To see the other types of publications on this topic, follow the link: Vertical axis wind turbines.

Dissertations / Theses on the topic 'Vertical axis wind turbines'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Vertical axis wind turbines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Waltham, M. R. "Sailwing vertical axis wind turbines." Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rossander, Morgan. "Electromechanics of Vertical Axis Wind Turbines." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-331844.

Full text
Abstract:
Wind power is an established mean of clean energy production and the modern horizontal axis wind turbine has become a common sight. The need for maintenance is high and future wind turbines may need to be improved to enable more remote and offshore locations. Vertical axis wind turbines have possible benefits, such as higher reliability, less noise and lower centre of gravity. This thesis focuses on electromechanical interaction in the straight bladed Darrieus rotor (H-rotor) concept studied at Uppsala University. One of the challenges with vertical axis technology is the oscillating aerodynam
APA, Harvard, Vancouver, ISO, and other styles
3

Roynarin, Wirachai. "Optimisation of vertical axis wind turbines." Thesis, Northumbria University, 2004. http://nrl.northumbria.ac.uk/1655/.

Full text
Abstract:
A practical Vertical Axis Wind Turbine (VAWTs) based on a Darrieus rotor has been designed and tested and found to be capable of self-starting at wind speeds above 4m/s. The self-start feature has been achieved by replacing the usual symmetrical aerofoil blade in the VAWT rotor and by using a concentric Savonius rotor or semi-cylinder turbine. A computer program was produced to compute the power coefficient versus tip speed ratio characteristics of a selected aerofoil profile employed in a VAWT. The program accounts for chord length, pitch angle, number of blades, and rotor radius at any wind
APA, Harvard, Vancouver, ISO, and other styles
4

Pearson, Charlie. "Vertical axis wind turbine acoustics." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245256.

Full text
Abstract:
Increasing awareness of the issues of climate change and sustainable energy use has led to growing levels of interest in small-scale, decentralised power generation. Small-scale wind power has seen significant growth in the last ten years, partly due to the political support for renewable energy and the introduction of Feed In Tariffs, which pay home owners for generating their own electricity. Due to their ability to respond quickly to changing wind conditions, small-scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where t
APA, Harvard, Vancouver, ISO, and other styles
5

Elmabrok, Ali Mohammed. "The aerodynamics of vertical axis wind turbines." Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.629477.

Full text
Abstract:
One of the operational problems encountered with vertical axis wind turbines is their low starting torque. A number of analytical methods were investigated to see whether they could predict the starting performance of vertical axis turbines. The chosen methods used " actuator disc theory" for both single and multiple streamtubes. Two different forms of the multiple streamtube model are applied, one using a single actuator disc and the other using two discs in tandem. The computational analysis of all models simulates the blade aerodynamics throughout the full range of incidence from -180° to 1
APA, Harvard, Vancouver, ISO, and other styles
6

D'Ambrosio, Marco, and Marco Medaglia. "Vertical Axis Wind Turbines: History, Technology and Applications." Thesis, Halmstad University, Halmstad University, School of Business and Engineering (SET), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-4986.

Full text
Abstract:
<p>In  this  Master Thesis  a  review  of  different  type  of  vertical  axis  wind turbines (VAWT)  and  a preliminary investigation of a new kind of VAWT are presented.</p><p>After an introduction about the historical background of wind power, the report deals with a more accurate analysis of the main type of VAWT, showing their characteristics and their operations. The aerodynamics of the wind turbines and a review of different type on generators that can be used to connect the wind mill to the electricity grid are reported as well.</p><p>Several statistics are also presented, in order to
APA, Harvard, Vancouver, ISO, and other styles
7

Bülow, Fredrik. "A Generator Perspective on Vertical Axis Wind Turbines." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-197855.

Full text
Abstract:
The wind energy conversion system considered in this thesis is based on a vertical axis wind turbine with a cable wound direct drive PM generator. Diode rectifiers are used to connect several such units to a single DC-bus and a single inverter controls the power flow from the DC-bus to a utility grid. This work considers the described system from a generator perspective i.e. the turbine is primarily seen as a torque and the inverter is seen as a controlled load. A 12 kW VAWT prototype with a single turbine has been constructed within the project. The power coefficient of this turbine has been
APA, Harvard, Vancouver, ISO, and other styles
8

Scheurich, Frank. "Modelling the aerodynamics of vertical-axis wind turbines." Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2897/.

Full text
Abstract:
The current generation of wind turbines that are being deployed around the world features, almost exclusively, a three-bladed rotor with a horizontal-axis configuration. In recent years, however, a resurgence of interest in the vertical-axis wind turbine configuration has been prompted by some of its inherent advantages over horizontal-axis rotors, particularly in flow conditions that are typical of the urban environment. The accurate modelling of the aerodynamics of vertical-axis wind turbines poses a significant challenge. The cyclic motion of the turbine induces large variations in the angl
APA, Harvard, Vancouver, ISO, and other styles
9

Möllerström, Erik. "Vertical Axis Wind Turbines : Tower Dynamics and Noise." Licentiate thesis, Högskolan i Halmstad, Energiteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-242267.

Full text
Abstract:
Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and the Division for Electricity at Uppsala University. A 200 kW VAWT owned by the latter and situated close
APA, Harvard, Vancouver, ISO, and other styles
10

Eriksson, Sandra. "Direct Driven Generators for Vertical Axis Wind Turbines." Doctoral thesis, Uppsala : Acta Universitatis Uppsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bedon, Gabriele. "Aero-Structural Optimization of Vertical Axis Wind Turbines." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424493.

Full text
Abstract:
This Thesis focuses on the aero-structural simulation and optimization of Darrieus Vertical Axis Wind Turbines. Aerodynamic simulation tools based on different techniques are developed, improved with respect to state-of-art tools, and validated against experimental data. The main considered approaches are based on the Blade Element Momentum, Vortex, two- and three-dimensional Unsteady Reynolds-Averaged Navier-Stokes (URANS) Computational Fluid Dynamics (CFD) models. The models are developed keeping in mind the final coupling with an optimization algorithm, therefore with particular emphasi
APA, Harvard, Vancouver, ISO, and other styles
12

Ross, Ian J. "Wind tunnel blockage corrections : an application to vertical-axis wind turbines /." Dayton, Ohio : University of Dayton, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1271306622.

Full text
Abstract:
Thesis (M.S. in Aerospace Engineering) -- University of Dayton.<br>Title from PDF t.p. (viewed 06/22/10). Advisor: Aaron Altman. Includes bibliographical references (p. 101-104). Available online via the OhioLINK ETD Center.
APA, Harvard, Vancouver, ISO, and other styles
13

Ross, Ian Jonathan. "Wind Tunnel Blockage Corrections: An Application to Vertical-Axis Wind Turbines." University of Dayton / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1271306622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Deglaire, Paul. "Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132073.

Full text
Abstract:
Wind power is a renewable energy source that is today the fastest growing solution to reduce CO2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this
APA, Harvard, Vancouver, ISO, and other styles
15

Kjellin, Jon. "Vertical Axis Wind Turbines : Electrical System and Experimental Results." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182438.

Full text
Abstract:
The wind power research at the division of Electricity at Uppsala University is aimed towards increased understanding of vertical axis wind turbines. The considered type of wind turbine is an H-rotor with a directly driven synchronous generator operating at variable speed. The experimental work presented in this thesis comprises investigation of three vertical axis wind turbines of different design and size. The electrical, control and measurement systems for the first 12 kW wind turbine have been designed and implemented. The second was a 10 kW wind turbine adapted to a telecom application. B
APA, Harvard, Vancouver, ISO, and other styles
16

Soraghan, Conaill Eoin. "Aerodynamic modelling and control of vertical axis wind turbines." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23210.

Full text
Abstract:
Designing a structure which harnesses energy from the wind offshore is a radically different design challenge compared to that which the industry standard three-blade Danish model horizontal axis wind turbine (HAWT) has evolved to serve. Vertical axis wind turbines (VAWTs) may prove to be suitable candidates for the offshore sector due to the potential to locate heavy and complex mechanical components near the water surface providing ease of access and a low centre of gravity. Unlike their horizontal-axis counterparts, VAWT designs have not benefited from forty years of intense research and de
APA, Harvard, Vancouver, ISO, and other styles
17

Gonzalez, Campos Jose Alberto. "Design and Experimentation of Darrieus Vertical Axis Wind Turbines." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1594690510943748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Robotham, Antony John. "The aerodynamic control of the V-type vertical axis wind turbine." n.p, 1989. http://ethos.bl.uk/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pawsey, N. C. K. Mechanical &amp Manufacturing Engineering Faculty of Engineering UNSW. "Development and evaluation of passive variable-pitch vertical axis wind turbines." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2002. http://handle.unsw.edu.au/1959.4/18805.

Full text
Abstract:
Vertical-axis wind turbines do not need to be oriented to the wind direction and offer direct rotary output to a ground-level load, making them particularly suitable for water pumping, heating, purification and aeration, as well as stand-alone electricity generation. The use of high-efficiency Darrieus turbines for such applications is virtually prohibited by their inherent inability to self-start. The provision of blade-articulation (variable-pitch blades) has been demonstrated by a number of researchers to make Darrieus turbines self-starting. One aim of this thesis is to evaluate the variou
APA, Harvard, Vancouver, ISO, and other styles
20

Parker, Colin M. "An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines." Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10687173.

Full text
Abstract:
<p> The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties&mdash;tip-speed ratio and Reynolds number&mdash;of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit
APA, Harvard, Vancouver, ISO, and other styles
21

Shaheen, Mohammed Mahmoud Zaki Mohammed. "Design and Assessment of Vertical Axis Wind Turbine Farms." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439306478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Krysiński, Tomasz. "Mathematical modelling and shape optimisation of vertical axis wind turbines blades." Rozprawa doktorska, ISBN 978-83-61506-47-8, 2018. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=53466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Krysiński, Tomasz. "Mathematical modelling and shape optimisation of vertical axis wind turbines blades." Rozprawa doktorska, ISBN 978-83-61506-47-8, 2018. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=53466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kirke, Brian Kinloch, and n/a. "Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications." Griffith University. School of Engineering, 1998. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20050916.120408.

Full text
Abstract:
There is an urgent need for economical, clean, sustainable energy supplies, not only in densely populated areas where electricity grids are appropriate, but also in rural areas where stand-alone power supply systems are often more suitable. Although electrical power supply is very versatile and convenient, it introduces unnecessary complexity for some off-grid applications where direct mechanical shaft power can conveniently be provided by a wind turbine. Wind energy is one of the more promising renewable energy sources. Most wind turbines are of the horizontal axis type, but vertical axis win
APA, Harvard, Vancouver, ISO, and other styles
25

Kirke, Brian. "Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications." Thesis, Griffith University, 1998. http://hdl.handle.net/10072/366205.

Full text
Abstract:
There is an urgent need for economical, clean, sustainable energy supplies, not only in densely populated areas where electricity grids are appropriate, but also in rural areas where stand-alone power supply systems are often more suitable. Although electrical power supply is very versatile and convenient, it introduces unnecessary complexity for some off-grid applications where direct mechanical shaft power can conveniently be provided by a wind turbine. Wind energy is one of the more promising renewable energy sources. Most wind turbines are of the horizontal axis type, but vertical axis win
APA, Harvard, Vancouver, ISO, and other styles
26

Goude, Anders. "Fluid Mechanics of Vertical Axis Turbines : Simulations and Model Development." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183794.

Full text
Abstract:
Two computationally fast fluid mechanical models for vertical axis turbines are the streamtube and the vortex model. The streamtube model is the fastest, allowing three-dimensional modeling of the turbine, but lacks a proper time-dependent description of the flow through the turbine. The vortex model used is two-dimensional, but gives a more complete time-dependent description of the flow. Effects of a velocity profile and the inclusion of struts have been investigated with the streamtube model. Simulations with an inhomogeneous velocity profile predict that the power coefficient of a vertical
APA, Harvard, Vancouver, ISO, and other styles
27

Awan, Muhammad Rizwan. "Feasibility Study of Vertical Axis wind turbines in Urban areas of Sweden." Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dyachuk, Eduard. "Aerodynamics of Vertical Axis Wind Turbines : Development of Simulation Tools and Experiments." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260573.

Full text
Abstract:
This thesis combines measurements with the development of simulation tools for vertical axis wind turbines (VAWT). Numerical models of aerodynamic blade forces are developed and validated against experiments. The studies were made on VAWTs which were operated at open sites. Significant progress within the modeling of aerodynamics of VAWTs has been achieved by the development of new simulation tools and by conducting experimental studies.         An existing dynamic stall model was investigated and further modified for the conditions of the VAWT operation. This model was coupled with a streamtu
APA, Harvard, Vancouver, ISO, and other styles
29

Danao, Louis Angelo. "The influence of unsteady wind on the performance and aerodynamics of vertical axis wind turbines." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2928/.

Full text
Abstract:
Interest in small-scale wind turbines as energy sources in the built environment has increased due to the desire of consumers in urban areas to reduce their carbon footprint. Vertical axis wind turbines (VAWTs) have shown to be potentially well suited within the urban landscape. However, there is a large gap in the fundamental understanding of VAWT operation in turbulent, unsteady wind that is typical of the built environment. This dissertation investigates the aerodynamics and performance of VAWTs in fluctuating wind through experiments and numerical simulations. All experimental investigatio
APA, Harvard, Vancouver, ISO, and other styles
30

Rastegar, Damoon. "Modification of Aeroelastic Model for Vertical Axes Wind Turbines." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3388.

Full text
Abstract:
In wind turbines, flow pressure variations on the air-structure interface cause aerodynamic forces. Consequently the structure deforms and starts to move. The interaction between aerodynamic forces and structural deformations mainly concerns aeroelasticity. Since these two are coupled, they have to be considered simultaneously in cases which the deformations are not negligible in comparison to the other geometric dimensions. The purpose of this work is to improve the simulation model of a vertical axis wind turbine by modifying the structural model from undamped Euler-Bernoulli beam theory wit
APA, Harvard, Vancouver, ISO, and other styles
31

Ferrari, Gareth Marc. "Development of an aeroelastic simulation for the analysis of vertical-axis wind turbines." Thesis, University of Auckland, 2012. http://hdl.handle.net/2292/13039.

Full text
Abstract:
Like their horizontal-axis counterparts, as the blades of vertical-axis wind turbines increase in size they typically become relatively more flexible so a better understanding of their aeroelastic behaviour is required. This research addresses the challenges of large, flexible, vertical-axis wind turbines using methods previously unavailable, or impractical due to limited computational resources. A weakly-coupled aeroelastic simulation was developed to investigate the dynamic behaviour of vertical-axis wind turbines. The aeroelastic simulation comprised a free vortex wake model to repre
APA, Harvard, Vancouver, ISO, and other styles
32

Menon, Ashwin. "Numerical investigation of synthetic jet based flow control for vertical axis wind turbines." Thesis, Rensselaer Polytechnic Institute, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1568426.

Full text
Abstract:
<p> This numerical study focuses on the implementation of active flow control using synthetic jets on vertical-axis wind turbine (VAWT) blades. This study demonstrates that synthetic-jet based flow control improves the efficiency of the turbine and reduces the risk of structural fatigue. </p><p> In VAWTs, the blades experience a significant variation in the angle of attack over each rotation cycle and associated with it are sudden changes in the flow-induced loading on the blades. For example, a sudden variation in blade loading is experienced due to the detachment of the leading edge vorte
APA, Harvard, Vancouver, ISO, and other styles
33

Carper, Christopher T. "Design and construction of vertical axis wind turbines using dual-layer vacuum-forming." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59899.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 23).<br>How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a large scale display of vertical axis wind turbines that can be used to visualize wind. The intent is to build a matrix of several hundred turbines at MIT as part of the 150th anniversary celebrat
APA, Harvard, Vancouver, ISO, and other styles
34

Edwards, Jonathan. "The influence of aerodynamic stall on the performance of vertical axis wind turbines." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/4988/.

Full text
Abstract:
There is currently an increasing desire for local small-scale sustainable energy generation. This has lead to increased interest in the concept of the vertical axis wind turbine (VAWT), which is potentially well-suited to operation within the built environment. This study investigates the performance and flow physics of a small-scale VAWT using experimental and computational methods. The experiments utilise the University’s low-speed open-section wind tunnel. The design and use of a variety of existing and newly developed methods and apparatus is detailed, this includes the development of an e
APA, Harvard, Vancouver, ISO, and other styles
35

Tourn, Cremona Silvana Cecilia. "Characterization of a New Open Jet Wind Tunnel to Optimize and Test Vertical Axis Wind Turbines." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461079.

Full text
Abstract:
Basat en el creixent interès en les tecnologies ambientals urbanes, l'estudi de turinas d'eix vertical de petita escala mostra desafiaments motivadors. En aquesta tesi, es presenten els criteris de disseny, les característiques i potencialitats d'un nou túnel de vent de secció de prova oberta. Té un àrea de sortida i la broquet del túnel de 1,5 x 1,5 m2, i es pot operar amb velocitats de sortida de 3 m / s a ​​17 m / s. La caracterització del flux s'ha dut a terme amb tubs pitot calibrats, anemòmetres de cassoletes i anemòmetres de fil calent. Es consideren dues configuracions diferents de l'à
APA, Harvard, Vancouver, ISO, and other styles
36

Bah, Elhadji Alpha Amadou. "Numerical investigation on the use of multi-element blades in vertical-axis wind turbines." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53501.

Full text
Abstract:
The interest in sustainable forms of energy is being driven by the anticipated scarcity of traditional fossil fuels over the coming decades. There is also a growing concern about the effects of fossil fuel emissions on human health and the environment. Many sources of renewable energy are being researched and implemented for power production. In particular, wind power generation by horizontal- and vertical-axis wind turbines is very popular. Vertical-axis wind turbines (VAWTs) have a relative construction simplicity compared to horizontal-axis wind turbines (HAWTs). However, VAWTs present spec
APA, Harvard, Vancouver, ISO, and other styles
37

Korobenko, Artem. "Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines." Thesis, University of California, San Diego, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3670451.

Full text
Abstract:
<p> During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and desi
APA, Harvard, Vancouver, ISO, and other styles
38

Weiss, Samuel Bruce. "Vertical axis wind turbine with continuous blade angle adjustment." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/65178.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.<br>This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Cataloged from student submitted PDF version of thesis.<br>Includes bibliographical references (p. 26).<br>The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the rate of one half of a revo
APA, Harvard, Vancouver, ISO, and other styles
39

Rynkiewicz, Mateusz. "Design of PM generator for avertical axis wind turbine." Thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-177309.

Full text
Abstract:
The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed of 10m/s. The project is conducted at theDivision of Electricity at Uppsala University with collaboration from ElectricGeneration AB. The design has just a few moving parts, which decreases maintenancecosts and increases its toughness. The turbine absorbs wind from every direction butits rotation speed ratio is lower than horizontal axis wind turbines. It means that thegenerator must be bigger and therefore more expensive. Price is an importantcriterion for the generator.
APA, Harvard, Vancouver, ISO, and other styles
40

Eboibi, Okeoghene. "The influence of blade chord on the aerodynamics and performance of vertical axis wind turbines." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4730/.

Full text
Abstract:
The climate change due to emissions from the combustion of fossil fuel to meet the ever increasing energy demands of the growing world population has roused the attention of governments and individuals to protect the environment. The formulated policies to protect the environment have aroused interest in wind turbines as an alternative source of energy. The suitability of the vertical axis wind turbines (VAWTs) in harnessing energy from the wind in the built areas have been shown, but there still exists a large knowledge gaps in the aerodynamics and performance of the VAWT especially in the de
APA, Harvard, Vancouver, ISO, and other styles
41

Norström, Parliden Jonas, and Mateusz Rynkiewicz. "Design of PM generator for a vertical axis wind turbine." Thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-180910.

Full text
Abstract:
The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed of 10m/s. The project is conducted at theDivision of Electricity at Uppsala University with collaboration from ElectricGeneration AB. The design has just a few moving parts, which decreases maintenancecosts and increases its toughness. The turbine absorbs wind from every direction butits rotation speed ratio is lower than horizontal axis wind turbines. It means that thegenerator must be bigger and therefore more expensive. Price is an importantcriterion for the generator.
APA, Harvard, Vancouver, ISO, and other styles
42

Colley, Gareth. "Design, operation and diagnostics of a vertical axis wind turbine." Thesis, University of Huddersfield, 2012. http://eprints.hud.ac.uk/id/eprint/17547/.

Full text
Abstract:
The need for sustainable energy sources becomes greater each year due to the continued depletion of fossil fuels and the resulting energy crisis. Solutions to this problem are potentially in the form of wind turbines which have been receiving increased support at a micro level. At present a number of wind turbines are being developed that are of cross-flow vertical axis operation which have shown significant increases in performance compared to existing technologies. From an extensive literature review a number of key issues have been highlighted which are concerned with design, operation and
APA, Harvard, Vancouver, ISO, and other styles
43

Christoffer, Fjellstedt. "Simulations of vertical axis wind turbines with PMSG and diode rectification to a mutual DC-bus." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-323735.

Full text
Abstract:
Transient simulations were performed with MATLAB Simulink on a mutual wind park topology, where three vertical axis wind turbines equipped with permanent magnet synchronous generators were connected to a mutual DC-bus through passive diode rectification. The aim with the work was to show the effects of two different kinds of loads on the system in respect to generator torque, rotor speed, produced power by the generators and the power on the DC-bus. The loads were a variable voltage source and a resistance with the value 2.0 Ω. It was shown that the transient behavior of the system in respect
APA, Harvard, Vancouver, ISO, and other styles
44

Imamura, Erik. "Vertical Axis Wind Turbines : A Mechanical Design Project and a Feasibility Study for Microgrids in Tanzania." Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168726.

Full text
Abstract:
Detta arbete behandlar vindkraft med vertikal axel, att användas utanför ordinarie elnät, främst i byar och småföretag på landsbygden i utvecklingsländer. Två fristående projekt ingår. Det första handlar om konstruktion, med målet att utveckla ett koncept för att hålla kraftverkets vingar. En särskild egenskap är att de ska vara hopdragbara, så svepta arean kan följa rådande vindstyrka. Kraftverket monteras och reses på plats, med hopfällda vingar. Tornet kan fällas för att underlätta underhåll. Infällbara vingar förenklar även om kraftverken ska tas ur drift eller flyttas. Arbetet inleddes me
APA, Harvard, Vancouver, ISO, and other styles
45

Dunne, Reeve. "Dynamic Stall on Vertical Axis Wind Turbines." Thesis, 2016. https://thesis.library.caltech.edu/9140/2/Dunne_thesis_edit.pdf.

Full text
Abstract:
<p>In this study the dynamics of flow over the blades of vertical axis wind turbines was investigated using a simplified periodic motion to uncover the fundamental flow physics and provide insight into the design of more efficient turbines. Time-resolved, two-dimensional velocity measurements were made with particle image velocimetry on a wing undergoing pitching and surging motion to mimic the flow on a turbine blade in a non-rotating frame. Dynamic stall prior to maximum angle of attack and a leading edge vortex development were identified in the phase-averaged flow field and captured by a s
APA, Harvard, Vancouver, ISO, and other styles
46

Molina, Andreu Carbó. "Wind tunnel testing of small Vertical-Axis Wind Turbines for urban areas." Doctoral thesis, 2019. http://hdl.handle.net/2158/1179097.

Full text
Abstract:
The implementation of small vertical-axis wind turbines (VAWTs) in urban environments is being studied by the scientific community to complement large wind farms in wind energy generation. The technology is, however, far from maturity due to the complexity of urban flows and the lack of knowledge in the field. This thesis focuses on turbulence, one of the main characteristics of urban flows, and its influence on VAWT performance. Its objective is to generate turbulent wind conditions inside a wind tunnel and testing a VAWT to determine how turbulence intensity (Iu) and integral length scale (L
APA, Harvard, Vancouver, ISO, and other styles
47

Chang, Ken-Hao, and 張根豪. "Numerical Analysis of H-type Vertical Axis Wind Turbines." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/44222968940061830385.

Full text
Abstract:
碩士<br>清雲科技大學<br>電機工程研究所<br>98<br>Vertical axis wind turbines (VAWT) has the advantages of low running noise, simple structure and easy to integrate with the living environment. It has become more popular in the green energy market. To develop wind turbines with higher efficiency, the computational fluid dynamics (CFD) method has been applied to study the static characters and dynamic performance of one 200W H-type VAWT. Cross section profile of blades and a two-dimensional space has been created first. Numerical simulations are then performed by CFD software CFdesign. Simulation results show t
APA, Harvard, Vancouver, ISO, and other styles
48

Liou, Jia-Lun, and 劉家綸. "Investigations of Aerodynamic Characteristics of Vertical-axis Wind Turbines." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/32653314723281255881.

Full text
Abstract:
碩士<br>淡江大學<br>航空太空工程學系碩士班<br>101<br>The thesis studies the aerodynamic characteristics of vertical-axis wind turbines, which is divided into two parts. The first part of this study experimentally investigates the effects of rotor geometries on the turbine Power output, including the airfoil type, blade weight, rotor diameter, airfoil chord length. The results show that the rotor with symmetric airfoil, chord length of 15 cm, blade length of 30 cm and rotor radius of 30 cm exhibits the highest Power output among the test rotors. The second part of this thesis investigates the effects of stato
APA, Harvard, Vancouver, ISO, and other styles
49

Pawsey, N. C. K. "Development and evaluation of passive variable-pitch vertical axis wind turbines /." 2002. http://www.library.unsw.edu.au/~thesis/adt-NUN/public/adt-NUN20030611.092522/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Yen-Yu, and 陳彥佑. "Performance Studies of Horizontal-axis and Vertical-axis Wind Turbines with Shrouds." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/41148792605970191481.

Full text
Abstract:
碩士<br>淡江大學<br>航空太空工程學系碩士班<br>102<br>The thesis studies of horizontal-axis and vertical-axis wind turbines with shrouds, which is divided into two parts. Part 1 investigates the aerodynamic characteristics of horizontal-axis wind turbine (HAWT) with different flanged diffusers and blades. Results show that larger power output is obtained when the pitch angle of the blades is fixed at 30°, and the chord length ratio between the blade root and tip is fixed at 0.3. Flanged diffuser diffusion angle of 30° have larger power output. Part 2 investigate a vortical stator assembly (VSA) which was deve
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!