Academic literature on the topic 'Velocity and Density 3D models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Velocity and Density 3D models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Velocity and Density 3D models"

1

Guo, Peng, and George A. McMechan. "Sensitivity of 3D 3C synthetic seismograms to anisotropic attenuation and velocity in reservoir models." GEOPHYSICS 82, no. 2 (2017): T79—T95. http://dx.doi.org/10.1190/geo2016-0321.1.

Full text
Abstract:
Anisotropic attenuation in fluid-saturated reservoirs with high fracture density may be diagnostic for reservoir characterization. Wave-induced mesoscale fluid flow is considered to be the major cause of intrinsic attenuation at exploration seismic frequencies. We perform tests of the sensitivity, of anisotropic attenuation and velocity, to reservoir properties in fractured HTI media based on the mesoscale fluid flow attenuation mechanism. The viscoelastic T-matrix, a unified effective medium theory of global and local fluid flow mechanisms, is used to compute frequency-dependent anisotropic a
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Long, Robert R. Stewart, Nikolay Dyaur, and Jose Baez-Franceschi. "3D-printed rock models: Elastic properties and the effects of penny-shaped inclusions with fluid substitution." GEOPHYSICS 81, no. 6 (2016): D669—D677. http://dx.doi.org/10.1190/geo2015-0655.1.

Full text
Abstract:
3D printing techniques (additive manufacturing) using different materials and structures provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We used a 3D printer (Stratasys Dimension SST 768) to print one “solid” cube model and another with penny-shaped inclusions. The 3D printing process builds materials, layer by layer, producing a slight “bedding” plane, somewhat similar to a sedimentary process. We used ultrasonic transducers (500 kHz) to measure the P- and S-wave velocities. The input printing material was thermoplastic with a d
APA, Harvard, Vancouver, ISO, and other styles
3

Ishikawa, Mayra, Wendy Gonzalez, Orides Golyjeswski, et al. "Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs." Geoscientific Model Development 15, no. 5 (2022): 2197–220. http://dx.doi.org/10.5194/gmd-15-2197-2022.

Full text
Abstract:
Abstract. Numerical models are an important tool for simulating temperature, hydrodynamics, and water quality in lakes and reservoirs. Existing models differ in dimensionality by considering spatial variations of simulated parameters (e.g., flow velocity and water temperature) in one (1D), two (2D) or three (3D) spatial dimensions. The different approaches are based on different levels of simplification in the description of hydrodynamic processes and result in different demands on computational power. The aim of this study is to compare three models with different dimensionalities and to anal
APA, Harvard, Vancouver, ISO, and other styles
4

Kurapati, Sushma, Jayaram N. Chengalur, Peter Kamphuis, and Simon Pustilnik. "Mass models of gas-rich void dwarf galaxies." Monthly Notices of the Royal Astronomical Society 491, no. 4 (2019): 4993–5014. http://dx.doi.org/10.1093/mnras/stz3334.

Full text
Abstract:
ABSTRACT We construct mass models of eight gas rich dwarf galaxies that lie in the Lynx–Cancer void. From NFW fits to the dark matter halo profile, we find that the concentration parameters of haloes of void dwarf galaxies are similar to those of dwarf galaxies in normal density regions. We also measure the slope of the central dark matter density profiles, obtained by converting the rotation curves derived using 3D (fat) and 2D (ROTCUR) tilted ring fitting routines, into mass densities. We find that the average slope (α = −1.39 ± 0.19), obtained from 3D fitting is consistent with that expecte
APA, Harvard, Vancouver, ISO, and other styles
5

KARTOON, D., D. ORON, L. ARAZI, and D. SHVARTS. "Three-dimensional multimode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at all density ratios." Laser and Particle Beams 21, no. 3 (2003): 327–34. http://dx.doi.org/10.1017/s0263034603213069.

Full text
Abstract:
The three-dimensional (3D) turbulent mixing zone (TMZ) evolution under Rayleigh–Taylor and Richtmyer–Meshkov conditions was studied using two approaches. First, an extensive numerical study was made, investigating the growth of a random 3D perturbation in a wide range of density ratios. Following that, a new 3D statistical model was developed, similar to the previously developed two-dimensional (2D) statistical model, assuming binary interactions between bubbles that are growing at a 3D asymptotic velocity. Confirmation of the theoretical model was gained by detailed comparison of the bubble s
APA, Harvard, Vancouver, ISO, and other styles
6

Sharov, N. V., L. I. Bakunovich, B. Z. Belashev, and M. Y. Nilov. "Velocity structure and density inhomogeneities of the White Sea crust." Arctic: Ecology and Economy, no. 4(40) (December 2020): 43–53. http://dx.doi.org/10.25283/2223-4594-2020-4-43-53.

Full text
Abstract:
The study area is the White Sea basin and adjacent territories. The relevance of the work carried out here is determined by active geodynamics, kimberlite magmatism, and prospects for the hydrocarbon search. The authors set the goal to model the velocity structure of the region’s crust using data from instrumental observations and the Integro software package. A comprehensive interpretation of gravimetric, magnetometric, seismic, petrophysical and geological data has been carried out. With the help of 2D models based on the DSZ profiles and digital maps of geophysical fields, refined density s
APA, Harvard, Vancouver, ISO, and other styles
7

Sukhinov, A., A. Chistyakov, S. Protsenko, and E. Protsenko. "Study of 3D discrete hydrodynamics models using cell filling." E3S Web of Conferences 224 (2020): 02016. http://dx.doi.org/10.1051/e3sconf/202022402016.

Full text
Abstract:
Modern methods and tools for coastal hydrodynamics modeling indicate the necessity of constructing discrete analogs of models for ones the properties: balance and conservation laws (for mass, flows, impulse), stability, convergence and etc. have been fulfilled. The paper considers a continuous three-dimensional mathematical model of the hydrodynamics of water basins and its discretization. The pressure correction method at variable water medium density was used to solve the problem of hydrodynamics. The considered discrete mathematical models of hydrodynamics take into account the filling of c
APA, Harvard, Vancouver, ISO, and other styles
8

Qiu, Ruofan, Rongqian Chen, Chenxiang Zhu, and Yancheng You. "A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows." International Journal of Modern Physics B 32, no. 13 (2018): 1850157. http://dx.doi.org/10.1142/s0217979218501576.

Full text
Abstract:
A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreove
APA, Harvard, Vancouver, ISO, and other styles
9

Moens, Nicolas, and Levin Hennicker. "The first 3D models of evolved hot star outflows." Proceedings of the International Astronomical Union 16, S366 (2020): 15–20. http://dx.doi.org/10.1017/s1743921322000230.

Full text
Abstract:
AbstractThe mechanisms driving mass loss from massive stars in late stages of their evolution is still very much unknown. Stellar evolution models indicate that the last stage before going supernova for many massive stars is the Wolf-Rayet (WR) phase, characterized by a strong, optically thick stellar wind. Stellar models show that these stars exceed the Eddington limit already in deep sub-surface layers around the so-called ‘iron-opacity’ bump, and so should launch a supersonic outflow from there. However, if the outward force does not suffice to accelerate the gas above the local escape spee
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Jian, Chi‐Yuen Wang, Yaolin Shi, et al. "Three‐dimensional crustal structure in central Taiwan from gravity inversion with a parallel genetic algorithm." GEOPHYSICS 69, no. 4 (2004): 917–24. http://dx.doi.org/10.1190/1.1778235.

Full text
Abstract:
The genetic algorithm method is combined with the finite‐element method for the first time as an alternative method to invert gravity anomaly data for reconstructing the 3D density structure in the subsurface. The method provides a global search in the model space for all acceptable models. The computational efficiency is significantly improved by storing the coefficient matrix and using it in all forward calculations, then by dividing the region of interest into many subregions and applying parallel processing to the subregions. Central Taiwan, a geologically complex region, is used as an exa
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!