Journal articles on the topic 'Venturi nozzle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Venturi nozzle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Etheridge, Robert E., Alvin R. Womac, and Thomas C. Mueller. "Characterization of the Spray Droplet Spectra and Patterns of Four Venturi-Type Drift Reduction Nozzles." Weed Technology 13, no. 4 (1999): 765–70. http://dx.doi.org/10.1017/s0890037x00042202.
Full textPANDA, ANTON, VOLODYMYR MYKOLAJOVYCH ANISIMOV, VOLODYMYR VOLODYMYROVYCH ANISIMOV, IVETA PANDOVA, ANTON KLYMENKO, and PETER ERMAKOV. "CAVITATION NOZZLES WITH EXPANSION CHAMBER." MM Science Journal 2022, no. 4 (2022): 6020–25. http://dx.doi.org/10.17973/mmsj.2022_11_2022050.
Full textO’Hern, Hannah, Timothy Murphy, Xiang Zhang, James Liburdy, and Bahman Abbasi. "A Design Method for Low-Pressure Venturi Nozzles." Applied Mechanics 3, no. 2 (2022): 390–411. http://dx.doi.org/10.3390/applmech3020024.
Full textKassem, F. A., A. A. Zahran, and M. Adel. "Study of Effect of Convergence Section Geometric on the Performance of a Sonic Nozzle." Journal of Applied Fluid Mechanics 18, no. 7 (2025): 1669–82. https://doi.org/10.47176/jafm.18.7.3294.
Full textKhudhori, Muhrom. "OPTIMALISASI LETAK NOZZLE VENTURI MIXER PADA GENSET BERBAHAN BAKAR BIOGAS." Conference SENATIK STT Adisutjipto Yogyakarta 1 (December 3, 2013): 45. http://dx.doi.org/10.28989/senatik.v1i0.53.
Full textIvanitsky, G. K., L. Y. Avdeyeva, and A. A. Makarenko. "Using the effects of hydrodynamic cavitation for purposeful dynamical action on the supramolecular structures." Physics of Aerodisperse Systems, no. 53 (June 15, 2021): 142–51. http://dx.doi.org/10.18524/0367-1631.2016.53.159442.
Full textXing, Zhenqiang, Gang Wang, Jiace Guo, et al. "Improved Pulsed-Jet Cleaning of Cone Filter Cartridges Using an Annular-Slit Nozzle." Atmosphere 14, no. 9 (2023): 1332. http://dx.doi.org/10.3390/atmos14091332.
Full textLiu, Changxi, Jun Hu, Yufei Li, Shengxue Zhao, Qingda Li, and Wei Zhang. "Numerical Simulation on Air-Liquid Transient Flow and Regression Model on Air-Liquid Ratio of Air Induction Nozzle." Agronomy 13, no. 1 (2023): 248. http://dx.doi.org/10.3390/agronomy13010248.
Full textWolfe, Timothy R., Todd A. Hillman, Philip J. Bossart, and David W. Kennedy. "The Comparative Risks of Bacterial Contamination between a Venturi Atomizer and a Positive Displacement Atomizer." American Journal of Rhinology 16, no. 4 (2002): 181–86. http://dx.doi.org/10.1177/194589240201600401.
Full textThoharudin, Sudarja, Sunardi, Fitroh Anugrah Kusuma Yu dha, Arif Setyo Nugroho, and Aqiel Zahrivan Asyara Pudjianto. "Design and Simulation of Double-Nozzle Venturi Bubble Generator for Aeration System." BIO Web of Conferences 137 (2024): 03009. http://dx.doi.org/10.1051/bioconf/202413703009.
Full textZeman, Radek, and Pavel Rudolf. "Hydrodynamic cavitation in minifluidic Venturi nozzle." EPJ Web of Conferences 299 (2024): 01041. http://dx.doi.org/10.1051/epjconf/202429901041.
Full textLizzoli, Matteo, Walter Borreani, Francesco Devia, Guglielmo Lomonaco, and Mariano Tarantino. "Preliminary CFD Assessment of an Experimental Test Facility Operating with Heavy Liquid Metals." Science and Technology of Nuclear Installations 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/1949673.
Full textYin, Zhao-Qin, Dong-Sheng Li, Jin-Long Meng, and Ming Lou. "Discharge coefficient of small sonic nozzles." Thermal Science 18, no. 5 (2014): 1505–10. http://dx.doi.org/10.2298/tsci1405505y.
Full textChoi, Myeung Hwan, Yoojin Oh, and Sungwoo Park. "Investigation of Spray Characteristics for Detonability: A Study on Liquid Fuel Injector and Nozzle Design." Aerospace 11, no. 6 (2024): 421. http://dx.doi.org/10.3390/aerospace11060421.
Full textRozhnov, M. S., Yu V. Kuzmenko, D. M. Melnyk, et al. "State Primary Standard of Gas Volume and Flow Rate Units for the Pressure Range of 1 MPa to 5 MPa (PVTt-15)." Metrology and instruments, no. 2 (May 21, 2020): 3–12. http://dx.doi.org/10.33955/2307-2180(2)2020.3-12.
Full textHolder, G. A., and J. M. Leow. "IN-SEWER OXYGENATION OF WASTEWATER USING VENTURI SIDE-STREAM DISSOLVERS." Water Science and Technology 30, no. 1 (1994): 185–94. http://dx.doi.org/10.2166/wst.1994.0020.
Full textBae, Hyunwoo, and Jaeyong Sung. "An Experimental Analysis of Water–Air Two-Phase Flow Pattern and Air Entrainment Rate in Self-Entrainment Venturi Nozzles." Energies 14, no. 9 (2021): 2664. http://dx.doi.org/10.3390/en14092664.
Full textYang, Xin-Zhi, Chen-Yang Du, Yuan-Jun Liu, Yan Tang, Xi-Lin Dong, and An-Chi Huang. "High-Pressure Fine Water Mist Nozzle Retrofit Experiment and Numerical Simulation Study." Processes 13, no. 3 (2025): 642. https://doi.org/10.3390/pr13030642.
Full textVieira, Bruno C., Thomas R. Butts, Andre O. Rodrigues, Jerome J. Schleier, Bradley K. Fritz, and Greg R. Kruger. "Particle drift potential of glyphosate plus 2,4-D choline pre-mixture formulation in a low-speed wind tunnel." Weed Technology 34, no. 4 (2020): 520–27. http://dx.doi.org/10.1017/wet.2020.15.
Full textAnanthanarayanan, Nochur V., and Shekar Viswanathan. "Effect of Nozzle Arrangement on Venturi Scrubber Performance." Industrial & Engineering Chemistry Research 38, no. 12 (1999): 4889–900. http://dx.doi.org/10.1021/ie9902131.
Full textJung, Seung Wan, Sang Hoon Park, Myung Jun Song, and Yeol Lee. "Flow Characteristics of Double-Venturi Abrasive Blasting Nozzle." Korean Society of Manufacturing Process Engineers 17, no. 2 (2018): 8–14. http://dx.doi.org/10.14775/ksmpe.2018.17.2.008.
Full textManzano, Juan, Carmen V. Palau, M. de Azevedo Benito, V. do Bomfim Guilherme, and Denise V. Vasconcelos. "Geometry and head loss in Venturi injectors through computational fluid dynamics." Engenharia Agrícola 36, no. 3 (2016): 482–91. http://dx.doi.org/10.1590/1809-4430-eng.agric.v36n3p482-491/2016.
Full textXiang, Yang, Xiao Min Jiang, and Min Ye Chen. "New Biogas Heater Burner 3D Virtual Design." Advanced Materials Research 724-725 (August 2013): 274–78. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.274.
Full textGONG, Fangqi, and Hitoshi SOYAMA. "117 Effect of DownStream Geometry of Venturi Type Nozzle on Cavitation Aggressivity." Proceedings of Conference of Tohoku Branch 2012.47 (2012): 40–41. http://dx.doi.org/10.1299/jsmeth.2012.47.40.
Full textRofik, Denis Abdur. "PERANCANGAN DAN ANALISIS ALAT MICROBUBBLE GENERATOR (MBG) UNTUK AERASI KOLAM IKAN TIPE NOZZEL VENTURI." Gorontalo Journal of Infrastructure and Science Engineering 3, no. 2 (2020): 24. http://dx.doi.org/10.32662/gojise.v3i2.1206.
Full textAvdeieiva, L., and A. Makarenko. "Efficiency of using Venturi nozzles for receiving aqueous plant extracts." Scientific Works of National University of Food Technologies 28, no. 6 (2022): 64–72. http://dx.doi.org/10.24263/2225-2924-2022-28-6-8.
Full textArias, Diego A., and Timothy A. Shedd. "CFD Analysis of Compressible Flow Across a Complex Geometry Venturi." Journal of Fluids Engineering 129, no. 9 (2007): 1193–202. http://dx.doi.org/10.1115/1.2754321.
Full textTomov, P., A. Danlos, S. Khelladi, F. Ravelet, C. Sarraf, and F. Bakir. "POD study of aerated cavitation in a venturi nozzle." Journal of Physics: Conference Series 656 (December 3, 2015): 012171. http://dx.doi.org/10.1088/1742-6596/656/1/012171.
Full textLee, Chang Hun, Hong Choi, Dong-Wook Jerng, Dong Eok Kim, Somchai Wongwises, and Ho Seon Ahn. "Experimental investigation of microbubble generation in the venturi nozzle." International Journal of Heat and Mass Transfer 136 (June 2019): 1127–38. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.03.040.
Full textChemezov, Denis Alexandrovich, and Anzhelika Vladimirovna Bayakina. "SIMULATION MODELING OF WATER FLOW IN THE VENTURI NOZZLE." Theoretical & Applied Science 15, no. 07 (2014): 25–29. http://dx.doi.org/10.15863/tas.2014.07.15.4.
Full textAvdieieva, L. Yu, and V. Yu Pavlyk. "THE STUDY OF THE INFLUENCE OF HYDRODYNAMIC CAVITATION EFFECTS ON THE PROPERTIES OF COMPLEX MULTICOMPONENT SYSTEMS." Thermophysics and Thermal Power Engineering 44, no. 2 (2022): 21–28. https://doi.org/10.31472/ttpe.2.2022.3.
Full textBaha, Vadym, Ján Piteľ, and Ivan Pavlenko. "Analytical, Numerical, and Experimental Studies of the Working Process in a Pneumatic Abrasive Installation." Applied Sciences 14, no. 24 (2024): 11728. https://doi.org/10.3390/app142411728.
Full textWu, Changzhong, Xingyu Zhu, Dayang Ren, Yuanyuan Lu, Yongzhuo Wang, and Haibo An. "Structural optimization design of nozzle for dry ice cleaning hub fixture." Journal of Physics: Conference Series 2951, no. 1 (2025): 012016. https://doi.org/10.1088/1742-6596/2951/1/012016.
Full textChoi, Deok-Gyu, Thanh-Hoang Phan, Sung-Ho Park, Dong-Hyun Kim, and Warn-Gyu Park. "NUMERICAL ANALYSIS OF VENTURI NOZZLE CAVITATION IN HIGH TEMPERATURE FLUID." Journal of Computational Fluids Engineering 26, no. 2 (2021): 39–49. http://dx.doi.org/10.6112/kscfe.2021.26.2.039.
Full textJarrahbashi, D., S. R. Pidaparti, and D. Ranjan. "Nucleation of super-critical carbon dioxide in a venturi nozzle." Nuclear Engineering and Design 310 (December 2016): 69–82. http://dx.doi.org/10.1016/j.nucengdes.2016.09.022.
Full textTomov, P., S. Khelladi, F. Ravelet, C. Sarraf, F. Bakir, and P. Vertenoeuil. "Experimental study of aerated cavitation in a horizontal venturi nozzle." Experimental Thermal and Fluid Science 70 (January 2016): 85–95. http://dx.doi.org/10.1016/j.expthermflusci.2015.08.018.
Full textTsirlis, Michail, and Nikolaos Michailidis. "Low-pressure gas atomization of aluminum through a Venturi nozzle." Advanced Powder Technology 31, no. 4 (2020): 1720–27. http://dx.doi.org/10.1016/j.apt.2020.02.011.
Full textMamytbekov, Galymzhan, Nurlan Shayakhmetov, Daniar Aizhulov, Maksat Kurmanseiit, and Madina Tungatarova. "Transport of Steam-Gas Mixture in Hydrodynamic Devices: A Numerical Study of Steam Reforming of Methane." Processes 11, no. 10 (2023): 2991. http://dx.doi.org/10.3390/pr11102991.
Full textBobovnik, Gregor, Bodo Mickan, Peter Sambol, Rémy Maury, and Jože Kutin. "Investigation of the discharge coefficient in the laminar boundary layer regime of critical flow Venturi nozzles calibrated with different gases including hydrogen." Measurement 217, no. 113134 (2023): 7. https://doi.org/10.1016/j.measurement.2023.113134.
Full text.T, Arvind, and Swaminathan M. R. "Computational Fluid Dynamic Analysis of Compressible Flow across a Complex Geometry Carburettor Venturi." International Journal of Emerging Research in Management and Technology 6, no. 7 (2018): 83. http://dx.doi.org/10.23956/ijermt.v6i7.189.
Full textSuryavanshi, Yogesh, Ravikant Raju, and Vinod Deshmukh. "Enhanced Vacuum for brake booster with Venturi effect." ARAI Journal of Mobility Technology 5, no. 1 (2025): 1481–89. https://doi.org/10.37285/ajmt.5.1.9.
Full textTAKEYA, Koji, Masami KAWANARI, Hiroaki KONISHI, Ichiro NAKAJIMA, and Keikichi FUJIKAWA. "Hydrogenation of Soybean Oil by Loop Reactor Equipped with Venturi Nozzle." NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI 42, no. 4 (1995): 237–47. http://dx.doi.org/10.3136/nskkk.42.237.
Full textLim, Ji-Young, Hyun-Sik Kim, Soo-Young Park, and Jin-Han Kim. "Evaluation of characteristics for microbubble generation according to venturi nozzle specification." Journal of the Korea Academia-Industrial cooperation Society 16, no. 9 (2015): 6397–402. http://dx.doi.org/10.5762/kais.2015.16.9.6397.
Full textJiří, Kozák, Rudolf Pavel, Huzlík Rostislav, et al. "Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation." EPJ Web of Conferences 143 (2017): 02055. http://dx.doi.org/10.1051/epjconf/201714302055.
Full textBrunhart, Maxwell, Celia Soteriou, Manolis Gavaises, et al. "Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle." Physics of Fluids 32, no. 8 (2020): 083306. http://dx.doi.org/10.1063/5.0015487.
Full textВоронько, Виталий Владимирович, Дмитрий Андреевич Брега та Денис Юрьевич Сахаров. "ВИЗНАЧЕННЯ РЕЖИМІВ РОЗПИЛУ УДОБРЮЮЧИХ ХІМІЧНИХ РЕЧОВИН ДЕФЛЕКТОРНИМ ПУЛЬВЕРИЗАТОРОМ В РАМКАХ КОНЦЕПЦІЇ ТОЧНОГО ЗЕМЛЕРОБСТВА". Aerospace Technic and Technology, № 4 (27 серпня 2017): 33–39. http://dx.doi.org/10.32620/aktt.2017.4.03.
Full textBenghalia, Imane, Rachid Boucetta, and Mohammed Zamoum. "Cavitating flow through a Venturi using CFD: effects of inlet and outlet pressures." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 2 (2024): e9136. http://dx.doi.org/10.54021/seesv5n2-327.
Full textWang, Yi, and De Ping Zhu. "A New Spray Desuperheater Structure Design." Advanced Materials Research 718-720 (July 2013): 1630–33. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.1630.
Full textDa Costa, Felipe Orlando, Jéssica Trindade Martins, Caio Guilherme Sales Ferreira, Giovanna Kellen Tavares de Andrade, Felipe Leonardo Barcelos Mateus, and Renata de Aquino Brito Lima Corrêa. "EXPERIMENTAL AND NUMERICAL STUDY OF A VENTURI TUBE AS A DIDACTIC TOOL FOR CHEMICAL ENGINEERING LEARNING." Journal of Engineering and Exact Sciences 6, no. 3 (2020): 0409–15. http://dx.doi.org/10.18540/jcecvl6iss3pp0409-0415.
Full textVien, Tran Tri, Hideharu TAKAHASHI, Tadashi NARABAYASHI, and Hiroshige KIKURA. "Effects of Double Stage Venturi Scrubber Nozzle on the Liquid Injected Flow." Proceedings of the Fluids engineering conference 2020 (2020): OS14–02. http://dx.doi.org/10.1299/jsmefed.2020.os14-02.
Full text