To see the other types of publications on this topic, follow the link: Velocity model of the crust.

Journal articles on the topic 'Velocity model of the crust'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Velocity model of the crust.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kvapil, Jiří, Jaroslava Plomerová, Hana Kampfová Exnerová, Vladislav Babuška, and György Hetényi. "Transversely isotropic lower crust of Variscan central Europe imaged by ambient noise tomography of the Bohemian Massif." Solid Earth 12, no. 5 (May 11, 2021): 1051–74. http://dx.doi.org/10.5194/se-12-1051-2021.

Full text
Abstract:
Abstract. The recent development of ambient noise tomography, in combination with the increasing number of permanent seismic stations and dense networks of temporary stations operated during passive seismic experiments, provides a unique opportunity to build the first high-resolution 3-D shear wave velocity (vS) model of the entire crust of the Bohemian Massif (BM). This paper provides a regional-scale model of velocity distribution in the BM crust. The velocity model with a cell size of 22 km is built using a conventional two-step inversion approach from Rayleigh wave group velocity dispersion curves measured at more than 400 stations. The shear velocities within the upper crust of the BM are ∼0.2 km s−1 higher than those in its surroundings. The highest crustal velocities appear in its southern part, the Moldanubian unit. The Cadomian part of the region has a thinner crust, whereas the crust assembled, or tectonically transformed in the Variscan period, is thicker. The sharp Moho discontinuity preserves traces of its dynamic development expressed in remnants of Variscan subductions imprinted in bands of crustal thickening. A significant feature of the presented model is the velocity-drop interface (VDI) modelled in the lower part of the crust. We explain this feature by the anisotropic fabric of the lower crust, which is characterised as vertical transverse isotropy with the low velocity being the symmetry axis. The VDI is often interrupted around the boundaries of the crustal units, usually above locally increased velocities in the lowermost crust. Due to the north-west–south-east shortening of the crust and the late-Variscan strike-slip movements along the north-east–south-west oriented sutures preserved in the BM lithosphere, the anisotropic fabric of the lower crust was partly or fully erased along the boundaries of original microplates. These weakened zones accompanied by a velocity increase above the Moho (which indicate an emplacement of mantle rocks into the lower crust) can represent channels through which portions of subducted and later molten rocks have percolated upwards providing magma to subsequently form granitoid plutons.
APA, Harvard, Vancouver, ISO, and other styles
2

Sharov, N. V., L. I. Bakunovich, B. Z. Belashev, and M. Y. Nilov. "Velocity structure and density inhomogeneities of the White Sea crust." Arctic: Ecology and Economy, no. 4(40) (December 2020): 43–53. http://dx.doi.org/10.25283/2223-4594-2020-4-43-53.

Full text
Abstract:
The study area is the White Sea basin and adjacent territories. The relevance of the work carried out here is determined by active geodynamics, kimberlite magmatism, and prospects for the hydrocarbon search. The authors set the goal to model the velocity structure of the region’s crust using data from instrumental observations and the Integro software package. A comprehensive interpretation of gravimetric, magnetometric, seismic, petrophysical and geological data has been carried out. With the help of 2D models based on the DSZ profiles and digital maps of geophysical fields, refined density structures of local sections of the earth’s crust have been specified. The developed 3D density model gives a general picture of the deep structure of the region’s crust. Within its framework, the spatial positions of the layers of the velocity reference model are determined and their connections with density inhomogeneities and geophysical anomalies are established.
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Shutian, and Pascal Audet. "Seismic velocity model of the crust in the northern Canadian Cordillera from Rayleigh wave dispersion data." Canadian Journal of Earth Sciences 54, no. 2 (February 2017): 163–72. http://dx.doi.org/10.1139/cjes-2016-0115.

Full text
Abstract:
Models of the seismic velocity structure of the crust in the seismically active northern Canadian Cordillera remain poorly constrained, despite their importance in the accurate location and characterization of regional earthquakes. On 29 August 2014, a moderate earthquake with magnitude 5.0, which generated high-quality Rayleigh wave data, occurred in the Northwest Territories, Canada, ∼100 km to the east of the Cordilleran Deformation Front. We carefully selected 23 seismic stations that recorded the Rayleigh waves and divided them into 13 groups according to the azimuth angle between the earthquake and the stations; these groups mostly sample the Cordillera. In each group, we measured Rayleigh wave group velocity dispersion, which we inverted for one-dimensional shear-wave velocity models of the crust. We thus obtained 13 models that consistently show low seismic velocities with respect to reference models, with a slow upper and lower crust surrounding a relatively fast mid crustal layer. The average of the 13 models is consistent with receiver function data in the central portion of the Cordillera. Finally, we compared earthquake locations determined by the Geological Survey of Canada using a simple homogenous crust over a mantle half space with those estimated using the new crustal velocity model, and show that estimates can differ by as much as 10 km.
APA, Harvard, Vancouver, ISO, and other styles
4

Grandjean, Gilles, Hua Wu, Donald White, Marianne Mareschal, and Claude Hubert. "Crustal velocity models for the Archean Abitibi greenstone belt from seismic refraction data." Canadian Journal of Earth Sciences 32, no. 2 (February 1, 1995): 149–66. http://dx.doi.org/10.1139/e95-013.

Full text
Abstract:
We present velocity models for two seismic wide–angle-refraction profiles across the Archean Abitibi greenstone belt and the Pontiac Subprovince. The seismic profiles are 210 and 220 km long. Traveltime inversion and amplitude forward modelling were used to obtain two-dimensional velocity structure and interface geometry. The main features of the velocity models include (1) three crustal layers; (2) variable velocities (5.6–6.4 km/s) in the upper crust (~0–12 km), with the higher velocities generally associated with mafic metavolcanics and the lower velocities with metasediments and granitic plutons; (3) a relatively uniform middle crust (~12–30 km) with velocities ranging from 6.4 to 6.6 km/s; (4) a velocity increase of 0.3 km/s across the middle crust–lower crust boundary; (5) a lower crust (~30–40 km) with velocities increasing from 6.9 km/s at the top to 7.3 km/s at the base; (6) an average upper mantle velocity of 8.15 km/s; (7) depth to Moho of about 40 km in the north-central Abitibi belt, decreasing southward to 37 km beneath the Pontiac Subprovince; and (8) observed attenuation of seismic energy propagating through the Casa–Berardi deformation zone, suggesting a complex structure in this fault zone. The velocity model is generally consistent with seismic reflection interpretations that suggest that the shallow supracrustal assemblages form an allochthonous veneer, overlying a mid-crustal imbricate sequence of metaplutonic and metasedimentary rocks. The uniform-velocity structure below 12 km depth indicates that the tectonic zones juxtaposing disparate crustal blocks may have limited depth extent. The 40 km thick crust and 10 km thick high-velocity lower crustal layer exceed the thicknesses observed in other studies of Archean crust.
APA, Harvard, Vancouver, ISO, and other styles
5

Louden, Keith E., and Jianming Fan. "Crustal structures of Grenville, Makkovik, and southern Nain provinces along the Lithoprobe ECSOOT Transect: regional seismic refraction and gravity models and their tectonic implications." Canadian Journal of Earth Sciences 35, no. 5 (May 1, 1998): 583–601. http://dx.doi.org/10.1139/e98-005.

Full text
Abstract:
Crustal structures of the eastern Grenville, Makkovik, and southern Nain provinces are determined using seismic reflection-refraction and gravity data along the Lithoprobe Eastern Canadian Shield Onshore-Offshore Transect (ECSOOT). Within the Grenville Province, the velocity model contains a 5 km thick upper crust and a variable-thickness middle to lower crust. The total crustal thickness varies from 25 to 43 km, with the thickest crust in the south and thinnest crust in the north. A high-velocity, lower crustal wedge is coincident with a strong band of northward-dipping reflectors. The two-dimensional velocity structure is compatible with modelling of a 60 mGal gravity high over the Hawke River terrane. In the Makkovik Province, the thickness of upper crustal velocities increases to 17 km. The velocity decrease in the upper to middle crust from the Grenville Province to the Makkovik Province is similar to that of refraction models across the Grenville Front in Ontario and Quebec. It is possibly related to a decrease in metamorphic grade from south to north and (or) a larger volume of unmetamorphosed plutons in the Makkovik Province. A lower crustal layer is coincident with a region of increased reflectivity in the lower crust. There are no major crustal discontinuities associated with terrane boundaries within the Makkovik Province. The base of the crust is consistent with a change from north- to south-dipping reflectors beneath the Cape Harrison domain. Alternatively, it may consist of a thick zone of complex velocity variations, consistent with a zone of diffusive reflectivity observed to the north of the Allik domain.
APA, Harvard, Vancouver, ISO, and other styles
6

Corchete, V. "Crustal and upper mantle structure beneath the South China Sea and Indonesia." GSA Bulletin 133, no. 1-2 (May 28, 2020): 177–84. http://dx.doi.org/10.1130/b35641.1.

Full text
Abstract:
Abstract A three-dimensional (3-D) S-velocity model for the crust and upper mantle beneath the South China Sea and Indonesia is presented, determined by means of Rayleigh wave analysis, in the depth range from 0 km to 400 km. The crustal and lithospheric mantle structure of this study area was previously investigated using several methods and databases. Due to their low resolution, a 3-D structure for this area has not been previously determined. The determination of such a 3-D S-velocity model is the goal of the present study. The most conspicuous features of the crust and upper mantle structure include the S-velocity difference between the Java Sea and the Banda Sea regions and a transitional boundary between these two regions. This model confirms the principal structural features revealed in previous studies: an oceanic crust structure in the center of the South China Sea, crustal thinning from the northern continental margin of the South China Sea to this oceanic crust, and the existence of a high-velocity layer in the lower crust of the northern continental margin. This study concludes that the north of the South China Sea is a nonvolcanic-type continental margin, solving the open question of whether the continental margin of the northern South China Sea is volcanic or nonvolcanic. A new map of the asthenosphere’s base is also presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Lu, Y., L. Stehly, R. Brossier, and A. Paul. "Imaging Alpine crust using ambient noise wave-equation tomography." Geophysical Journal International 222, no. 1 (March 24, 2020): 69–85. http://dx.doi.org/10.1093/gji/ggaa145.

Full text
Abstract:
SUMMARY We present an improved crustal Vs model and Moho depth map using ambient noise wave-equation tomography. The so-called ‘ambient noise wave-equation tomography’ is a method to invert seismic ambient noise phase dispersion data based on elastic waveform simulation, which accounts for 3-D and finite-frequency effects. We use cross-correlations of up to 4 yr of continuous vertical-component ambient seismic noise recordings from 304 high-quality broad-band stations in the Alpine region. We use model LSP_Eucrust1.0 obtained from traditional ambient noise tomography as initial model, and we iteratively improve the initial model by minimizing frequency-dependent phase traveltime differences between the observed and synthetic waveforms of Rayleigh waves in the period range 10–50 s. We obtain the final model after 15 iterations with ∼65 per cent total misfit reduction compared to the initial model. At crustal depth, the final model significantly enhances the amplitudes and adjusts the shapes of velocity anomalies. At Moho and upper-mantle depth, the final model corrects an obvious systematic velocity shift of the initial model. The resulting isovelocity Moho map confirms a Moho step along the external side of the external crystalline massifs of the northwestern Alps and reveals underplated gabbroic plutons in the lower most crust of the central and eastern Alps. Ambient noise wave-equation tomography turns out to be a useful tool to refine shear wave velocity models obtained by traditional ambient noise tomography based on ray theory.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Shuai, and Wenbin Guo. "Crustal Structure of Eastern North Carolina: Piedmont and Coastal Plain." Bulletin of the Seismological Society of America 109, no. 6 (October 8, 2019): 2288–304. http://dx.doi.org/10.1785/0120180281.

Full text
Abstract:
Abstract We present the results from an onshore seismic refraction and wide‐angle reflection profile, conducted in 2015, across the coastal plain and eastern Piedmont provinces of North Carolina. We use forward modeling to create 1D synthetic seismogram models and then invert first break picks to create 2D P‐ and S‐wave velocity models. The crustal thickness is 38 km beneath the Piedmont and central coastal plain, but it thins to 32 km at the coastline. The average thickness of the upper crust is 11 km with an average P‐wave velocity (VP) of 6.0 km/s and S‐wave velocity (VS) of 3.5 km/s. A prominent seismic low‐velocity zone (LVZ) (VP<6.0 and VS<3.6 km/s) exists between the depths of 6 and 11 km, beneath the western third of the seismic profile. The middle crust varies greatly in thickness, increasing from 3 km in the west (eastern Piedmont) to 13 km in the east (coastal plain), with seismic velocities of 6.5 km/s for VP and 3.8 km/s for VS. The lower crust thins significantly toward the rifted Atlantic margin, decreasing from 24 km thick in the west (Piedmont) to 8 km at the coastline, with velocities of approximately 6.9 km/s for VP and 3.9 km/s for VS. We estimate the composition of the crust by comparing the measured values of VP and Poisson’s ratio with laboratory measurements. The upper and middle crusts are in agreement with a felsic composition, while the lower crustal composition is predominately felsic to intermediate. The LVZ in the upper crust is associated with thin layers of the mylonitic rocks involved in the top and the bottom of thrusting, and the top of the lower crust could be the master detachment fault during the thin‐skinned Alleghanian orogeny. The eastward thinning of the lower crust is consistent with crustal extension during the Mesozoic rifting of the Atlantic margin.
APA, Harvard, Vancouver, ISO, and other styles
9

Meyers, Patrick M., Andrew Melatos, and Nicholas J. O’Neill. "Parameter estimation of a two-component neutron star model with spin wandering." Monthly Notices of the Royal Astronomical Society 502, no. 3 (February 1, 2021): 3113–27. http://dx.doi.org/10.1093/mnras/stab262.

Full text
Abstract:
ABSTRACT It is an open challenge to estimate systematically the physical parameters of neutron star interiors from pulsar timing data while separating spin wandering intrinsic to the pulsar (achromatic timing noise) from measurement noise and chromatic timing noise (due to propagation effects). In this paper, we formulate the classic two-component, crust-superfluid model of neutron star interiors as a noise-driven, linear dynamical system and use a state-space-based expectation–maximization method to estimate the system parameters using gravitational-wave and electromagnetic timing data. Monte Carlo simulations show that we can accurately estimate all six parameters of the two-component model provided that electromagnetic measurements of the crust angular velocity and gravitational-wave measurements of the core angular velocity are both available. When only electromagnetic data are available, we can recover the overall relaxation time-scale, the ensemble-averaged spin-down rate, and the strength of the white-noise torque on the crust. However, the estimates of the secular torques on the two components and white-noise torque on the superfluid are biased significantly.
APA, Harvard, Vancouver, ISO, and other styles
10

O'Leary, D. M., R. M. Clowes, and R. M. Ellis. "Crustal velocity structure in the southern Coast Belt, British Columbia." Canadian Journal of Earth Sciences 30, no. 12 (December 1, 1993): 2389–403. http://dx.doi.org/10.1139/e93-207.

Full text
Abstract:
We applied an iterative combination of two-dimensional traveltime inversion and amplitude forward modelling to seismic refraction data along a 350 km along-strike profile in the Coast Belt of the southern Canadian Cordillera to determine crust and upper mantle P-wave velocity structure. The crustal model features a thin (0.5–3.0 km) near-surface layer with an average velocity of 4.4 km/s, and upper-, middle-, and lower-crustal strata which are each approximately 10 km thick and have velocities ranging from 6.2 to 6.7 km/s. The Moho appears as a 2 km thick transitional layer with an average depth of 35 km and overlies an upper mantle with a poorly constrained velocity of over 8 km/s. Other interpretations indicate that this profile lies within a collision zone between the Insular superterrane and the ancient North American margin and propose two collision-zone models: (i) crustal delamination, whereby the Insular superterrane was displaced along east-vergent faults over the terranes below; and (ii) crustal wedging, in which interfingering of Insular rocks occurs throughout the crust. The latter model involves thick layers of Insular material beneath the Coast Belt profile, but crustal velocities indicate predominantly non-Insular material, thereby favoring the crustal delamination model. Comparisons of the velocity model with data from the proximate reflection lines show that the top of the Moho transition zone corresponds with the reflection Moho. Comparisons with other studies suggest that likely sources for intracrustal wide-angle reflections observed in the refraction data are structural features, lithological contrasts, and transition zones surrounding a region of layered porosity in the crust.
APA, Harvard, Vancouver, ISO, and other styles
11

Boland, A. V., and R. M. Ellis. "A geophysical model for the Kapuskasing uplift from seismic and gravity studies." Canadian Journal of Earth Sciences 28, no. 3 (March 1, 1991): 342–54. http://dx.doi.org/10.1139/e91-031.

Full text
Abstract:
The Kapuskasing uplift is an oblique cross section of Archean crust exposed by a major thrusting event in Early Proterozoic times. Previous results from the traveltime and amplitude analysis of compressional-wave (P-wave) arrivals from a seismic-refraction experiment have been used to constrain the modelling of shear-wave (S-wave) arrivals and gravity anomalies along the seismic profiles. S-wave and P-wave velocity information have been combined to obtain the variations of Poisson's ratio within the crust. High and low Poisson's ratio values have been linked to the mafic and felsic content, respectively, of the Shield rocks. Density variations along the profiles, constrained by the P-wave velocity structures and the observed gravity anomalies, again have been linked to the lithological variations as observed in the exposed cross section. Geological models, constrained by the geophysical observations and the cross-sectional exposure, have been constructed for profiles across the northern and southern portions of the main uplift region. The results indicate an increase in pyroxene and garnetiferous gneisses with depth in the crust, as suggested by the high P-wave velocities (7.0–7.6 km/s), high densities (3050–3150 kg/m3, high Poisson's ratio values (0.26–0.28), and the petrological variations within the exposure. The presence of a low-velocity and low-density layer of tonalites under the surface greenstones has been established and can account for the low-velocity zones imaged along the Abitibi profile of this experiment and those imaged in other Shield refraction experiments.
APA, Harvard, Vancouver, ISO, and other styles
12

Belashev, Boris, Lyubov Bakunovich, Nikolai Sharov, and Michail Nilov. "Seismic Density Model of the White Sea’s Crust." Geosciences 10, no. 12 (December 7, 2020): 492. http://dx.doi.org/10.3390/geosciences10120492.

Full text
Abstract:
Study of the deep structure of the White Sea region is relevant to active geodynamics, manifestations of kimberlite magmatism, and the prospects of oil and gas searches. The aim of this work was to model the velocity and density structure of the earth’s crust in the White Sea region. Modelling was carried out using the known data of instrumental observations and the software complex “Integro”. With the help of 2D models based on deep seismic sounding (DSS) profiles and a digital map of the anomalous gravity field, the density structures of local areas of the region’s crust were refined. A 3D density model was built. Within the framework of this model, the positions of the density layers were determined. The relief of the Mohorovichich (Moho or M) discontinuity reflects the anomalies of the gravity field. Depression of the Moho boundary in the bottleneck of the White Sea indicates the vertical structure of the earth’s crust associated with manifestations of kimberlite magmatism.
APA, Harvard, Vancouver, ISO, and other styles
13

Welford, J. Kim, Sonya A. Dehler, and Thomas Funck. "Crustal velocity structure across the Orphan Basin and Orphan Knoll to the continent–ocean transition, offshore Newfoundland, Canada." Geophysical Journal International 221, no. 1 (December 26, 2019): 37–59. http://dx.doi.org/10.1093/gji/ggz575.

Full text
Abstract:
SUMMARY Orphan Basin, a massive deepwater rifted basin off the northeastern coast of Newfoundland, was one of the targets of the 2009 SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) experiment to collect refraction/wide-angle reflection (RWAR) data from the Bonavista Platform, through the Orphan Basin, to the Orphan Knoll, and beyond into oceanic crust. Both the data from an earlier RWAR acquisition and the new data were jointly analysed in order to improve on the earlier velocity model and extend its coverage landward and seaward. The resulting velocity model is characterized by an 8–9-km-thick sedimentary package immediately outboard of the Bonavista Platform, which thins toward the Orphan Knoll and beyond. The shallowest modelled sedimentary layer, interpreted as Paleocene and younger post-rift sediments, does not show significant thickness variations and velocities do not exceed 3.3 km s–1. The second modelled sedimentary layer with laterally variable velocities ranging from 2.3 to 5.3 km s–1, interpreted as Late Cretaceous post-rift sediments, is thickest over an interpreted failed rift. The deepest modelled sedimentary layer consists of laterally variable velocities that do not exceed 5.9 km s–1 and is interpreted as possibly Jurassic to Early Cretaceous syn-rift sediments. The crust beneath the Bonavista Platform is subdivided into an upper (5.4–5.9 km s–1), middle (5.9–6.4 km s–1) and lower crust (6.4–6.9 km s–1). The middle crust is modelled as disappearing beneath the seaward limit of the Bonavista Platform at an interpreted failed rift, only to re-appear 100 km further seaward beneath the central Orphan Basin and extend to the seaward limit of the Orphan Knoll, beyond which the crust can be modelled by just an upper (5.0–6.7 km s–1) and a lower (6.7–7.0 km s–1) crustal layer. Towards land, for the first 450 km of the model, velocities generally follow the globally averaged velocity trend for rifted continental crust, albeit with slightly elevated velocities suggestive of magmatic contributions. At the failed rift, within the continental domain, hyperextended crust is modelled, overlying a limited zone of serpentinized mantle. Seaward of Orphan Knoll, the interpretation for the velocity structure is less definitive but an 80-km-wide continent–ocean transition zone consisting of either transitional embryonic oceanic crust or thinned continental crust overlying serpentinized mantle is proposed. Upper mantle velocities as low as 7.7 km s–1 are modelled beneath the interpreted failed continental rift as well as beneath the continent–ocean transition zone, while the rest of the crustal model is underlain by typical mantle velocities of 8 km s–1. Analysis of extension and thinning factors based on the velocity model reveal that the failed rift experienced hyperextension and should have achieved full crustal embrittlement, consistent with localized mantle serpentinization.
APA, Harvard, Vancouver, ISO, and other styles
14

Wen, Genggeng, Kuiyuan Wan, Shaohong Xia, Huilong Xu, Chaoyan Fan, and Jinghe Cao. "Travel-Time Inversion Method of Converted Shear Waves Using RayInvr Algorithm." Applied Sciences 11, no. 8 (April 16, 2021): 3571. http://dx.doi.org/10.3390/app11083571.

Full text
Abstract:
The detailed studies of converted S-waves recorded on the Ocean Bottom Seismometer (OBS) can provide evidence for constraining lithology and geophysical properties. However, the research of converted S-waves remains a weakness, especially the S-waves’ inversion. In this study, we applied a travel-time inversion method of converted S-waves to obtain the crustal S-wave velocity along the profile NS5. The velocities of the crust are determined by the following four aspects: (1) modelling the P-wave velocity, (2) constrained sediments Vp/Vs ratios and S-wave velocity using PPS phases, (3) the correction of PSS phases’ travel-time, and (4) appropriate parameters and initial model are selected for inversion. Our results show that the vs. and Vp/Vs of the crust are 3.0–4.4 km/s and 1.71–1.80, respectively. The inversion model has a similar trend in velocity and Vp/Vs ratios with the forward model, due to a small difference with ∆Vs of 0.1 km/s and ∆Vp/Vs of 0.03 between two models. In addition, the high-resolution inversion model has revealed many details of the crustal structures, including magma conduits, which further supports our method as feasible.
APA, Harvard, Vancouver, ISO, and other styles
15

Liu, Yuchen, and Lupei Zhu. "Joint inversion for 1-D crustal seismic S- and P-wave velocity structures with interfaces and its application to the Wabash Valley Seismic Zone." Geophysical Journal International 226, no. 1 (March 8, 2021): 47–55. http://dx.doi.org/10.1093/gji/ggab092.

Full text
Abstract:
SUMMARY Interfaces are important part of Earth’s layering structure. Here, we developed a new model parametrization and iterative linearized inversion method that determines 1-D crustal velocity structure using surface wave dispersion, teleseismic P-wave receiver functions and Ps and PmP traveltimes. Unlike previous joint inversion methods, the new model parametrization includes interface depths and layer Vp/Vs ratios so that smoothness constraint can be conveniently applied to velocities of individual layers without affecting the velocity discontinuity across the interfaces. It also allows adding interface-related observation such as traveltimes of Ps and PmP in the joint inversion to eliminate the trade-off between interface depth and Vp/Vs ratio and therefore to reduce the uncertainties of results. Numerical tests show that the method is computationally efficient and the inversion results are robust and independent of the initial model. Application of the method to a dense linear array across the Wabash Valley Seismic Zone (WVSZ) produced a high-resolution crustal image in this seismically active region. The results show a 51–55-km-thick crust with a mid-crustal interface at 14–17 km. The crustal Vp/Vs ratio varies from 1.69 to 1.90. There are three pillow-like, ∼100 km apart high-velocity bodies sitting at the base of the crust and directly above each of them are a low-velocity anomaly in the middle crust and a high-velocity anomaly in the upper crust. They are interpreted to be produced by mantle magmatic intrusions and remelting during rifting events in the end of the Precambrian. The current diffuse seismicity in the WVSZ might be rooted in this ancient distributed rifting structure.
APA, Harvard, Vancouver, ISO, and other styles
16

Chian, Deping, François Marillier, Jeremy Hall, and Garry Quinlan. "An improved velocity model for the crust and upper mantle along the central mobile belt of the Newfoundland Appalachian orogen and its offshore extension." Canadian Journal of Earth Sciences 35, no. 11 (November 1, 1998): 1238–51. http://dx.doi.org/10.1139/e98-042.

Full text
Abstract:
New modelling of wide-angle reflection-refraction data of the Canadian Lithoprobe East profile 91-1 along the central mobile belt of the Newfoundland Appalachian orogen reveals new features of the upper mantle, and establishes links in the crust and upper mantle between existing land and marine wide-angle data sets by combining onshore-offshore recordings. The revised model provides detailed velocity structure in the 30-34 km thick crust and the top 30 km of upper mantle. The lower crust is characterized by a velocity of 6.6-6.8 km/s onshore, increasing by 0.2 km/s to the northeast offshore beneath the sedimentary basins. This seaward increase in velocity may be caused by intrusion of about 4 km of basic rocks into the lower crust during the extension that formed the overlying Carboniferous basins. The Moho is found at 34 km depth onshore, rising to 30 km offshore to the northeast with a local minimum of 27 km. The data confirm the absence of deep crustal roots under the central mobile belt of Newfoundland. Our long-range (up to 450 km offset) wide-angle data define a bulk velocity of 8.1-8.3 km/s within the upper 20 km of mantle. The data also contain strong reflective phases that can be correlated with two prominent mantle reflectors. The upper reflector is found at 50 km depth under central Newfoundland, rising abruptly towards the northeast where it reaches a minimum depth of 36 km. This reflector is associated with a thin layer (1-2 km) unlikely to coincide with a discontinuity with a large cross-boundary change in velocity. The lower reflector at 55-65 km depths is much stronger, and may have similar origins to reflections observed below the Appalachians in the Canadian Maritimes which are associated with a velocity increase to 8.5 km/s. Our data are insufficient for discriminating among various interpretations for the origins of these mantle reflectors.
APA, Harvard, Vancouver, ISO, and other styles
17

Funck, Thomas, and Keith E. Louden. "Wide-angle seismic imaging of pristine Archean crust in the Nain Province, Labrador." Canadian Journal of Earth Sciences 35, no. 6 (June 1, 1998): 672–85. http://dx.doi.org/10.1139/e98-019.

Full text
Abstract:
A detailed refraction - wide-angle reflection seismic experiment was carried out in northern Labrador to determine the velocity structure of relatively unaltered Archean crust in the Nain Province. Six 3-component land seismometers were used to record an airgun source along a profile parallel to the coast. Forward modeling of traveltimes and amplitudes yields a P- and S-wave velocity model that shows two crustal blocks separated by a fault. Magnetic data suggest, but do not prove, that the fault is the offshore continuation of the Handy fault. A southwards thickening of the lower crust across the fault indicates that a transcurrent component might have been associated with the faulting. The total crustal thickness is 33 km to the north and 38 km to the south of the fault. The presence of PmS reflections imply a sharp transition at the Moho. Upper crustal velocities of 5.8-6.3 km/s and Poisson's ratios of 0.20 and 0.24, north and south of the fault respectively, are consistent with a gneissic composition, but suggest a higher quartz content in the northern block. Velocities in the middle crust increase to 6.5 km/s, where a discontinuity at a depth between 16 and 18 km marks the transition to the lower crust with velocities between 6.6 and 6.9 km/s. Poisson's ratios of 0.24 and 0.26 indicate, respectively, a felsic middle crust and an intermediate composition for the lower crust. The absence of a high-velocity basal layer is in accordance with other examples of Archean crust.
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Ying, Huajian Yao, Haijiang Zhang, and Hongjian Fang. "The Community Velocity Model V.1.0 of Southwest China, Constructed from Joint Body- and Surface-Wave Travel-Time Tomography." Seismological Research Letters 92, no. 5 (April 21, 2021): 2972–87. http://dx.doi.org/10.1785/0220200318.

Full text
Abstract:
Abstract Southwest China, located at the southeastern margin of the Tibetan plateau, plays an important role for the plateau growth and its material extrusion. It has complicated tectonic environment and strong seismic activities including the 2008 Wenchuan great earthquake. Numerous geophysical studies have been conducted in southwest China. However, a community velocity model (CVM) in this region is still not available, which makes it difficult to have a consistent catalog of earthquake locations and focal mechanisms and a consistent velocity model for simulating strong ground motions and evaluating earthquake hazards. In this study, we aim at building a high-resolution CVM (both VP and VS) of the crust and uppermost mantle in southwest China along with earthquake locations by joint inversion of body- and surface-wave travel-time data. In total, we have assembled 386,958 P- and 372,662 S-wave first arrival times and nearly 8100 Rayleigh-wave dispersion curves in the period band of 5–50 s. A multigrid strategy is adopted in the joint inversion. A coarser horizontal grid interval of 0.5° is first used and then a finer grid interval of 0.25° is used with initial models interpolated from the coarser-grid inverted velocity models. The spatial resolution of both VP and VS models can reach up to 0.5° horizontally and 10 km vertically according to the checkerboard tests. The comparisons of our inverted VP and VS models with those from other studies show general consistency in large-scale features. The inverted models are further validated by P-wave arrival times from active sources and Rayleigh-wave data. In general, our velocity models show two low-velocity zones in the middle-lower crust and a prominent high-velocity region in between them. Our new models have been served as the first version of the CVM in southwest China (SWChinaCVM-1.0) for future studies.
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Yongsheng, and Ping Tong. "Eikonal equation-based P-wave seismic azimuthal anisotropy tomography of the crustal structure beneath northern California." Geophysical Journal International 226, no. 1 (March 13, 2021): 287–301. http://dx.doi.org/10.1093/gji/ggab103.

Full text
Abstract:
SUMMARY Delineating spatial variations of seismic anisotropy in the crust is of great importance for the understanding of structural heterogeneities, regional stress regime and ongoing crustal dynamics. In this study, we present a 3-D anisotropic P-wave velocity model of the crust beneath northern California by using the eikonal equation-based seismic azimuthal anisotropy tomography method. The velocity heterogeneities under different geological units are well resolved. The thickness of the low-velocity sediment at the Great Valley Sequence is estimated to be about 10 km. The high-velocity anomaly underlying Great Valley probably indicates the existence of ophiolite bodies. Strong velocity contrasts are revealed across the Hayward Fault (2–9 km) and San Andreas Fault (2–12 km). In the upper crust (2–9 km), the fast velocity directions (FVDs) are generally fault-parallel in the northern Coast Range, which may be caused by geological structure; while the FVDs are mainly NE–SW in Great Valley and the northern Sierra Nevada possibly due to the regional maximum horizontal compressive stress. In contrast, seismic anisotropy in the mid-lower crust (12–22 km) may be attributed to the alignment of mica schists. The anisotropy contrast across the San Andreas Fault may imply different mechanisms of crustal deformation on the two sides of the fault. Both the strong velocity contrasts and the high angle (∼45° or above) between the FVDs and the strikes of faults suggest that the faults are mechanically weak in the San Francisco bay area (2–6 km). This study suggests that the eikonal equation-based seismic azimuthal anisotropy tomography is a valuable tool to investigate crustal heterogeneities and tectonic deformation.
APA, Harvard, Vancouver, ISO, and other styles
20

Zelt, B. C., R. M. Ellis, R. M. Clowes, E. R. Kanasewich, I. Asudeh, J. H. Luetgert, Z. Hajnal, A. Ikami, G. D. Spence, and R. D. Hyndman. "Crust and upper mantle velocity structure of the Intermontane belt, southern Canadian Cordillera." Canadian Journal of Earth Sciences 29, no. 7 (July 1, 1992): 1530–48. http://dx.doi.org/10.1139/e92-121.

Full text
Abstract:
As part of the Lithoprobe Southern Cordillera transect, seismic refraction data were recorded along a 330 km long strike profile in the Intermontane belt. An iterative combination of two-dimensional traveltime inversion and amplitude forward modelling was used to interpret crust and upper mantle P-wave velocity structure. This region is characterized by (i) a thin near-surface layer with large variations in velocity between 2.8 and 5.4 km/s, and low-velocity regions that correlate well with surface expressions of Tertiary sedimentary and volcanic rocks; (ii) an upper and middle crust with low average velocity gradient, possibly a weak low-velocity zone, and lateral velocity variations between 6.0 and 6.4 km/s; (iii) a distinctive lower crust characterized by significantly higher average velocities relative to midcrustal values beginning at 23 km depth, approximately 8 km thick with average velocities of 6.5 and 6.7 km/s at top and base; (iv) a depth to Moho, as defined by wide-angle reflections, that averages 33 km with variations up to 2 km; and (v) a Moho transition zone of depth extent 1–3 km, below which lies the upper mantle with velocities decreasing from 7.9 km/s in the south to 7.7 km/s in the north. Where the refraction line obliquely crosses a Lithoprobe deep seismic-reflection profile, good agreement is obtained between the interpreted reflection section and the derived velocity structure model. In particular, depths to wide-angle reflectors in the upper crust agree with depths to prominent reflection events, and Moho depths agree within 1 km. From this comparison, the upper and middle crust probably comprise the upper part of the Quesnellia terrane. The lower crust from the refraction interpretation does not show the division into two components, parautochthonous and cratonic North America, that is inferred from the reflection data, indicating that their physical properties are not significantly different within the resolution of the refraction data. Based on these interpretations, the lower lithosphere of Quesnellia is absent and presumably was recycled in the mantle. At a depth of ~ 16 km below the Moho, an upper mantle reflector may represent the base of the present lithosphere.
APA, Harvard, Vancouver, ISO, and other styles
21

Eldridge, D. J., and P. I. A. Kinnell. "Assessment of erosion rates from microphyte-dominated calcareous soils under rain-impacted flow." Soil Research 35, no. 3 (1997): 475. http://dx.doi.org/10.1071/s96072.

Full text
Abstract:
Intact soil monoliths with surfaces of varying microphytic crust cover were collected from a calcareous earth soil in a semi-arid belah–rosewood woodland near Wentworth in south-western New South Wales. Monoliths were tested for their susceptibility to erosion by rain-impacted flow using a laboratory rainfall simulator. The erosive stress applied to each surface was controlled by varying the flow depth between 4 and 8 mm whilst maintaining a flow velocity of 25 mm/s using 2·7 mm raindrops falling 11·2 m at average rainfall intensities of 65 mm/h. Increasing the cover of microphytic crusts on the surface resulted in a significant (P = 0·001) reduction in sediment concentration. A linear model incorporating percentage cover and distribution of cover accounted for 46% of the variance in soil erosion. A significant relationship was also found between the coarse fraction (>0·053 mm) and crust cover (P = 0·012) at the 4-mm depth. Management practices such as overgrazing, trampling, and fire, which reduce the cover of crusts in this landscape, will lead to increased erosion hazard.
APA, Harvard, Vancouver, ISO, and other styles
22

Klitzke, P., J. I. Faleide, M. Scheck-Wenderoth, and J. Sippel. "A lithosphere-scale structural model of the Barents Sea and Kara Sea region." Solid Earth 6, no. 1 (February 12, 2015): 153–72. http://dx.doi.org/10.5194/se-6-153-2015.

Full text
Abstract:
Abstract. We introduce a regional 3-D structural model of the Barents Sea and Kara Sea region which is the first to combine information on the sediments and the crystalline crust as well as the configuration of the lithospheric mantle. Therefore, we have integrated all available geological and geophysical data, including interpreted seismic refraction and reflection data, seismological data, geological maps and previously published 3-D models into one consistent model. This model resolves four major megasequence boundaries (earliest Eocene, mid-Cretaceous, mid-Jurassic and mid-Permian) the top crystalline crust, the Moho and a newly calculated lithosphere–asthenosphere boundary (LAB). The thickness distributions of the corresponding main megasequences delineate five major subdomains (the northern Kara Sea, the southern Kara Sea, the eastern Barents Sea, the western Barents Sea and the oceanic domain comprising the Norwegian–Greenland Sea and the Eurasia Basin). Relating the subsidence histories of these subdomains to the structure of the deeper crust and lithosphere sheds new light on possible causative basin forming mechanisms that we discuss. The depth configuration of the newly calculated LAB and the seismic velocity configuration of the upper mantle correlate with the younger history of this region. The western Barents Sea is underlain by a thinned lithosphere (80 km) resulting from multiple Phanerozoic rifting phases and/or the opening of the NE Atlantic from Paleocene/Eocene times on. Notably, the northwestern Barents Sea and Svalbard are underlain by thinnest continental lithosphere (60 km) and a low-velocity/hot upper mantle that correlates spatially with a region where late Cenozoic uplift was strongest. As opposed to this, the eastern Barents Sea is underlain by a thicker lithosphere (~ 110–150 km) and a high-velocity/density anomaly in the lithospheric mantle. This anomaly, in turn, correlates with an area where only little late Cenozoic uplift/erosion was observed.
APA, Harvard, Vancouver, ISO, and other styles
23

Dunham, C. K., J. P. O’Donnell, G. W. Stuart, A. M. Brisbourne, S. Rost, T. A. Jordan, A. A. Nyblade, D. A. Wiens, and R. C. Aster. "A joint inversion of receiver function and Rayleigh wave phase velocity dispersion data to estimate crustal structure in West Antarctica." Geophysical Journal International 223, no. 3 (August 22, 2020): 1644–57. http://dx.doi.org/10.1093/gji/ggaa398.

Full text
Abstract:
SUMMARY We determine crustal shear wave velocity structure and crustal thickness at recently deployed seismic stations across West Antarctica, using a joint inversion of receiver functions and fundamental mode Rayleigh wave phase velocity dispersion. The stations are from both the UK Antarctic Network (UKANET) and Polar Earth Observing Network/Antarctic Network (POLENET/ANET). The former include, for the first time, four stations along the spine of the Antarctic Peninsula, three in the Ellsworth Land and five stations in the vicinity of the Pine Island Rift. Within the West Antarctic Rift System (WARS) we model a crustal thickness range of 18–28 km, and show that the thinnest crust (∼18 km) is in the vicinity of the Byrd Subglacial Basin and Bentley Subglacial Trench. In these regions we also find the highest ratio of fast (Vs = 4.0–4.3 km s–1, likely mafic) lower crust to felsic/intermediate upper crust. The thickest mafic lower crust we model is in Ellsworth Land, a critical area for constraining the eastern limits of the WARS. Although we find thinner crust in this region (∼30 km) than in the neighbouring Antarctic Peninsula and Haag-Ellsworth Whitmore block (HEW), the Ellsworth Land crust has not undergone as much extension as the central WARS. This suggests that the WARS does not link with the Weddell Sea Rift System through Ellsworth Land, and instead has progressed during its formation towards the Bellingshausen and Amundsen Sea Embayments. We also find that the thin WARS crust extends towards the Pine Island Rift, suggesting that the boundary between the WARS and the Thurston Island block lies in this region, ∼200 km north of its previously accepted position. The thickest crust (38–40 km) we model in this study is in the Ellsworth Mountain section of the HEW block. We find thinner crust (30–33 km) in the Whitmore Mountains and Haag Nunatak sectors of the HEW, consistent with the composite nature of the block. In the Antarctic Peninsula we find a crustal thickness range of 30–38 km and a likely dominantly felsic/intermediate crustal composition. By forward modelling high frequency receiver functions we also assess if any thick, low velocity subglacial sediment accumulations are present, and find a 0.1–0.8-km-thick layer at 10 stations within the WARS, Thurston Island and Ellsworth Land. We suggest that these units of subglacial sediment could provide a source region for the soft basal till layers found beneath numerous outlet glaciers, and may act to accelerate ice flow.
APA, Harvard, Vancouver, ISO, and other styles
24

Quin, H. R., and C. H. Thurber. "Seismic velocity structure and event relocation in Kazakhstan from secondary P phases." Bulletin of the Seismological Society of America 82, no. 6 (December 1, 1992): 2494–510. http://dx.doi.org/10.1785/bssa0820062494.

Full text
Abstract:
Abstract Three-component seismic data from a set of presumed explosions recorded by stations at Bayanaul and Karkaralinsk in Kazakhstan were analyzed in order to model the crustal structure of the region and to examine the use of the arrival times of secondary P phases, primarily PmP, in regional event location. Polarization analysis aided in the identification of the secondary phases. Low-pass filtered data (4-Hz corner) from the first 5 to 10 sec of 13 presumed explosions were modeled with the reflectivity method. The two chemical explosions in 1987 provided a check on accuracy, as their locations and origin times are accurately known. A good fit to the arrival times and amplitudes in the first 5 sec of the P wave (Pn, Pg, and PmP) was obtained in the epicentral distance range of 100 to 300 km. Beyond 300 km, the simple layered model was not adequate to model the PmP arrival. The crustal P-wave velocity model we derived has an upper crustal velocity increasing fairly rapidly from 4.5 km/sec near the surface to 6.5 km/sec at 15-km depth, then increasing more slowly to 7.05 km/sec at 50-km depth. The observed difference in the arrival times of the phases Pg, PmP, and Pn in the range between 100- and 250-km distance required a relatively sharp transition at the crust mantle boundary. The model is generally similar to previous estimates of P velocity structure in the region, though with a gentler gradient in the upper crust and a steeper gradient in the lower crust. We used the derived crustal model and the primary and secondary P-wave arrival times to relocate events in the Kazakhstan region. Inclusion of the phase PmP substantially decreases the focal depth uncertainty for many of the events. All but one of the events analyzed are concluded to be surface explosions; the identity of the remaining event is uncertain.
APA, Harvard, Vancouver, ISO, and other styles
25

Omelchenko, V. D., and V. H. Kuchma. "GEODYNAMICS." GEODYNAMICS 2(11)2011, no. 2(11) (September 20, 2011): 219–20. http://dx.doi.org/10.23939/jgd2011.02.219.

Full text
Abstract:
The comparison of the geology-geophysical models of the crust of the Western Donbass makes it possible to obtain new data about the bottom of the earth crust, to marks out a reduced velocity in the middle earth crust part in joints area of Donbass and the Voronezh massif and data of another features of the lithosphere structure.
APA, Harvard, Vancouver, ISO, and other styles
26

Guo, Peng, Satish C. Singh, Venkata A. Vaddineni, Gerhard Visser, Ingo Grevemeyer, and Erdinc Saygin. "Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method." Geophysical Journal International 224, no. 2 (October 20, 2020): 1056–78. http://dx.doi.org/10.1093/gji/ggaa505.

Full text
Abstract:
SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
APA, Harvard, Vancouver, ISO, and other styles
27

Ahumada, Ma Florencia, Brígida Castro de Machuca, Patricia Alvarado, Jean-Baptiste Ammirati, and María Gimena López. "Modelo petrofísico del borde oriental de las sierras de Valle Fértil- La Huerta, Argentina a partir de datos sísmicos y petrológicos." Revista Mexicana de Ciencias Geológicas 34, no. 1 (April 1, 2017): 1. http://dx.doi.org/10.22201/cgeo.20072902e.2017.1.411.

Full text
Abstract:
This paper is a contribution to the knowledge of the crustal structure of the eastern flank of the Valle Fértil - La Huerta ranges (Western Sierras Pampeanas, San Juan, Argentina) at 31°S, in the Andean foreland region, where the Nazca plate is subducting horizontally at about 100 km depth. A 1D velocity model was constrained, combining petrographic and seismological observations from analysis of 19 igneous and metaigneous plutonic rocks belonging to the Famatinian (Ordovician) magmatic arc, which make up most of the crystalline basement of these ranges. Granitoid lithologies predominate in the northern region whereas mafic lithologies are more common to the south. The seismological analysis consisted of modeling teleseismic receiver functions near three seismological stations: LUNA, MAJA and CHUC, in places where those rocks are dominant. Thus, P and S seismic-wave velocities (Vp and Vs) and Poisson´s coefficient (ν), among other elastic parameters, were obtained. The seismic velocity model indicates an overthickened crust with an average thickness between 55 and 60 km, which matches with global average values (~41km); this agrees well with the hypothesis of partial eclogitization in the lower crust. The presence of two seismic velocity discontinuities at mid-crustal levels (12 and 28 km depths), likely associated to décollements, might be related to the accretion of the Cuyania terrane to the Pampia terrane. We obtained low P seismic-wave velocities (Vp ~5.8 km/s), Vp/Vs ratio (~1.70) in upper crust levels consistent with granitoid lithologies, as well as high P seismic-wave velocities (Vp ~6.76 km/s), Vp/Vs ratio (~1.78) in lower crust levels; these figures match with mafic lithologies of a more dense (~3.00 g/cm3), lower crust with respect to other back-arc Andean regions. Also, these values are consistent with the existence of mafic rocks composed of olivine, ortho- and clinopyroxene, which constitute the root of the Famatinian magmatic arc. These results indicate high-grade metamorphic conditions and depths corresponding to geophysical properties of middle to lower crust and correlate with the hypothesis of a dehydrated, cool and magnesium-enriched mantle located in the region between the subducted Nazca slab and the bottom of the Cuyania terrain crust.
APA, Harvard, Vancouver, ISO, and other styles
28

Dannowski, Anke, Heidrun Kopp, Frauke Klingelhoefer, Dirk Klaeschen, Marc-André Gutscher, Anne Krabbenhoeft, David Dellong, et al. "Ionian Abyssal Plain: a window into the Tethys oceanic lithosphere." Solid Earth 10, no. 2 (April 3, 2019): 447–62. http://dx.doi.org/10.5194/se-10-447-2019.

Full text
Abstract:
Abstract. The nature of the Ionian Sea crust has been the subject of scientific debate for more than 30 years, mainly because seismic imaging of the deep crust and upper mantle of the Ionian Abyssal Plain (IAP) has not been conclusive to date. The IAP is sandwiched between the Calabrian and Hellenic subduction zones in the central Mediterranean. A NNE–SSW-oriented 131 km long seismic refraction and wide-angle reflection profile, consisting of eight ocean bottom seismometers and hydrophones, was acquired in 2014. The profile was designed to univocally confirm the proposed oceanic nature of the IAP crust as a remnant of the Tethys and to confute its interpretation as a strongly thinned part of the African continental crust. A P-wave velocity model developed from travel-time forward modelling is refined by gravimetric data and synthetic modelling of the seismic data. A roughly 6–7 km thick crust with velocities ranging from 5.1 to 7.2 km s−1, top to bottom, can be traced throughout the IAP. In the vicinity of the Medina seamounts at the southern IAP boundary, the crust thickens to about 9 km and seismic velocities decrease to 6.8 km s−1 at the crust–mantle boundary. The seismic velocity distribution and depth of the crust–mantle boundary in the IAP document its oceanic nature and support the interpretation of the IAP as a remnant of the Tethys lithosphere with the Malta Escarpment as a transform margin and a Tethys opening in the NNW–SSE direction.
APA, Harvard, Vancouver, ISO, and other styles
29

Monteleone, Vanessa, Tim A. Minshull, and Hector Marin-Moreno. "Integrated geophysical characterization of crustal domains in the eastern Black Sea." Geology 48, no. 4 (February 6, 2020): 405–9. http://dx.doi.org/10.1130/g47056.1.

Full text
Abstract:
Abstract Rifting may lead ultimately to continental breakup, but the identification and characterization of the resulting crustal distribution remains challenging. Also, spatial and temporal changes in breakup magmatism may affect the geophysical character of the newly formed oceanic crust, resulting in contrasting interpretations of crustal composition and distribution. In the Eastern Black Sea Basin (EBSB), the evolution from rifting to breakup has been long debated, with several interpretations for the distribution of stretched continental and oceanic crust. We interpret basement morphological variations from long-offset seismic reflection profiles, highlighting a northwest-to-southeast transition from faulted and tilted continental blocks to a rough and then smoother basement. We model magnetic anomalies to further constrain the various basement domains, and infer the presence of a weakly magnetized, stretched continental crust in the northwest, and a 0.4–3.8 A/m layer coinciding with the smooth basement in the central and southeastern area. We conclude that the EBSB oceanic crust extends farther to the northwest than was suggested previously from an abrupt change in crustal thickness and lower-crustal velocity. The apparent discrepancy between these different types of geophysical evidence may result from changes in magma supply during breakup, affecting the thickness and velocity structure of the resulting oceanic crust.
APA, Harvard, Vancouver, ISO, and other styles
30

Simão, N. M., C. Peirce, M. J. Funnell, A. H. Robinson, R. C. Searle, C. J. MacLeod, and T. J. Reston. "3-D P-wave velocity structure of oceanic core complexes at 13°N on the Mid-Atlantic Ridge." Geophysical Journal International 221, no. 3 (February 24, 2020): 1555–79. http://dx.doi.org/10.1093/gji/ggaa093.

Full text
Abstract:
SUMMARY The Mid-Atlantic Ridge at 13°N is regarded as a type locality for oceanic core complexes (OCCs), as it contains, within ∼70 km along the spreading axis, four that are at different stages of their life cycle. The wealth of existing seabed observations and sampling makes this an ideal target to resolve contradictions between the existing models of OCC development. Here we describe the results of P-wave seismic tomographic modelling within a 60 × 60 km footprint, containing several OCCs, the ridge axis and both flanks, which determines OCC crustal structure, detachment geometry and OCC interconnectivity along axis. A grid of wide-angle seismic refraction data was acquired along a series of 17 transects within which a network of 46 ocean-bottom seismographs was deployed. Approximately 130 000 first arrival traveltimes, together with sparse Moho reflections, have been modelled, constraining the crust and uppermost mantle to a depth of ∼10 km below sea level. Depth slices through this 3-D model reveal several independent structures each with a higher P-wave velocity (Vp) than its surrounds. At the seafloor, these features correspond to the OCCs adjacent to the axial valley walls at 13°20′N and 13°30′N, and off axis at 13°25′N. These high-Vp features display dipping trends into the deeper crust, consistent with the surface expression of each OCC's detachment, implying that rocks of the mid-to-lower crust and uppermost mantle within the footwall are juxtaposed against lower Vp material in the hangingwall. The neovolcanic zone of the ridge axis has systematically lower Vp than the surrounding crust at all depths, and is wider between OCCs. On average, throughout the 13°N region, the crust is ∼6 km-thick. However, beneath a deep lava-floored basin between axial OCCs the crust is thinner and is more characteristically oceanic in layering and velocity–depth structure. Thicker crust at the ridge axis suggests a more magmatic phase of current crustal formation, while modelling of the sparse Moho reflections suggests the crust–mantle boundary is a transition zone throughout most of the 13°N segment. Our results support a model in which OCCs are bounded by independent detachment faults whose dip increases with depth and is variable with azimuth around each OCC, suggesting a geometry and mechanism of faulting that is more complicated than previously thought. The steepness of the northern flank of the 13°20′N detachment suggests that it represents a transfer zone between different faulting regimes to the south and north. We propose that individual detachments may not be linked along-axis, and that OCCs act as transfer zones linking areas of normal spreading and detachment faulting. Along ridge variation in magma supply influences the nature of this detachment faulting. Consequently, not only does magma supply control how detachments rotate and migrate off axis before finally becoming inactive, but also how, when and where new OCCs are created.
APA, Harvard, Vancouver, ISO, and other styles
31

Funnell, M. J., A. H. Robinson, R. W. Hobbs, and C. Peirce. "Evolution and properties of young oceanic crust: constraints from Poisson's ratio." Geophysical Journal International 225, no. 3 (February 13, 2021): 1874–96. http://dx.doi.org/10.1093/gji/ggab062.

Full text
Abstract:
SUMMARY The seismic velocity of the oceanic crust is a function of its physical properties that include its lithology, degree of alteration and porosity. Variations in these properties are particularly significant in young crust, but also occur with age as it evolves through hydrothermal circulation and is progressively covered with sediment. While such variation may be investigated through P-wave velocity alone, joint analysis with S-wave velocity allows the determination of Poisson's ratio, which provides a more robust insight into the nature of change in these properties. Here we describe the independent modelling of P- and S-wave seismic data sets, acquired along an ∼330-km-long profile traversing new to ∼8 Myr-old oceanic crust formed at the intermediate-spreading Costa Rica Rift (CRR). Despite S-wave data coverage being almost four-times lower than that of the P-wave data set, both velocity models demonstrate correlations in local variability and a long-wavelength increase in velocity with distance, and thus age, from the ridge axis of up to 0.8 and 0.6 km s−1, respectively. Using the Vp and Vs models to calculate Poisson's ratio (σ), it reveals a typical structure for young oceanic crust, with generally high values in the uppermost crust that decrease to a minimum of 0.24 by 1.0–1.5 km sub-basement, before increasing again throughout the lower crust. The observed upper crustal decrease inσ most likely results from sealing of fractures, which is supported by observations of a significant decrease in porosity with depth (from ∼15 to &lt;2 per cent) through the dyke sequence in Ocean Drilling Program borehole 504B. High Poisson's ratio (&gt;0.31) is observed throughout the crust of the north flank of the CRR axis and, whilst this falls within the ‘serpentinite’ classification of lithological proxies, morphological evidence of pervasive surface magmatism and limited tectonism suggests, instead, that the cause is porosity in the form of pervasive fracturing and, thus, that this is the dominant control on seismic velocity in the newly formed CRR crust. South of the CRR, the values of Poisson's ratio are representative of more typical oceanic crust, and decrease with increasing distance from the spreading centre, most likely as a result of mineralization and increased fracture infill. This is supported by borehole observations and modelled 3-D seismic anisotropy. Crustal segments formed during periods of particularly low half-spreading rate (&lt;35 mm yr−1) demonstrate high Poisson's ratio relative to the background, indicating the likely retention of increased porosity and fracturing associated with the greater degrees of tectonism at the time of their formation. Across the south flank of the CRR, we find that the average Poisson's ratio in the upper 1 km of the crust decreases with age by ∼0.0084 Myr−1 prior to the thermal sealing of the crust, suggesting that, to at least ∼7 Myr, advective hydrothermal processes dominate early CRR-generated oceanic crustal evolution, consistent with heat flow measurements.
APA, Harvard, Vancouver, ISO, and other styles
32

Alder, C., E. Debayle, T. Bodin, A. Paul, L. Stehly, and H. Pedersen. "Evidence for radial anisotropy in the lower crust of the Apennines from Bayesian ambient noise tomography in Europe." Geophysical Journal International 226, no. 2 (February 19, 2021): 941–67. http://dx.doi.org/10.1093/gji/ggab066.

Full text
Abstract:
SUMMARY Probing seismic anisotropy of the lithosphere provides valuable clues on the fabric of rocks. We present a 3-D probabilistic model of shear wave velocity and radial anisotropy of the crust and uppermost mantle of Europe, focusing on the mountain belts of the Alps and Apennines. The model is built from Love and Rayleigh dispersion curves in the period range 5–149 s. Data are extracted from seismic ambient noise recorded at 1521 broad-band stations, including the AlpArray network. The dispersion curves are first combined in a linearized least squares inversion to obtain 2-D maps of group velocity at each period. Love and Rayleigh maps are then jointly inverted at depth for shear wave velocity and radial anisotropy using a Bayesian Monte Carlo scheme that accounts for the trade-off between radial anisotropy and horizontal layering. The isotropic part of our model is consistent with previous studies. However, our anisotropy maps differ from previous large scale studies that suggested the presence of significant radial anisotropy everywhere in the European crust and shallow upper mantle. We observe instead that radial anisotropy is mostly localized beneath the Apennines while most of the remaining European crust and shallow upper mantle is isotropic. We attribute this difference to trade-offs between radial anisotropy and thin (hectometric) layering in previous studies based on least-squares inversions and long period data (&gt;30 s). In contrast, our approach involves a massive data set of short period measurements and a Bayesian inversion that accounts for thin layering. The positive radial anisotropy (VSH &gt; VSV) observed in the lower crust of the Apennines cannot result from thin layering. We rather attribute it to ductile horizontal flow in response to the recent and present-day extension in the region.
APA, Harvard, Vancouver, ISO, and other styles
33

Yuan, Tianson, G. D. Spence, and R. D. Hyndman. "Structure beneath Queen Charlotte Sound from seismic-refraction and gravity interpretations." Canadian Journal of Earth Sciences 29, no. 7 (July 1, 1992): 1509–29. http://dx.doi.org/10.1139/e92-120.

Full text
Abstract:
A combined multichannel seismic reflection and refraction survey was carried out in July 1988 to study the Tertiary sedimentary basin architecture and formation and to define the crustal structure and associated plate interactions in the Queen Charlotte Islands region. Simultaneously with the collection of the multichannel reflection data, refractions and wide-angle reflections from the airgun array shots were recorded on single-channel seismographs distributed on land around Hecate Strait and Queen Charlotte Sound. For this paper a subset of the resulting data set was chosen to study the crustal structure in Queen Charlotte Sound and the nearby subduction zone.Two-dimensional ray tracing and synthetic seismogram modelling produced a velocity structure model in Queen Charlotte Sound. On a margin-parallel line, Moho depth was modelled at 27 km off southern Moresby Island but only 23 km north of Vancouver Island. Excluding the approximately 5 km of the Tertiary sediments, the crust in the latter area is only about 18 km thick, suggesting substantial crustal thinning in Queen Charlotte Sound. Such thinning of the crust supports an extensional mechanism for the origin of the sedimentary basin. Deep crustal layers with velocities of more than 7 km/s were interpreted in the southern portion of Queen Charlotte Sound and beneath the continental margin. They could represent high-velocity material emplaced in the crust from earlier subduction episodes or mafic intrusion associated with the Tertiary volcanics.Seismic velocities of both sediment and upper crust layers are lower in the southern part of Queen Charlotte Sound than in the region near Moresby Island. Well velocity logs indicate a similar velocity variation. Gravity modelling along the survey line parallel to the margin provides additional constraints on the structure. The data require lower densities in the sediment and upper crust of southern Queen Charlotte Sound. The low-velocity, low-density sediments in the south correspond to high-porosity marine sediments found in wells in that region and contrast with lower porosity nonmarine sediments in wells farther north.
APA, Harvard, Vancouver, ISO, and other styles
34

Spence, G. D., and D. T. Long. "Transition from oceanic to continental crustal structure: seismic and gravity models at the Queen Charlotte transform margin." Canadian Journal of Earth Sciences 32, no. 6 (June 1, 1995): 699–717. http://dx.doi.org/10.1139/e95-060.

Full text
Abstract:
Seismic refraction data have been interpreted along a line crossing the Queen Charlotte transform, just north of the triple junction where the Explorer Ridge intersects the continental margin. These data, observed at three onshore sites, help to define the structure of the continental crust beneath the Queen Charlotte sedimentary basin. Sediment thicknesses of up to 4 km were determined from a coincident multichannel reflection line. Beneath the sediments, velocities increase from about 5.5 to 6.3 km·s−1 at 8 km depth, then increase from 6.5 to 6.7 km·s−1 at 18 km depth. Below this depth, the lower crust is partly constrained by Moho wide-angle reflections at the three receiving sites, which indicate a lower crust velocity of 6.8–6.9 km·s−1 and a Moho depth of 26–28 km. The crustal velocity structure is generally similar to that in southern Queen Charlotte Sound. It is in contrast to the velocity structure across Hecate Strait to the north, where a prominent mid-crust interface at ~15 km depth was observed. Seismic velocity models of the continental crust provide constraints that can be used in modelling gravity data to extend structures across the ocean–continent boundary. Along the profile just north of the Queen Charlotte triple junction, the gravity "edge effect" is very subdued, with maximum anomalies of < mGal (1 mGal = 10−3 cm·s−2). To satisfy the gravity data along this profile, the modelled crustal thickness must decrease to oceanic values (5–6 km) over a horizontal distance of 75 (±10) km, which gives a Moho dip of about 14°. Farther north, refraction models across Hecate Strait provide similar constraints for gravity modelling; the gravity data indicate horizontal transition distances from thick to thin crust of 45 (±10) km, comparable with, but slightly smaller than, those nearer the triple junction, and Moho dips at an angle of 18–22°. The greater thinning near the triple junction is consistent with mass flux models in which ductile flow in the lithosphere is induced by the relative motion between oceanic and continental plates.
APA, Harvard, Vancouver, ISO, and other styles
35

Seredkina, L. V. "Surface wave tomography of the arctic from seismic Rayleigh and Love wave group velocity dispersion data." Физика Земли, no. 3 (May 10, 2019): 58–70. http://dx.doi.org/10.31857/s0002-33372019358-70.

Full text
Abstract:
The results of studying the deep structure of the Earth’s crust and upper mantle of the Arctic from surface wave data are presented. For this purpose, based on the frequency-time analysis procedure, a representative dataset of group velocity dispersion curves of seismic Rayleigh and Love waves (1555 and 1265 paths, respectively) in the period range from 10 to 250 s is obtained. With the use of a two-dimensional tomography technique for a spherical surface, group velocity distributions are calculated at separate periods. Overall, 18 maps for each type of surface waves are constructed and the horizontal resolution of the mapping is estimated. For four tectonically different regions of the Arctic, the dispersion curves calculated from the tomography results are inverted for the velocity sections of the SV- and SH-waves. Based on the obtained distributions, the main large-scale features are analyzed in the deep structure of the Earth’s crust and upper mantle of the Arctic, and the revealed velocity irregularities are correlated to various geological structures. The results of the study are of considerable interest for further constructing the three-dimensional model of the shear wave velocity distributions and for studying the anisotropic properties of the upper mantle of the Arctic, as well as for building the geodynamical models of the region.
APA, Harvard, Vancouver, ISO, and other styles
36

Forsyth, D. A., M. Argyle, A. Okulitch, and H. P. Trettin. "New seismic, magnetic, and gravity constraints on the crustal structure of the Lincoln Sea continent–ocean transition." Canadian Journal of Earth Sciences 31, no. 6 (June 1, 1994): 905–18. http://dx.doi.org/10.1139/e94-082.

Full text
Abstract:
A new seismic model of Canada's northeasternmost margin indicates a complex continent to ocean transition with similarities to both volcanic and nonvolcanic margins. The crustal structure beneath the Lincoln Sea includes: (i) a continental shelf with a uniform 3 km thick cover (velocity = 1.8–3.6 km/s) overlying at least 6 km of synrift(?) basinal strata (velocity = 4.3–4.9 km/s) that terminate near the base of the slope; (ii) a thick unit of oceanic layer 2-type velocity (5.4–5.8 km/s) overlying a velocity structure resembling a volcanic margin; (iii) a high-velocity lower crust (> 7.4 km/s) resembling North Atlantic volcanic margins or the Alpha Ridge but different from the Lomonosov Ridge near the North Pole; (iv) a change in velocity structure 15–25 km seaward of the shelf–slope break that coincides with a distinct short-wavelength, high-amplitude magnetic anomaly and the centre of a steep gravity gradient; and (v) a suggested Moho depth of 23 km beneath the Lincoln Sea margin along 63°W.The velocity structure beneath the Lincoln Sea is transitional from thinned continental crust beneath the shelf to a structure with oceanic affinities to the north. Typical, 10 km thick oceanic crust is not apparent beneath the northern Lincoln Sea. The upper crustal structure resembles a rifted, nonvolcanic margin such as the Goban Spur, while the high lower crustal velocity resembles a volcanic margin like the Hatton Bank or an oceanic complex like the Alpha Ridge. North of the seismic survey, the enigmatic Lincoln Sea plateau may be an intruded Lomonosov Ridge segment or a volcanic complex similar to the Alpha Ridge or the Morris Jesup Plateau.
APA, Harvard, Vancouver, ISO, and other styles
37

Young, Mallory K., Nicholas Rawlinson, and Thomas Bodin. "Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust." GEOPHYSICS 78, no. 3 (May 1, 2013): WB49—WB62. http://dx.doi.org/10.1190/geo2012-0356.1.

Full text
Abstract:
Ambient seismic noise tomography has proven to be a valuable tool for imaging 3D crustal shear velocity using surface waves; however, conventional two-stage inversion schemes are severely limited in their ability to properly quantify solution uncertainty and account for inhomogeneous data coverage. In response to these challenges, we developed a two-stage hierarchical, transdimensional, Bayesian scheme for inverting surface wave dispersion information for a 3D shear velocity structure and apply it to ambient seismic noise data recorded in Tasmania, southeast Australia. The key advantages of our Bayesian approach are that the number and distribution of model parameters are implicitly controlled by the data and that the standard deviation of the data noise is treated as an unknown in the inversion. Furthermore, the use of Bayesian inference — which combines prior model information and observed data to quantify the a posteriori probability distribution — means that model uncertainty information can be correctly propagated from the dispersion curves to the phase velocity maps and finally onward to the 1D shear models that are combined to form a composite 3D image. We successfully applied the new method to ambient noise dispersion data (1–12-s period) from Tasmania. The results revealed an east-dipping anomalously low shear velocity zone that extends to at least a 15-km depth and can be related to the accretion of oceanic crust onto the eastern margin of Proterozoic Tasmania during the mid-Paleozoic.
APA, Harvard, Vancouver, ISO, and other styles
38

Lücke, Oscar H., Hans-Jürgen Götze, and Guillermo E. Alvarado. "A Constrained 3D Density Model of the Upper Crust from Gravity Data Interpretation for Central Costa Rica." International Journal of Geophysics 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/860902.

Full text
Abstract:
The map of complete Bouguer anomaly of Costa Rica shows an elongated NW-SE trending gravity low in the central region. This gravity low coincides with the geographical region known as the Cordillera Volcánica Central. It is built by geologic and morpho-tectonic units which consist of Quaternary volcanic edifices. For quantitative interpretation of the sources of the anomaly and the characterization of fluid pathways and reservoirs of arc magmatism, a constrained 3D density model of the upper crust was designed by means of forward modeling. The density model is constrained by simplified surface geology, previously published seismic tomography and P-wave velocity models, which stem from wide-angle refraction seismic, as well as results from methods of direct interpretation of the gravity field obtained for this work. The model takes into account the effects and influence of subduction-related Neogene through Quaternary arc magmatism on the upper crust.
APA, Harvard, Vancouver, ISO, and other styles
39

Al-Amri, Abdullah M. "Lithospheric structure of the Arabian Shield from joint inversion of P- and S-wave receiver functions and dispersion velocities." Acta Geologica Polonica 65, no. 2 (June 1, 2015): 239–55. http://dx.doi.org/10.1515/agp-2015-0009.

Full text
Abstract:
Abstract New velocity models of lithospheric thickness and velocity structure have been developed for the Arabian Shield by three tasks: 1) Computing P-Wave Receiver Functions (PRFs) and S-Wave Receiver Functions (SRFs) for all the broadband stations within the Saudi seismic networks. The number of receiver function waveforms depends on the recording time window and quality of the broadband station. 2) Computing ambient noise correlation Green’s functions for all available station pairs within the Saudi seismic networks to image the shear velocity in the crust and uppermost mantle beneath the Arabian Peninsula. Together they provided hundreds of additional, unique paths exclusively sampling the region of interest. Both phase and group velocities for all the resulting empirical Green’s functions have been measured and to be used in the joint inversion. 3) Jointly inverted the PRFs and SRFs obtained in task 1 with dispersion velocities measured on the Green’s functions obtained in task 2 and with fundamental-mode, Rayleigh-wave, group and phase velocities borrowed from the tomographic studies to precisely determine 1D crustal velocity structure and upper mantle. The analysis of the PRFs revealed values of 25-45 km for crustal thickness, with the thin crust next to the Red Sea and Gulf of Aqaba and the thicker crust under the platform, and Vp/Vs ratios in the 1.70-1.80 range, suggesting a range of compositions (felsic to mafic) for the shield’s crust. The migrated SRFs suggest lithospheric thicknesses in the 80-100 km range for portions of the shield close to the Red Sea and Gulf of Aqaba and near the Arabian Gulf. Generally, the novelty of the velocity models developed under this paper has consisted in the addition of SRF data to extend the velocity models down to lithospheric and sub-lithospheric depths.
APA, Harvard, Vancouver, ISO, and other styles
40

Koulakov, I., I. Zabelina, I. Amanatashvili, and V. Meskhia. "Nature of orogenesis and volcanism in the Caucasus region based on results of regional tomography." Solid Earth Discussions 4, no. 1 (June 7, 2012): 641–62. http://dx.doi.org/10.5194/sed-4-641-2012.

Full text
Abstract:
Abstract. In the paper we discuss the problem of continental collision and related volcanism in the Caucasus and surrounding areas based on analysis of the upper mantle seismic structure in a recently derived model by Koulakov (2011). This model, which includes P- and S-velocity anomalies down to 1000 km depth, was obtained from tomographic inversion of worldwide travel time data from the catalogue of the International Seismological Center. It can be seen that the Caucasus region is squeezed between two continental plates, Arabian to the south and European to the north, which are displayed in the tomographic model as high-velocity bodies down to about 200–250 km depth. On the contrary, a very bright low-velocity anomaly beneath the collision area implies that the lithosphere in this zone is very thin, which is also supported by strong deformations indicating weak properties of the lithosphere. In the contact between stable continental and collision zones we observe a rather complex alternation of seismic anomalies having the shapes of sinking drops. We propose that the convergence process causes crustal thickening and transformation of the lower crust material into the dense eclogite. When achieving a critical mass, the dense eclogitic drops trigger detachment of the mantle lithosphere and its delamination. The observed high-velocity bodies in the upper mantle may indicate the parts of the descending mantle lithosphere which were detached from the edges of the continental lithosphere plates. Very thin or even absent mantle part of the lithosphere leads to the presence of hot asthenosphere just below the crust. The crustal shortening and eclogitization of the lower crustal layer leads to the dominantly felsic composition of the crust which is favorable for the upward heat transport from the mantle. This, and also the factor of frictional heating, may cause to the origin of volcanic centers in the Caucasus and surrounding collisional areas.
APA, Harvard, Vancouver, ISO, and other styles
41

Mahatsente, Rezene. "Plate Coupling Mechanism of the Central Andes Subduction: Insight from Gravity Model." Journal of Geodetic Science 9, no. 1 (January 1, 2019): 13–21. http://dx.doi.org/10.1515/jogs-2019-0002.

Full text
Abstract:
Abstract The Central Andes experienced major earthquake (Mw =8.2) in April 2014 in a region where the giant 1877 earthquake (Mw=8.8) occurred. The 2014 Iquique earthquake did not break the entire seismic gap zones as previously predicted. Geodetic and seismological observations indicate a highly coupled plate interface. To assess the locking mechanism of plate interfaces beneath Central Andes, a 2.5-D gravity model of the crust and upper mantle structure of the central segment of the subduction zone was developed based on terrestrial and satellite gravity data from the LAGEOS, GRACE and GOCE satellite missions. The densities and major structures of the gravity model are constrained by velocity models from receiver function and seismic tomography. The gravity model defined details of crustal and slab structure necessary to understand the cause of megathrust asperity generation. The densities of the upper and lower crust in the fore-arc (2970 – 3000 kg m−3) are much higher than the average density of continental crust. The high density bodies are interpreted as plutonic or ophiolitic structures emplaced onto continental crust. The plutonic or ophiolitic structures may be exerting pressure on the Nazca slab and lock the plate interfaces beneath the Central Andes subduction zone. Thus, normal pressure exerted by high density fore-arc structures and buoyancy force may control plate coupling in the Central Andes. However, this interpretation does not exclude other possible factors controlling plate coupling in the Central Andes. Seafloor roughness and variations in pore-fluid pressure in sediments along subduction channel can affect plate coupling and asperity generation.
APA, Harvard, Vancouver, ISO, and other styles
42

El Khrepy, Sami, Ivan Koulakov, Nassir Al-Arifi, and Alexey G. Petrunin. "Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data." Solid Earth 7, no. 3 (June 20, 2016): 965–78. http://dx.doi.org/10.5194/se-7-965-2016.

Full text
Abstract:
Abstract. We present the first 3-D model of seismic P and S velocities in the crust and uppermost mantle beneath the Gulf of Aqaba and surrounding areas based on the results of passive travel time tomography. The tomographic inversion was performed based on travel time data from ∼ 9000 regional earthquakes provided by the Egyptian National Seismological Network (ENSN), and this was complemented with data from the International Seismological Centre (ISC). The resulting P and S velocity patterns were generally consistent with each other at all depths. Beneath the northern part of the Red Sea, we observed a strong high-velocity anomaly with abrupt limits that coincide with the coastal lines. This finding may indicate the oceanic nature of the crust in the Red Sea, and it does not support the concept of gradual stretching of the continental crust. According to our results, in the middle and lower crust, the seismic anomalies beneath the Gulf of Aqaba seem to delineate a sinistral shift (∼ 100 km) in the opposite flanks of the fault zone, which is consistent with other estimates of the left-lateral displacement in the southern part of the Dead Sea Transform fault. However, no displacement structures were visible in the uppermost lithospheric mantle.
APA, Harvard, Vancouver, ISO, and other styles
43

Magrini, Fabrizio, Giovanni Diaferia, Islam Fadel, Fabio Cammarano, Mark van der Meijde, and Lapo Boschi. "3-D shear wave velocity model of the lithosphere below the Sardinia–Corsica continental block based on Rayleigh-wave phase velocities." Geophysical Journal International 220, no. 3 (December 24, 2019): 2119–30. http://dx.doi.org/10.1093/gji/ggz555.

Full text
Abstract:
SUMMARY Rayleigh-wave dispersion curves from both ambient noise and teleseismic events allow us to provide the first high-resolution 3-D shear wave velocity (VS) model of the crust and upper mantle below the Sardinia–Corsica microplate, an important continental block for understanding the evolution of the central-western Mediterranean. For a wide range of periods (from 3 to ∼30 s), the phase velocities of the study area are systematically higher than those measured within the Italian peninsula, in agreement with a colder geotherm. Relative and absolute variations in the VS allow us to detect a very heterogeneous upper crust down to 8 km, as opposed to a relatively homogeneous middle and lower crust. The isosurface at 4.1 km s−1 is consistent with a rather flat Moho at a depth of 28.0 ± 1.8 km (2σ). The lithospheric mantle is relatively cold, and we constrain the thermal lithosphere–asthenosphere boundary at ∼100 km. We find our estimate consistent with a continental geotherm based on a surface heat flow of 60 mW m−2. Our results suggest that most of the lithosphere endured the complex history of deformation experienced by the study area and imply, in general, that deep tectonic processes do not easily destabilize the deeper portion of the continental lithosphere, despite leaving a clear surface signature.
APA, Harvard, Vancouver, ISO, and other styles
44

Louie, John N., Sathish K. Pullammanappallil, and William Honjas. "Velocity models for the highly extended crust of Death Valley, California." Geophysical Research Letters 24, no. 7 (April 1, 1997): 735–38. http://dx.doi.org/10.1029/97gl00574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yelkenci‐Necmioğlu, Seda, and Mustafa Aktar. "Development and Validation of a 3D Seismic‐Velocity Model for the Crust in Eastern Marmara." Bulletin of the Seismological Society of America 107, no. 6 (September 26, 2017): 2994–3003. http://dx.doi.org/10.1785/0120170050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ormeni, Rrapo. "P, S wave velocity model of the crust and upper most mantle of Albania region." Tectonophysics 497, no. 1-4 (January 2011): 114–21. http://dx.doi.org/10.1016/j.tecto.2010.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shapiro, N. M., and M. H. Ritzwoller. "Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle." Geophysical Journal International 151, no. 1 (October 2002): 88–105. http://dx.doi.org/10.1046/j.1365-246x.2002.01742.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pointing, A. J., and P. K. H. Maguire. "A seismic velocity model for the crust in northern Kenya derived from local earthquake data." Journal of African Earth Sciences (and the Middle East) 11, no. 3-4 (January 1990): 401–9. http://dx.doi.org/10.1016/0899-5362(90)90019-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Janik, T., V. Starostenko, P. Aleksandrowski, T. Yegorova, W. Czuba, P. Środa, A. Murovskaya, et al. "TTZ-SOUTH seismic experiment." Geofizicheskiy Zhurnal 43, no. 2 (June 3, 2021): 28–44. http://dx.doi.org/10.24028/gzh.v43i2.230189.

Full text
Abstract:
The wide-angle reflection and refraction (WARR) TTZ-South transect carried out in 2018 crosses the SW region of Ukraine and the SE region of Poland. The TTZ-South profile targeted the structure of the Earth’s crust and upper mantle of the Trans-European Suture Zone, as well as the southwestern segment of the East European Craton (slope of the Ukrainian Shield). The ~550 km long profile (~230 km in Poland and ~320 km in western Ukraine) is an extension of previously realized projects in Poland, TTZ (1993) and CEL03 (2000). The deep seismic sounding study along the TTZ-South profile using TEXAN and DATA-CUBE seismic stations (320 units) made it possible to obtain high-quality seismic records from eleven shot points (six in Ukraine and five in Poland). This paper presents a smooth P wave velocity model based on first-arrival travel-time inversion using the FAST (First Arrival Seismic Tomography) code. The obtained image represents a preliminary velocity model which, according to the P wave velocities, consists of a sedimentary layer and the crystalline crust that could comprise upper, middle and lower crustal layers. The Moho interface, approximated by the 7.5 km/s isoline, is located at 45—47 km depth in the central part of the profile, shallowing to 40 and 37 km depth in the northern (Radom-Łysogуry Unit, Poland) and southern (Volyno-Podolian Monocline, Ukraine) segments of the profile, respectively. A peculiar feature of the velocity cross-section is a number of high-velocity bodies distinguished in the depth range of 10—35 km. Such high-velocity bodies were detected previously in the crust of the Radom-Łysogуry Unit. These bodies, inferred at depths of 10—35 km, could be allochthonous fragments of what was originally a single mafic body or separate mafic bodies intruded into the crust during the break-up of Rodinia in the Neoproterozoic, which was accompanied by considerable rifting. The manifestations of such magmatism are known in the NE part of the Volyno-Podolian Monocline, where the Vendian trap formation occurs at the surface.
APA, Harvard, Vancouver, ISO, and other styles
50

Zelt, B. C., R. M. Ellis, and R. M. Clowes. "Crustal velocity structure in the eastern Insular and southernmost Coast belts, Canadian Cordillera." Canadian Journal of Earth Sciences 30, no. 5 (May 1, 1993): 1014–27. http://dx.doi.org/10.1139/e93-085.

Full text
Abstract:
Seismic refraction data recorded along a 330 km cross-strike profile through the eastern Insular and southernmost Coast belts of the Canadian Cordillera are interpreted using an iterative combination of traveltime inversion and amplitude forward modelling. The resultant model is characterized by large lateral variations in velocity. The most significant of these variations is a decrease in upper and middle crustal velocities to the east of the surface trace of the Harrison fault, which likely represents the transition from crust of the Insular superterrane to that of the Intermontane superterrane. This interpretation is consistent with some present geological models that place the possible (probable) location of the suture between the two superterranes less than 20 km east of the Harrison fault. Velocities at the base of the upper crust average 6.4 and 6.2 km/s west and east of the fault, respectively. Mid-crustal velocities average 6.6–6.9 km/s to the west and 6.35–6.45 km/s to the east of the fault. Lower crustal velocities also decrease slightly to the east. Other features of the velocity model include (i) a thin near-surface layer with velocities between 2.5 and 6.1 km/s; (ii) upper crustal thickness of 12.5 km, thinning to 8 km at the eastern boundary of the Western Coast Belt (WCB); (iii) high velocity (6.6–6.9 km/s) mid-crustal layer west of the Harrison fault extending to 21 km depth; (iv) high-velocity (6.75–7.1 km/s) lower crustal layer; (v) low-velocity gradient upper mantle with depth to Moho at 34–37 km beneath most of the Coast Belt, decreasing to 30 km beneath the eastern Insular Belt, a depth much less than previous estimates. The inferred crustal velocity structure beneath the WCB is consistent with the three-layer electrical conductivity structure for this area derived from magnetotelluric surveys. The association of high resistivities with the upper crust suggests that the upper 8–12 km represents the massive cover of plutonic rocks which characterizes the WCB. Middle and lower crustal velocities beneath the WCB are consistent with Wrangellian velocities found beneath Vancouver Island, suggesting Wrangellia may extend at depth eastward as far as the Harrison fault.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography