades. Both advantages and disadvantages of each individual system and their combination are analysed in this thesis. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with traditional INS, and hence are widely applied in GPS/INS integrated systems. The main problem of MEMS is the large sensor errors, which rapidly degrade the navigation performance in an exponential speed. By means of different methods, such as autoregressive model, Gauss-Markov process, Power Spectral Density and Allan Variance, we analyse the stochastic errors within the MEMS sensors. The test results show that different methods give similar estimates of stochastic error sources. An equivalent model of coloured noise components (random walk, bias instability and ramp noise) is given. Three levels of GPS/IMU integration structures, i.e. loose, tight and ultra-tight GPS/IMU navigation, are introduced with a brief analysis of each character. The loose integration principles are presented with detailed equations as well as the INS navigation principles. The Extended Kalman Filter (EKF) is introduced as the data fusion algorithm, which is the core of the whole navigation system. Based on the system model, we show the propagation of position standard errors with the tight integration structure under different scenarios. Even less than 4 observable GNSS satellites can contribute to the integrated system, especially for the orientation errors. A real test with loose integration is carried out, and the EKF performance is analysed in detail. Since the GPS receivers are normally working with a digital map, the map matching principle and its link-choosing problem are briefly introduced. This problem is proposed to be solved by the lane detection from real-time images. The procedures for the lane detection based on image processing are presented. The test on high ways, city streets and pathways are successfully carried out, and analyses with possible solutions are given for some special failure situations. To solve the large error drift of the IMU, we propose to support the IMU orientation with camera motion estimation from image pairs. First the estimation theory and computer vision principles are briefly introduced. Then both point and line matches algorithms are given. Finally the L1-norm estimator with balanced adjustment is proposed to deal with possible mismatches (outliers). Tests and comparisons with the RANSAC algorithm are also presented. For the latest trend of MEMS chip sensors, their industry and market are introduced. To evaluate the MEMS navigation performance, we augment the EKF with an equivalent coloured noise model, and the basic observability analysis is given. A realistic simulated navigation test is carried out with single and multiple MEMS sensors, and a sensor array of 5-10 sensors are recommended according to the test results and analysis. Finally some suggestions for future research are proposed.

QC 20131016

APA, Harvard, Vancouver, ISO, and other styles
32

Storandt, Sabine [Verfasser], and Stefan [Akademischer Betreuer] Funke. "Algorithms for vehicle navigation / Sabine Storandt. Betreuer: Stefan Funke." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2013. http://d-nb.info/1031667032/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Skog, Isaac. "GNSS-aided INS for land vehicle positioning and navigation." Licentiate thesis, Stockholm : Signalbehandling, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Park, Kyounga. "Learning user preferences for intelligent adaptive in-vehicle navigation." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

McKeon, James Bernard. "Incorporation of GPS/INS small autonomous underwater vehicle navigation." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Home, Geoffrey. "A hybrid intelligent architecture for autonomous underwater vehicle navigation." Thesis, University of Sunderland, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Loebis, Dedy. "An intelligent navigation system for an autonomous underwater vehicle." Thesis, University of Plymouth, 2004. http://hdl.handle.net/10026.1/2317.

Full text
Abstract:
The work in this thesis concerns with the development of a novel multisensor data fusion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous underwater vehicle (AUV) navigation system, formed by an integration of global positioning system and inertial navigation system (GPS/INS). The Kalman filter has been a popular method for integrating the data produced by the GPS and INS to provide optimal estimates of AUVs position and attitude. In this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is proposed. The former is used to fuse the data from a variety of INS sensors whose output is used as an input to the later where integration with GPS data takes place. The use of an adaptation scheme based on fuzzy logic approaches to cope with the divergence problem caused by the insufficiently known a priori filter statistics is also explored. The choice of fuzzy membership functions for the adaptation scheme is first carried out using a heuristic approach. Single objective and multiobjective genetic algorithm techniques are then used to optimize the parameters of the membership functions with respect to a certain performance criteria in order to improve the overall accuracy of the integrated navigation system. Results are presented that show that the proposed algorithms can provide a significant improvement in the overall navigation performance of an autonomous underwater vehicle navigation. The proposed technique is known to be the first method used in relation to AUV navigation technology and is thus considered as a major contribution thereof.
APA, Harvard, Vancouver, ISO, and other styles
38

Ramjattan, Allison Natasha. "Integrated GPS and dead reckoning for land vehicle navigation." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Reed, Brooks Louis-Kiguchi. "Multiple-vehicle resource-constrained navigation in the deep ocean." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68997.

Full text
Abstract:
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2011.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 139-148).
This thesis discusses sensor management methods for multiple-vehicle fleets of autonomous underwater vehicles, which will allow for more efficient and capable infrastructure in marine science, industry, and naval applications. Navigation for fleets of vehicles in the ocean presents a large challenge, as GPS is not available underwater and dead-reckoning based on inertial or bottom-lock methods can require expensive sensors and suffers from drift. Due to zero drift, acoustic navigation methods are attractive as replacements or supplements to dead-reckoning, and centralized systems such as an Ultra-Short Baseline Sonar (USBL) allow for small and economical components onboard the individual vehicles. Motivated by subsea equipment delivery, we present model-scale proof-of-concept experimental pool tests of a prototype Vertical Glider Robot (VGR), a vehicle designed for such a system. Due to fundamental physical limitations of the underwater acoustic channel, a sensor such as the USBL is limited in its ability to track multiple targets-at best a small subset of the entire fleet may be observed at once, at a low update rate. Navigation updates are thus a limited resource and must be efficiently allocated amongst the fleet in a manner that balances the exploration versus exploitation tradeoff. The multiple vehicle tracking problem is formulated in the Restless Multi-Armed Bandit structure following the approach of Whittle in [108], and we investigate in detail the Restless Bandit Kalman Filters priority index algorithm given by Le Ny et al. in [71]. We compare round-robin and greedy heuristic approaches with the Restless Bandit approach in computational experiments. For the subsea equipment delivery example of homogeneous vehicles with depth-varying parameters, a suboptimal quasi-static approximation of the index algorithm balances low landing error with safety and robustness. For infinite-horizon tracking of systems with linear time-invariant parameters, the index algorithm is optimal and provides benefits of up to 40% over the greedy heuristic for heterogeneous vehicle fleets. The index algorithm can match the performance of the greedy heuristic for short horizons, and offers the greatest improvement for long missions, when the infinite-horizon assumption is reasonably met.
by Brooks Louis-Kiguchi Reed.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
40

LaPointe, Cara Elizabeth Grupe. "A parallel hypothesis method of autonomous underwater vehicle navigation." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/49765.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2009.
Includes bibliographical references (p. 275-284).
This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating information that is not normally used. The parallel hypothesis method allows the in-situ identification of acoustic multipath time-of-flight measurements between a vehicle and an external transponder and uses them in real-time to augment the navigation algorithm during periods when direct-path time-of-flight measurements are not available. A proof of concept was conducted using real-world data obtained by the Woods Hole Oceanographic Institution Deep Submergence Lab's Autonomous Benthic Explorer (ABE) and Sentry autonomous underwater vehicles during operations on the Juan de Fuca Ridge. This algorithm uses a nested architecture to break the navigation solution down into basic building blocks for each type of available external information. The algorithm classifies external information as either line of position or gridded observations. For any line of position observation, the algorithm generates a multi-modal block of parallel position estimate hypotheses. The multimodal hypotheses are input into an arbiter which produces a single unimodal output. If a priori maps of gridded information are available, they are used within the arbiter structure to aid in the elimination of false hypotheses.
(cont.) For the proof of concept, this research uses ranges from a single external acoustic transponder in the hypothesis generation process and grids of low-resolution bathymetric data from a ship-based multibeam sonar in the arbitration process. The major contributions of this research include the in-situ identification of acoustic multipath time-of-flight measurements, the multiscale utilization of a priori low resolution bathymetric data in a high-resolution navigation algorithm, and the design of a navigation algorithm with a flexible architecture. This flexible architecture allows the incorporation of multimodal beliefs without requiring a complex mechanism for real-time hypothesis generation and culling, and it allows the real-time incorporation of multiple types of external information as they become available in situ into the overall navigation solution.
by Cara Elizabeth Grupe LaPointe.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
41

Xu, Tao. "An intelligent navigation system for an unmanned surface vehicle." Thesis, University of Plymouth, 2007. http://hdl.handle.net/10026.1/2768.

Full text
Abstract:
A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.
APA, Harvard, Vancouver, ISO, and other styles
42

Motwani, Amit. "Interval Kalman filtering techniques for unmanned surface vehicle navigation." Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3368.

Full text
Abstract:
This thesis is about a robust filtering method known as the interval Kalman filter (IKF), an extension of the Kalman filter (KF) to the domain of interval mathematics. The key limitation of the KF is that it requires precise knowledge of the system dynamics and associated stochastic processes. In many cases however, system models are at best, only approximately known. To overcome this limitation, the idea is to describe the uncertain model coefficients in terms of bounded intervals, and operate the filter within the framework of interval arithmetic. In trying to do so, practical difficulties arise, such as the large overestimation of the resulting set estimates owing to the over conservatism of interval arithmetic. This thesis proposes and demonstrates a novel and effective way to limit such overestimation for the IKF, making it feasible and practical to implement. The theory developed is of general application, but is applied in this work to the heading estimation of the Springer unmanned surface vehicle, which up to now relied solely on the estimates from a traditional KF. However, the IKF itself simply provides the range of possible vehicle headings. In practice, the autonomous steering system requires a single, point-valued estimate of the heading. In order to address this requirement, an innovative approach based on the use of machine learning methods to select an adequate point-valued estimate has been developed. In doing so, the so called weighted IKF (wIKF) estimate provides a single heading estimate that is robust to bounded model uncertainty. In addition, in order to exploit low-cost sensor redundancy, a multi-sensor data fusion algorithm compatible with the wIKF estimates and which additionally provides sensor fault tolerance has been developed. All these techniques have been implemented on the Springer platform and verified experimentally in a series of full-scale trials, presented in the last chapter of the thesis. The outcomes demonstrate that the methods are both feasible and practicable, and that they are far more effective in providing accurate estimates of the vehicle’s heading than the conventional KF when there is uncertainty in the system model and/or sensor failure occurs.
APA, Harvard, Vancouver, ISO, and other styles
43

Gagne-Roussel, Dave. "Vision-based navigation and control of a robotic vehicle." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27361.

Full text
Abstract:
A recurrent problem in mobile robotics is the difficulty to accurately estimate a robot's localization. The ability to successfully estimate the localization of a mobile robot is highly dependent on the type of sensory data used to infer its pose. Traditionally, this has been achieved with odometry and the integration of wheel encoders signals. A major drawback of this approach, however, is the inability to provide an accurate estimate of the heading orientation; a significant cause of odometry drift leading to navigation failure. Accordingly, there is a need for improved localization methods, and vision-based estimation holds promise for this purpose. This research proposes an alternative solution to pure odometry localization. To that end a visual pose estimation algorithm which combines robotic vision and odometry is proposed. The method utilizes scene image vanishing points for recovering the orientation of a mobile robot in a two-dimensional space. To assess the performance of the visual pose estimation algorithm on an operational prototype robotic vehicle developed in the course of the current research, an original pose tracking controller using the geometrical properties of Cardinal splines is implemented. The visual pose estimation algorithm is validated experimentally and compared against six sensory fusion schemes. The results show that the localization accuracy can be improved by one order of magnitude when compared to pure wheel encoder odometry. With regards to motion control, the pose tracking controller is also evaluated for the case of rectilinear trajectories. Future work on large-scale navigation strategies will be developed based on these ideas.
APA, Harvard, Vancouver, ISO, and other styles
44

Duberg, Daniel. "Safe Navigation of a Tele-operated Unmanned Aerial Vehicle." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221701.

Full text
Abstract:
Unmanned Aerial Vehicles (UAVs) can navigate in indoor environments and through environments that are hazardous or hard to reach for humans. This makes them suitable for use in search and rescue missions and by emergency response and law enforcement to increase situational awareness. However, even for an experienced UAV tele-operator controlling the UAV in these situations without colliding into obstacles is a demanding and difficult task. This thesis presents a human-UAV interface along with a collision avoidance method, both optimized for a human tele-operator. The objective is to simplify the task of navigating a UAV in indoor environments. Evaluation of the system is done by testing it against a number of use cases and a user study. The results of this thesis is a collision avoidance method that is successful in protecting the UAV from obstacles while at the same time acknowledges the operator’s intentions.
Obemannad luftfarkoster (UAV:er) kan navigera i inomhusmiljöer och genom miljöer som är farliga eller svåra att nå för människor. Detta gör dem lämpliga för användning i sök- och räddningsuppdrag och av akutmottagning och rättsväsende genom ökad situationsmedvetenhet. Dock är det även för en erfaren UAV-teleoperatör krävande och svårt att kontrollera en UAV i dessa situationer utan att kollidera med hinder. Denna avhandling presenterar ett människa-UAV-gränssnitt tillsammans med en kollisionsundvikande metod, båda optimerade för en mänsklig teleoperatör. Målet är att förenkla uppgiften att navigera en UAV i inomhusmiljöer. Utvärdering av systemet görs genom att testa det mot ett antal användningsfall och en användarstudie. Resultatet av denna avhandling är en kollisionsundvikande metod som lyckas skydda UAV från hinder och samtidigt tar hänsyn till operatörens avsikter.
APA, Harvard, Vancouver, ISO, and other styles
45

Misra, Sohum. "Infrastructure Planning for Unmanned Vehicle Navigation in Constrained Environments." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1614079054152227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Banta, Larry Eugene. "Advanced dead reckoning navigation for mobile robots." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/19323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jabari, Rami Steve. "Range-Based Autonomous Underwater Vehicle Navigation Expressed in Geodetic Coordinates." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71426.

Full text
Abstract:
Unlike many terrestrial applications, GPS is unavailable to autonomous underwater vehicles (AUVs) while submerged due to the rapid attenuation of radio frequency signals in seawater. Underwater vehicles often use other navigation technologies. This thesis describes a range-based acoustic navigation system that utilizes range measurements from a single moving transponder with a known location to estimate the position of an AUV in geodetic coordinates. Additionally, the navigation system simultaneously estimates the currents acting on the AUV. Thus the navigation system can be used in locations where currents are unknown. The main contribution of this work is the implementation of a range-based navigation system in geodetic coordinates for an AUV. This range-based navigation system is implemented in the World Geodetic System 1984 (WGS 84) coordinate reference system. The navigation system is not restricted to the WGS 84 ellipsoid and can be applied to any reference ellipsoid. This thesis documents the formulation of the navigation system in geodetic coordinates. Experimental data gathered in Claytor Lake, VA, and the Chesapeake Bay is presented.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
48

Wong, Chi-tak Keith. "Applications of vehicle location and communication technology in fleet management systems." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk:8888/cgi-bin/hkuto%5Ftoc%5Fpdf?B23339767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Haynie, Charles Dean. "Development of a Novel Zero-Turn-Radius Autonomous Vehicle." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36961.

Full text
Abstract:
This thesis describes the development of a new zero-turn-radius (ZTR) differentially driven robotic vehicle hereinafter referred to as NEVEL. The primary objective of this work was to develop a device that could be used as a test-bed for continued autonomous vehicle research at Virginia Tech while meeting the entry requirements of the Annual International Unmanned Ground Robotics Competition. In developing NEVEL, consideration was given to the vehicle's mechanical and electrical design, sensing and computing systems, and navigation strategy. Each of these areas was addressed individually, but always within the context of optimal integration to produce the best overall vehicle system. A constraint that directed much of the design process was the desire to integrate industrially available and proven components rather than creating custom designed systems. This thesis also includes a review of the relevant literature as it pertains to both subsystem and overall vehicle design.

NEVEL, the vehicle that was created from this research effort, is novel in several respects. It is one of the few true embodiments of a fully functioning, three-wheel, differential drive autonomous vehicle. Several previous studies have developed this concept for indoor applications, but none has resulted in a working test-bed that can be applied to an unstructured, outdoor environment. NEVEL also appears to be one of the few autonomous vehicle systems to fully incorporate a commercially available laser range finder. These features alone would make NEVEL a useful platform for continued research. In addition, however, by using common, off-the-shelf components and a personal computer platform for all computation and control, NEVEL has been created to facilitate testing of new navigation and control strategies. As testimony to the success of this design, NEVEL was recognized at the Sixth Annual International Unmanned Ground Robotics Competition as the best overall design.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
50

Kahraman, Eren. "Navigation Algorithms And Autopilot Application For An Unmanned Air Vehicle." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612797/index.pdf.

Full text
Abstract:
This study describes the design and implementation of the altitude and heading autopilot algorithms for a fixed wing unmanned air vehicle and navigation algorithm for attitude and heading reference outputs. Algorithm development is based on the nonlinear mathematical model of Middle East Technical University Tactical Unmanned Air Vehicle (METU TUAV), which is linearized at a selected trim condition. A comparison of nonlinear and linear mathematical models is also done. Based on the linear mathematical model of the METU TUAV, the classical control methods are applied during the design process of autopilot algorithms. For the confirmation purposes of the autopilot and navigation algorithms, a nonlinear simulation environment is developed in Matlab/Simulink including nonlinear model of the METU TUAV, altitude and heading autopilot loops, nonlinear actuator models, sensor models and navigation model. In the first part of the thesis, feedback signals for the controller are provided by IMU free measurements. In the second part, the feedback signals are provided by an attitude and heading reference mode, which incorporates the gyroscope solutions with the magnetic sensor and accelerometer sensor measurements by using a Kalman filter algorithm. The performance comparison of the controller is done for both cases where the effects of having different modes of the measurement sources are investigated.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography