To see the other types of publications on this topic, follow the link: Vertex model.

Journal articles on the topic 'Vertex model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vertex model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bogoliubov, N. M. "Four-vertex model." Journal of Mathematical Sciences 151, no. 2 (May 2008): 2816–28. http://dx.doi.org/10.1007/s10958-008-9000-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Borodin, Alexei, Ivan Corwin, and Vadim Gorin. "Stochastic six-vertex model." Duke Mathematical Journal 165, no. 3 (February 2016): 563–624. http://dx.doi.org/10.1215/00127094-3166843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takagi, Taichiro. "Vertex Type Fractions of the Six-Vertex Model atΔ=-1." Journal of the Physical Society of Japan 67, no. 8 (August 15, 1998): 2653–57. http://dx.doi.org/10.1143/jpsj.67.2653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eloranta, Kari. "The bounded eight-vertex model." Theoretical Computer Science 303, no. 2-3 (July 2003): 539–52. http://dx.doi.org/10.1016/s0304-3975(02)00505-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

OKUDA, Satoru. "Versatile three-dimensional vertex model." Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2019.31 (2019): 2E12. http://dx.doi.org/10.1299/jsmebio.2019.31.2e12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, F. Y., and H. Kunz. "The Odd Eight-Vertex Model." Journal of Statistical Physics 116, no. 1-4 (August 2004): 67–78. http://dx.doi.org/10.1023/b:joss.0000037206.47155.58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nolden, I. M. "The asymmetric six-vertex model." Journal of Statistical Physics 67, no. 1-2 (April 1992): 155–201. http://dx.doi.org/10.1007/bf01049030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piękoś, K., J. Tarasiuk, K. Wierzbanowski, and B. Bacroix. "Stochastic vertex model of recrystallization." Computational Materials Science 42, no. 1 (March 2008): 36–42. http://dx.doi.org/10.1016/j.commatsci.2007.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SAMAJ, L., and M. KOLESÍK. "ON RELATION BETWEEN SYMMETRIC VERTEX MODEL AND ISING MODEL ON THE SQUARE LATTICE." Modern Physics Letters B 05, no. 16 (July 10, 1991): 1075–80. http://dx.doi.org/10.1142/s0217984991001313.

Full text
Abstract:
The symmetric version of the two-state vertex model on the square lattice is studied. It is shown that there exists a manifold in the vertex weights parameter space on which the model can be mapped onto the Ising model in a field. The choices of symmetric vertex weights for which the equivalence holds in the whole temperature range are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

LIN, K. Y., and F. Y. WU. "GENERAL 8-VERTEX MODEL ON THE HONEYCOMB LATTICE: EQUIVALENCE WITH AN ISING MODEL." Modern Physics Letters B 04, no. 05 (March 10, 1990): 311–16. http://dx.doi.org/10.1142/s0217984990000398.

Full text
Abstract:
It is shown that the general 8-vertex model on the honeycomb lattice is always reducible to an Ising model in a nonzero but generally complex magnetic field. In the most general case of the staggered 8-vertex model characterized by 16 independent vertex weights, the equivalent Ising model has three anisotropic interactions and a staggered magnetic field which assumes two different values on the two sublattices.
APA, Harvard, Vancouver, ISO, and other styles
11

Destri, C., H. J. de Vega, and H. J. Giacomini. "The six-vertex model eigenvectors as critical limit of the eight-vertex model bethe ansatz." Journal of Statistical Physics 56, no. 3-4 (August 1989): 291–308. http://dx.doi.org/10.1007/bf01044438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Indrayasa, I. Gede Ngurah Arya, M. Suyanto, and Hanif Al Fatta. "Parameter Vertex Color Pada Animation Procedural 3D Model Vegetasi Musaceae." Techno.Com 16, no. 1 (January 17, 2017): 60–69. http://dx.doi.org/10.33633/tc.v16i1.1326.

Full text
Abstract:
Penggunaan vegetasi untuk industri film, video game, simulasi, dan arsitektur visualisas merupakan faktor penting untuk menghasilkan adegan pemandangan alam lebih hidup. Penelitian ini bertujuan untuk mengetahui pengaruh dari vertex color terhadap efek angin pada animasi prosedural 3d model vegetasi musaceae serta parameter vertex color yang tepat untuk menghasilkan animasi 3d model vegetasi musaceae realistis. Hasil akhir yang di capai adalah meneliti apakah perubahan parameter vertex color dapat mempengaruhi bentuk animasi procedural 3d vegetasi musaceae serta pengaruh dari vertex color terhadap efek angin pada animasi prosedural 3d model vegetasi Musaceae. Berdasarkan pengamat dan perbandingan pada pengujian 5 sample vertex color diperoleh hasil bahwa perubahan parameter vertex color dapat mempengaruhi bentuk animasi procedural 3d vegetasi musaceae serta di peroleh kesimpulan Sample No.5 merupakan parameter vertex color yang tepat untuk menghasilkan animasi 3d model vegetasi Musaceae yang realistis. Kata kunci—3D, Animasi Prosedural, Vegetation
APA, Harvard, Vancouver, ISO, and other styles
13

RASHID, A. M. HARUN AR, and KH SAIFUL ISLAM. "NONSTANDARD MODEL COUPLINGS IN WWV VERTEX." International Journal of Modern Physics A 09, no. 16 (June 30, 1994): 2783–804. http://dx.doi.org/10.1142/s0217751x9400114x.

Full text
Abstract:
Using the nonstandard model vertex for WWV coupling, the helicity amplitudes, differential cross-sections and total cross-sections for the process e+e−→W+W− as functions of κV and λV have been calculated, and compared with SM predictions. A similar calculation has also been done for the process eγ→Wνe.
APA, Harvard, Vancouver, ISO, and other styles
14

Kassenova, T. K., P. Yu Tsyba, and O. V. Razina. "Eight-vertex model over Grassmann algebra." Journal of Physics: Conference Series 1391 (November 2019): 012035. http://dx.doi.org/10.1088/1742-6596/1391/1/012035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kitazawa, Yoshihisa. "Vertex operators in IIB matrix model." Journal of High Energy Physics 2002, no. 04 (April 3, 2002): 004. http://dx.doi.org/10.1088/1126-6708/2002/04/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bogoliubov, N. M. "Four-vertex model and random tilings." Theoretical and Mathematical Physics 155, no. 1 (April 2008): 523–35. http://dx.doi.org/10.1007/s11232-008-0043-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Korepin, V. E. "Eight-vertex model of the quasicrystal." Physics Letters A 118, no. 6 (October 1986): 285–86. http://dx.doi.org/10.1016/0375-9601(86)90360-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Piękoś, Krystian, Jacek Tarasiuk, Krzysztof Wierzbanowski, and Brigitte Bacroix. "Mixed Vertex - Monte Carlo Model of Recrystallization." Materials Science Forum 558-559 (October 2007): 1151–56. http://dx.doi.org/10.4028/www.scientific.net/msf.558-559.1151.

Full text
Abstract:
The generalized deterministic vertex model was successfully used to study the recrystallization process and the corresponding results were published elsewhere [1]. In its classical form the vertex model has analytical formulation, basing on the total energy (i.e. boundary energy and stored energy) minimization. A change of grain boundary configuration in classical vertex model is found by the calculation of vertex velocities. Consequently, a global and complex system of equations has to be solved in each step. In order to simplify calculations and to handle the problem in a more flexible way, the statistical model was proposed. Typical elements of Monte Carlo algorithm were incorporated into the vertex model: a random (and small) modification of microstructure is accepted with the probability proportional to Boltzmann factor. This approach is closer to the stochastic nature of recrystallization process. The model was used to study the recrystallization of 70% and 90% cold rolled polycrystalline copper. It predicts correctly recrystallization textures for high and low strains.
APA, Harvard, Vancouver, ISO, and other styles
19

Stefánsson, Sigurdur Ö., and Erik Thörnblad. "Almost sure convergence of vertex degree densities in the vertex splitting model." Stochastic Models 32, no. 4 (May 27, 2016): 575–92. http://dx.doi.org/10.1080/15326349.2016.1182029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hikami, Kazuhiro, and Yasushi Komori. "Boundary Boltzmann Weight for the Eight-Vertex SOS Model: Vertex-IRF Correspondence." Journal of the Physical Society of Japan 67, no. 1 (January 15, 1998): 78–82. http://dx.doi.org/10.1143/jpsj.67.78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bariev, R. Z., and T. T. Truong. "Exactly solvable two-sublattice vertex model with interactions of vertex-arrow type." Physics Letters A 164, no. 5-6 (April 1992): 439–42. http://dx.doi.org/10.1016/0375-9601(92)90110-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wen, Hao, Jian Gao, and Xin Chen. "Polygonal model based cutter location data generation with offset error compensation." Rapid Prototyping Journal 22, no. 3 (April 18, 2016): 559–68. http://dx.doi.org/10.1108/rpj-01-2015-0001.

Full text
Abstract:
Purpose As manufacturing technology has developed, digital models from advanced measuring devices have been widely used in manufacturing sectors. To speed up the production cycle and reduce extra errors introduced in surface reconstruction processes, directly machining digital models in the polygonal stereolithographyformat has been considered as an effective approach in rapid digital manufacturing. In machining processes, Cutter Location (CL) data for numerical control (NC) machining is generated usually from an offset model. This model is created by offsetting each vertex of the original model along its vertex vector. However, this method has the drawback of overcut to the offset model. The purpose of this paper is to solve the overcut problem through an error compensation algorithm to the vertex offset model. Design/methodology/approach Based on the analysis of the vertex offset method and the offset model generated, the authors developed and implemented an error compensation method to correct the offset models and generated the accurate CL data for the subsequent machining process. This error compensation method is verified through three polygonal models and the tool paths generated were used for a real part machining. Findings Based on the analysis of the vertex offset method and the offset model generated, the authors developed an error compensation method to correct the offset models and generated the accurate CL data for the subsequent machining process. The developed error compensation algorithm can effectively solve the overcut drawback of the vertex offset method. Research limitations/implications The error compensation method to the vertex offset model is used for generating the CL data with the using of a ball-end cutter. Practical implications On the study of CL data generation for a STL model, most of the current studies are focused on the determination of the offset vectors of the vertexes. The offset distance is usually fixed to the radius of the cutter used. Thus, the overcut problem to the offset model is inevitable and has not been much studied. The authors propose an effective approach to compensate the insufficient distance of the offset vertex and solve the overcut problem. Social implications The directly tool paths generation from a STL model can reduce the error of surface reconstruction and speed up the machining progress. Originality/value The authors investigate the overcut problem occurred in vertex offset for CL data generation and present a new error compensation algorithm for generating the CL data that can effectively solve the overcut problem.
APA, Harvard, Vancouver, ISO, and other styles
23

YOSHIKAWA, TADASHI. "THE VERTEX CORRECTIONS IN TECHNICOLOR MODEL WITHOUT EXACT CUSTODIAL SYMMETRY." Modern Physics Letters A 10, no. 22 (July 20, 1995): 1601–12. http://dx.doi.org/10.1142/s0217732395001721.

Full text
Abstract:
We discuss the effects of isospin breaking which appear in the vertex corrections for [Formula: see text], Zτ+τ− and Wντ in a one-family technicolor model without exact custodial symmetry. By means of the effective Lagrangian approach we compute the vertex corrections for [Formula: see text], Zττ and Wτν. When the isospin symmetry in technilepton sector is not exact and there are a few lighter technivector mesons that are composed by technileptons, the technivector mesons contribute to the vertex corrections. It would be the evidence of the isospin breaking when the difference of the vertex corrections between Zττ and Wτν is measured.
APA, Harvard, Vancouver, ISO, and other styles
24

Takagi, Taichiro. "Integral Representation of the Correlations around a Vertex of the Six-Vertex Model." Journal of the Physical Society of Japan 65, no. 7 (July 15, 1996): 2009–19. http://dx.doi.org/10.1143/jpsj.65.2009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kojima, Takeo, Hitoshi Konno, and Robert Weston. "The vertex-face correspondence and correlation functions of the fusion eight-vertex model." Nuclear Physics B 720, no. 3 (August 2005): 348–98. http://dx.doi.org/10.1016/j.nuclphysb.2005.05.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

BOUKRAA, S., and J. M. MAILLARD. "TAXONOMY OF THE SIXTEEN-VERTEX MODELS." International Journal of Modern Physics B 06, no. 14 (July 20, 1992): 2559–74. http://dx.doi.org/10.1142/s0217979292001298.

Full text
Abstract:
A classification of the subcases of the sixteen-vertex model compatible with the infinite symmetry group generated by the inversion relations of the model is performed. The elliptic parameterization of these models is recalled, emphasizing the subvarieties of the parameter space for which this parameterization degenerates into a rational one. This situation corresponds to the vanishing of some discriminant and is deeply related to the critical and disorder manifolds for these models. We concentrate on subcases of the sixteen-vertex model for which factorizations of this discriminant occur, allowing further exact calculations.
APA, Harvard, Vancouver, ISO, and other styles
27

Piękoś, K., Jacek Tarasiuk, Krzysztof Wierzbanowski, and Brigitte Bacroix. "Development of Two-Dimensional Vertex Type Model." Materials Science Forum 467-470 (October 2004): 653–58. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.653.

Full text
Abstract:
The recrystallization process in polycrystalline material was studied using the newly developed two–dimensional model based on the vertex concept. In the model presented below the microstructure of polycrystalline material is represented by two-dimensional network of grains. The initial microstructure is characterized by topology, crystal orientations and stored energy values of the grains. The boundary energies and mobilities are anisotropic in general. Additional driving forces in recrystallization, are exerted on vertices and are derived from the stored energy gradients between adjacent grains. The nucleation mechanism of a given type is selected at the start of the calculations. Two different nucleation types were tested. Deformation texture, stored energy distribution and initial microstructure are input parameters of the model. The goal of the calculations is the prediction of texture and microstructure modification during recrystallization. A comparison of predicted and experimental characteristics enables the verification of the model assumptions.
APA, Harvard, Vancouver, ISO, and other styles
28

Barbero, Massimo, Giorgio Mazzeo, and Andrea C. Levi. "Surface roughening in a 14-vertex model." Surface Science 377-379 (April 1997): 519–23. http://dx.doi.org/10.1016/s0039-6028(96)01431-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mangazeev, Vladimir V. "Q-operators in the six-vertex model." Nuclear Physics B 886 (September 2014): 166–84. http://dx.doi.org/10.1016/j.nuclphysb.2014.06.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Frühwirth, R., K. Eckstein, and S. Frühwirth-Schnatter. "Vertex finding by sparse model-based clustering." Journal of Physics: Conference Series 762 (October 2016): 012055. http://dx.doi.org/10.1088/1742-6596/762/1/012055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bogolyubov, N. M. "Five-vertex model with fixed boundary conditions." St. Petersburg Mathematical Journal 21, no. 3 (June 1, 2010): 407–21. http://dx.doi.org/10.1090/s1061-0022-10-01100-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Stefánsson, Sigurdur Örn. "Markov branching in the vertex splitting model." Journal of Statistical Mechanics: Theory and Experiment 2012, no. 04 (April 30, 2012): P04018. http://dx.doi.org/10.1088/1742-5468/2012/04/p04018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gulácsi, Miklós, Henk Van Beijeren, and Andrea C. Levi. "Phase diagram of the five-vertex model." Physical Review E 47, no. 4 (April 1, 1993): 2473–83. http://dx.doi.org/10.1103/physreve.47.2473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ho-Kim, Q., and T. T. Truong. "Conformal Symmetry in a Six-Vertex Model." International Journal of Modern Physics A 12, no. 08 (March 30, 1997): 1531–50. http://dx.doi.org/10.1142/s0217751x97001080.

Full text
Abstract:
The concept of lattice Virasoro symmetry in completely integrable models of statistical mechanics is discussed in parallel with the notion of lattice Poincaré symmetry. To illustrate the general idea, we make an explicit construction of the full Virasoro algebra in terms of the lattice fermion field of the free-fermion six-vertex model in an external noncritical field. The conserved charges that characterize complete integrability are similarly obtained.
APA, Harvard, Vancouver, ISO, and other styles
35

Klumper, A., T. Wehner, and J. Zittartz. "Conformal spectrum of the six-vertex model." Journal of Physics A: Mathematical and General 26, no. 12 (June 21, 1993): 2815–27. http://dx.doi.org/10.1088/0305-4470/26/12/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Izergin, A. G., D. A. Coker, and V. E. Korepin. "Determinant formula for the six-vertex model." Journal of Physics A: Mathematical and General 25, no. 16 (August 21, 1992): 4315–34. http://dx.doi.org/10.1088/0305-4470/25/16/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ribeiro, G. A. P., and M. J. Martins. "Mixed integrable vertex model with arbitrary twists." Nuclear Physics B 705, no. 3 (January 2005): 521–47. http://dx.doi.org/10.1016/j.nuclphysb.2004.10.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bazhanov, Vladimir V., and Vladimir V. Mangazeev. "Analytic theory of the eight-vertex model." Nuclear Physics B 775, no. 3 (July 2007): 225–82. http://dx.doi.org/10.1016/j.nuclphysb.2006.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Layssac, J., F. M. Renard, and C. Verzegnassi. "Model-independent analysis of nonstandard vertex parameters." Physical Review D 49, no. 7 (April 1, 1994): 3650–59. http://dx.doi.org/10.1103/physrevd.49.3650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hara, Yuji, Naomichi Hatano, and Masuo Suzuki. "Six-Vertex Model with an Frustrated Impurity." Journal of the Physical Society of Japan 66, no. 10 (October 15, 1997): 3048–52. http://dx.doi.org/10.1143/jpsj.66.3048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Takasaki, Hiroshi, Tomotoshi Nishino, and Yasuhiro Hieida. "Phase Diagram of a 2D Vertex Model." Journal of the Physical Society of Japan 70, no. 5 (May 15, 2001): 1429–30. http://dx.doi.org/10.1143/jpsj.70.1429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wu, X. N., and F. Y. Wu. "Duality properties of a general vertex model." Journal of Physics A: Mathematical and General 22, no. 2 (January 21, 1989): L55—L60. http://dx.doi.org/10.1088/0305-4470/22/2/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ueda, Kouji, Ryota Otani, Yukinobu Nishio, Andrej Gendiar, and Tomotoshi Nishino. "Critical Point of a Symmetric Vertex Model." Journal of the Physical Society of Japan 74, no. 6 (June 2005): 1871–72. http://dx.doi.org/10.1143/jpsj.74.1871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bazhanov, V. V., and V. V. Mangazeev. "The eight-vertex model and Painlevé VI." Journal of Physics A: Mathematical and General 39, no. 39 (September 13, 2006): 12235–43. http://dx.doi.org/10.1088/0305-4470/39/39/s15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zinn-Justin, P. "The six-vertex model on random lattices." Europhysics Letters (EPL) 50, no. 1 (April 1, 2000): 15–21. http://dx.doi.org/10.1209/epl/i2000-00229-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hagendorf, Christian, and Paul Fendley. "The Eight-Vertex Model and Lattice Supersymmetry." Journal of Statistical Physics 146, no. 6 (January 31, 2012): 1122–55. http://dx.doi.org/10.1007/s10955-012-0430-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fujimoto, Masafumi. "Six-vertex model with rotated boundary conditions." Journal of Statistical Physics 82, no. 5-6 (March 1996): 1519–39. http://dx.doi.org/10.1007/bf02183394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cai, Jin-Yi, Zhiguo Fu, and Mingji Xia. "Complexity classification of the six-vertex model." Information and Computation 259 (April 2018): 130–41. http://dx.doi.org/10.1016/j.ic.2018.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Draisma, Jan, Dion C. Gijswijt, László Lovász, Guus Regts, and Alexander Schrijver. "Characterizing partition functions of the vertex model." Journal of Algebra 350, no. 1 (January 2012): 197–206. http://dx.doi.org/10.1016/j.jalgebra.2011.10.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bellon, M. P., J. M. Maillard, and C. M. Viallet. "Quasi integrability of the sixteen-vertex model." Physics Letters B 281, no. 3-4 (May 1992): 315–19. http://dx.doi.org/10.1016/0370-2693(92)91147-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography