To see the other types of publications on this topic, follow the link: Vertical Cavity Surface Emitting.

Journal articles on the topic 'Vertical Cavity Surface Emitting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Vertical Cavity Surface Emitting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lear, Kevin L., and Eric D. Jones. "Vertical-Cavity Surface-Emitting Lasers." MRS Bulletin 27, no. 7 (2002): 497–501. http://dx.doi.org/10.1557/mrs2002.166.

Full text
Abstract:
AbstractThis issue of MRS Bulletin presents a review of the progress that vertical-cavity surface-emitting lasers (VCSELs) have made throughout the wavelength spectrum. A VCSEL is a semiconductor laser diode in which light propagates normal to the epitaxial layers. In its older cousin, the Fabry—Pérot laser, light propagates in the plane of the epitaxial layers and reflects from mirrors formed by cleaving a crystal facet across the active layers. No cleaving is required for VCSEL mirrors, which are formed from multiple layers of epitaxially grown or otherwise-deposited thin films. The simple twist in the direction of the laser beam with respect to the epitaxial layers is responsible for most of the unique attributes of VCSELs, which arise from their short cavity length, their completely lithographically defined cross section, and their reliance on only wafer-scale processes for device fabrication. The articles in this issue cover a range of topics, including blue devices, short-wavelength communications lasers, recent advances in 1.3-μm VCSELs, fundamental materials issues related to distributed Bragg reflectors, theoretical quantum-well gain calculations, and work on quantum-dot VCSELs.
APA, Harvard, Vancouver, ISO, and other styles
2

Webb, C. E. "Vertical-cavity surface emitting lasers." Optics and Lasers in Engineering 33, no. 1 (2000): 83–84. http://dx.doi.org/10.1016/s0143-8166(00)00029-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Iga, Kenichi. "Vertical Cavity Surface Emitting Lasers Photonics." Japanese Journal of Applied Physics 45, no. 8B (2006): 6541–43. http://dx.doi.org/10.1143/jjap.45.6541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Felix, C. L., W. W. Bewley, I. Vurgaftman, et al. "Midinfrared vertical-cavity surface-emitting laser." Applied Physics Letters 71, no. 24 (1997): 3483–85. http://dx.doi.org/10.1063/1.120366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iga, Kenichi. "Vertical-Cavity Surface-Emitting Laser (VCSEL)." Proceedings of the IEEE 101, no. 10 (2013): 2229–33. http://dx.doi.org/10.1109/jproc.2013.2275016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Geels, R. S., S. W. Corzine, and L. A. Coldren. "InGaAs vertical-cavity surface-emitting lasers." IEEE Journal of Quantum Electronics 27, no. 6 (1991): 1359–67. http://dx.doi.org/10.1109/3.89952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vladimirov, A. G., A. Pimenov, S. V. Gurevich, K. Panajotov, E. Averlant, and M. Tlidi. "Cavity solitons in vertical-cavity surface-emitting lasers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2027 (2014): 20140013. http://dx.doi.org/10.1098/rsta.2014.0013.

Full text
Abstract:
We investigate a control of the motion of localized structures (LSs) of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary LS that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system, namely the vertical-cavity surface-emitting laser (VCSEL). We first present an experimental demonstration of the appearance of LSs in a 80 μm aperture VCSEL. Then, we theoretically investigate the self-mobility properties of the LSs in the presence of a time-delayed optical feedback and analyse the effect of the feedback phase and the carrier lifetime on the delay-induced spontaneous drift instability of these structures. We show that these two parameters affect strongly the space–time dynamics of two-dimensional LSs. We derive an analytical formula for the threshold associated with drift instability of LSs and a normal form equation describing the slow time evolution of the speed of the moving structure.
APA, Harvard, Vancouver, ISO, and other styles
8

IGA, KENICHI. "SURFACE EMITTING LASERS." International Journal of High Speed Electronics and Systems 03, no. 03n04 (1992): 263–77. http://dx.doi.org/10.1142/s0129156492000102.

Full text
Abstract:
In this paper we review the progress and basic technology of vertical cavity surface emitting lasers together with related parallel surface operating optical devices. First, the concept of a vertical cavity surface emitting laser is presented, and then currently developed devices and their performances will be introduced. We will then feature some technical issues, such as multilayer structures, 2-dimensional arrays, photonic integration, etc. Lastly, future prospects for parallel lightwave subsystems using surface emitting lasers will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Changling Yan, Changling Yan, Yun Deng Yun Deng, Peng Li Peng Li, Xiaomao Song Xiaomao Song, and Jianwei Shi Jianwei Shi. "Improvement of InGaAs/GaAs vertical-cavity surface-emitting lasers by post-oxidation annealing." Chinese Optics Letters 10, no. 12 (2012): 122501–3. http://dx.doi.org/10.3788/col201210.122501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haghighi, Nasibeh, Philip Moser, Martin Zorn, and James A. Lott. "19-element vertical cavity surface emitting laser arrays with inter-vertical cavity surface emitting laser ridge connectors." Journal of Physics: Photonics 2, no. 4 (2020): 04LT01. http://dx.doi.org/10.1088/2515-7647/abb3b5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

ONISHI, Toshikazu, Tatsuya TANIGAWA, Jun SHIMIZU, Tetsuzo UEDA, and Daisuke UEDA. "Surface Plasmon Resonant Vertical-Cavity Surface-Emitting Lasers." Review of Laser Engineering 37, no. 9 (2009): 684–88. http://dx.doi.org/10.2184/lsj.37.684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Panajotov, Krassimir, Yi Xie, Maciej Dems, et al. "Vertical-cavity surface-emitting laser emitting circularly polarized light." Laser Physics Letters 10, no. 10 (2013): 105003. http://dx.doi.org/10.1088/1612-2011/10/10/105003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Logginov, Aleksandr S., A. G. Rzhanov, and D. V. Skorov. "Two-frequency coupled-cavity vertical-cavity surface-emitting lasers." Quantum Electronics 36, no. 6 (2006): 520–26. http://dx.doi.org/10.1070/qe2006v036n06abeh013282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhong, Pan, Wu Rong-han, and Wang Qi-ming. "Effective cavity length in vertical cavity surface emitting laser." Acta Physica Sinica (Overseas Edition) 4, no. 11 (1995): 810–15. http://dx.doi.org/10.1088/1004-423x/4/11/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bimberg, D., N. N. Ledentsov, and J. A. Lott. "Quantum-Dot Vertical-Cavity Surface-Emitting Lasers." MRS Bulletin 27, no. 7 (2002): 531–37. http://dx.doi.org/10.1557/mrs2002.172.

Full text
Abstract:
AbstractGaAs-based continuous-wave quantum-dot vertical-cavity surface-emitting lasers (VCSELs) operating at 1.3 μm at 20°C with output power of 1.2 mW have been realized. Threshold currents approach 1–1.5 mA for 8-μm oxide apertures. Operating voltages are ∼2 V. Long operation lifetimes in excess of 5000 h at 50°C without degradation have been achieved. This article describes these breakthroughs, which are based on our development of complex self-organized growth technologies for defect-free stacked quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
16

Hadji, E., J. Bleuse, N. Magnea, and J. L. Pautrat. "Photopumped infrared vertical‐cavity surface‐emitting laser." Applied Physics Letters 68, no. 18 (1996): 2480–82. http://dx.doi.org/10.1063/1.115827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schaus, C. F., A. J. Torres, Julian Cheng, et al. "Transverse junction vertical‐cavity surface‐emitting laser." Applied Physics Letters 58, no. 16 (1991): 1736–38. http://dx.doi.org/10.1063/1.105125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bao-Lu, Guan, Guo Xia, Deng Jun, et al. "Micromechanical tunable vertical-cavity surface-emitting lasers." Chinese Physics 15, no. 12 (2006): 2959–62. http://dx.doi.org/10.1088/1009-1963/15/12/032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jouhti, T., O. Okhotnikov, J. Konttinen, et al. "Dilute nitride vertical-cavity surface-emitting lasers." New Journal of Physics 5 (July 4, 2003): 84. http://dx.doi.org/10.1088/1367-2630/5/1/384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sulkin, J. D., P. M. Ferreira, and K. D. Choquette. "Structured Nanoaperture Vertical Cavity Surface-Emitting Lasers." IEEE Journal of Selected Topics in Quantum Electronics 19, no. 3 (2013): 4601504. http://dx.doi.org/10.1109/jstqe.2012.2231056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Czyszanowski, Tomasz. "Quantum-Cascade Vertical-Cavity Surface-Emitting Laser." IEEE Photonics Technology Letters 30, no. 4 (2018): 351–54. http://dx.doi.org/10.1109/lpt.2018.2789847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gerhardt, Nils C., and Martin R. Hofmann. "Spin-Controlled Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2012 (March 14, 2012): 1–15. http://dx.doi.org/10.1155/2012/268949.

Full text
Abstract:
We discuss the concept of spin-controlled vertical-cavity surface-emitting lasers (VCSELs) and analyze it with respect to potential room-temperature applications in spin-optoelectronic devices. Spin-optoelectronics is based on the optical selection rules as they provide a direct connection between the spin polarization of the recombining carriers and the circular polarization of the emitted photons. By means of optical excitation and numerical simulations we show that spin-controlled VCSELs promise to have superior properties to conventional devices such as threshold reduction, spin control of the emission, or even much faster dynamics. Possible concepts for room-temperature electrical spin injection without large external magnetic fields are summarized, and the progress on the field of purely electrically pumped spin-VCSELs is reviewed.
APA, Harvard, Vancouver, ISO, and other styles
23

Shtengel, G., H. Temkin, P. Brusenbach, et al. "High-speed vertical-cavity surface emitting laser." IEEE Photonics Technology Letters 5, no. 12 (1993): 1359–62. http://dx.doi.org/10.1109/68.262540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Herrick, Robert W. "Reliability of Vertical-Cavity Surface-Emitting Lasers." Japanese Journal of Applied Physics 51 (November 20, 2012): 11PC01. http://dx.doi.org/10.1143/jjap.51.11pc01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lehman, A. C., E. A. Yamaoka, C. W. Willis, K. D. Choquette, K. M. Geib, and A. A. Allerman. "Variable reflectance vertical cavity surface emitting lasers." Electronics Letters 43, no. 8 (2007): 460. http://dx.doi.org/10.1049/el:20070429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

LIU, W. L., L. LI, J. C. ZHONG, Y. J. ZHAO, L. N. ZENG, and C. L. YAN. "OXIDE-CONFINED VERTICAL-CAVITY SURFACE-EMITTING LASERS." International Journal of Modern Physics B 19, no. 15n17 (2005): 2740–44. http://dx.doi.org/10.1142/s0217979205031626.

Full text
Abstract:
Novel distributed Bragg reflectors (DBRs) with 6-pair- GaAs/AlAs short period superlattice for the oxide-confined vertical-cavity surface-emitting lasers (VCSEL) are designed. They are for the VCSEL that emits at 840 nm and is grown with 34-period n-type mirrors, three-quantum-well active region, and 22-period p-type mirrors. In addition, a 35-nm-layer of Al 0.98 Ga 0.02 As was inserted in the top mirrors for being selectively oxidized. The maximum output power is more than 2 mW with low threshold current of about 2 mA. The fact that the device's threshold current in both CW and pulsed operation depends slightly on the operation temperature shows its higher characteristic temperature (T0).
APA, Harvard, Vancouver, ISO, and other styles
27

Peters, F. H., M. G. Peters, D. B. Young, et al. "High-power vertical-cavity surface-emitting lasers." Electronics Letters 29, no. 2 (1993): 200. http://dx.doi.org/10.1049/el:19930134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

VON LEHMEN, A. C. "VERTICAL CAVITY SURFACE EMITTING LASERS: TOWARD APPLICATIONS." Optics and Photonics News 2, no. 12 (1991): 15. http://dx.doi.org/10.1364/opn.2.12.000015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Herrick, Robert W. "Reliability of Vertical-Cavity Surface-Emitting Lasers." Japanese Journal of Applied Physics 51, no. 11S (2012): 11PC01. http://dx.doi.org/10.7567/jjap.51.11pc01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hastie, J. E., J. M. Hopkins, C. W. Jeon, et al. "Microchip vertical external cavity surface emitting lasers." Electronics Letters 39, no. 18 (2003): 1324. http://dx.doi.org/10.1049/el:20030839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Choquette, K. D., N. Tabatabaie, and R. E. Leibenguth. "Detector-enclosed vertical-cavity surface emitting lasers." Electronics Letters 29, no. 5 (1993): 466. http://dx.doi.org/10.1049/el:19930311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vakshoori, D., J. D. Wynn, R. E. Leibenguth, and R. A. Novotny. "Long lasting vertical-cavity surface-emitting lasers." Electronics Letters 29, no. 24 (1993): 2118. http://dx.doi.org/10.1049/el:19931416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Young, D. B., J. W. Scott, V. Malhotra, L. A. Coldren, and A. Kapila. "Reduced threshold vertical-cavity surface-emitting lasers." Electronics Letters 30, no. 3 (1994): 233–35. http://dx.doi.org/10.1049/el:19940141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vurgaftman, I., J. R. Meyer, and L. R. Ram-Mohan. "Mid-IR vertical-cavity surface-emitting lasers." IEEE Journal of Quantum Electronics 34, no. 1 (1998): 147–56. http://dx.doi.org/10.1109/3.655018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wu, M. S., G. S. Li, W. Yuen, E. C. Vail, and C. J. Chang-Hasnain. "Tunable micromachined vertical cavity surface emitting laser." Electronics Letters 31, no. 19 (1995): 1671–72. http://dx.doi.org/10.1049/el:19951159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhao, D., C. Zhou, Y. Zhang, L. Shi, and X. Jiang. "Vertical cavity-surface emitting photonic crystal surface-mode lasers." Applied Physics B 91, no. 3-4 (2008): 475–78. http://dx.doi.org/10.1007/s00340-008-3000-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sale, T. E. "Cavity and reflector design for vertical cavity surface emitting lasers." IEE Proceedings - Optoelectronics 142, no. 1 (1995): 37–43. http://dx.doi.org/10.1049/ip-opt:19951659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

JIN, R., G. KHITROVA, D. BOGGAVARAPU, et al. "PHYSICS OF SEMICONDUCTOR VERTICAL-CAVITY SURFACE-EMITTING LASERS." Journal of Nonlinear Optical Physics & Materials 04, no. 01 (1995): 141–61. http://dx.doi.org/10.1142/s0218863595000070.

Full text
Abstract:
We describe recent progress in the physics of light-matter interactions in vertical-cavity surface-emitting-laser (VCSEL) structures. Enhanced spontaneous emission indicates strong medium-cavity coupling. The linewidth broadening factor is more accurately determined in VCSELs, supporting many-body theory of semiconductor nonlinearities. Threshold behavior of VCSELs and microlasers is investigated by photon-correlation experiment and quantum laser theory with emphasis on the importance of second-order coherence properties. External optical injection into a VCSEL cavity leads to injection locking, instabilities, acceleration of coherent energy transfer and sideband lasing, most of which are modeled successfully by recently-developed first-principles semiconductor laser theory.
APA, Harvard, Vancouver, ISO, and other styles
39

SCHERER, A., J. O’BRIEN, G. ALMOGY, et al. "VERTICAL CAVITY SURFACE EMITTING LASERS WITH DIELECTRIC MIRRORS." International Journal of High Speed Electronics and Systems 05, no. 04 (1994): 543–67. http://dx.doi.org/10.1142/s012915649400022x.

Full text
Abstract:
We have developed new low threshold surface emitting laser designs with dielectric high reflectivity top mirrors. Here, we describe the characteristics of these surface emitting vertical cavity lasers (VCSELs) which exhibit stable mode patterns and low threshold currents. The new device fabrication sequence which we employ is able to adjust the emission wavelength of the lasers during the final fabrication step and allow the development of stable multi-wavelength laser arrays. These quantum-well based laser diodes are demonstrated at 0.72 μm with threshold currents of 20 mA, at 0.85 μm with threshold currents of 3 mA, at 0.98 μm with threshold currents of 4 mA, and at 1.55 μm with threshold currents of 17 mA. Our VCSELs also display remarkably low threshold voltages, thus minimizing the laser power dissipation and improving the wallplug efficiency. The flexibility resulting from depositing one or both of the mirrors after the fabrication of the laser diodes opens the way to the development of new and more versatile laser structures.
APA, Harvard, Vancouver, ISO, and other styles
40

ZHANG, Ji-ye, Xue LI, Jian-wei ZHANG, Yong-qiang NING, and Li-jun WANG. "Research Progress of Vertical-cavity Surface-emitting Laser." Chinese Journal of Luminescence 41, no. 12 (2020): 1443–59. http://dx.doi.org/10.37188/cjl.20200339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

YOKOUCHI, Noriyuki. "Vertical-Cavity Surface-Emitting Lasers for Optical LAN." Review of Laser Engineering 29, no. 12 (2001): 779–83. http://dx.doi.org/10.2184/lsj.29.779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kageyama, Takeo, Casimirus Setiagung, Yoshihiko Ikenaga, et al. "1300nm-Range GaInNAsSb Vertical Cavity Surface Emitting Lasers." Review of Laser Engineering 33, Supplement (2005): 203–4. http://dx.doi.org/10.2184/lsj.33.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

SHI Jing-jing, 史晶晶, 秦莉 QIN Li, 宁永强 NING Yong-qiang, et al. "850 nm vertical cavity surface-emitting laser arrays." Optics and Precision Engineering 20, no. 1 (2012): 17–23. http://dx.doi.org/10.3788/ope.20122001.0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Peng Zhang, 张鹏, 宋晏蓉 Yanrong Song, 张新平 Xinping Zhang, 田金荣 Jinrong Tian, and 张志刚 Zhigang Zhang. "High power vertical-external-cavity surface-emitting laser." Chinese Optics Letters 8, no. 4 (2010): 401–3. http://dx.doi.org/10.3788/col20100804.0401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lao Yan-Feng, Cao Chun-Fang, Wu Hui-Zhen, Cao Meng та Gong Qian. "Submilliampare threshold 1.3μm vertical-cavity surface-emitting lasers". Acta Physica Sinica 58, № 3 (2009): 1954. http://dx.doi.org/10.7498/aps.58.1954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Viciani, Silvia, Mathias Gabrysch, Francesco Marin, Fabrice Monti di Sopra, Michael Moser, and Karl Heinz Gulden. "Lineshape of a vertical cavity surface emitting laser." Optics Communications 206, no. 1-3 (2002): 89–97. http://dx.doi.org/10.1016/s0030-4018(02)01381-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Klein, Benjamin, Leonard Register, Matthew Grupen, and Karl Hess. "Numerical simulation of vertical cavity surface emitting lasers." Optics Express 2, no. 4 (1998): 163. http://dx.doi.org/10.1364/oe.2.000163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lehman, Ann C., James J. Raftery, and Kent D. Choquette. "Photonic crystal vertical cavity surface emitting laser arrays." Journal of Modern Optics 53, no. 16-17 (2006): 2303–8. http://dx.doi.org/10.1080/09500340600894030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fordell, Thomas, Zeno Toffano, and sa Marie Lindberg. "A Vertical-Cavity Surface-Emitting Laser at Threshold." IEEE Photonics Technology Letters 18, no. 21 (2006): 2263–65. http://dx.doi.org/10.1109/lpt.2006.884882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Panajotov, Krassimir, Marc Sciamanna, Ignace Gatare, Mikel Arteaga, and Hugo Thienpont. "Nonlinear Dynamics of Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2011 (October 11, 2011): 1–16. http://dx.doi.org/10.1155/2011/469627.

Full text
Abstract:
Nonlinear dynamics of Vertical-Cavity Surface-Emitting Lasers (VCSELs) induced by optical injection, optical feedback, current modulation and mutual coupling is reviewed. Due to the surface emission and cylindrical symmetry VCSELs lack strong polarization anisotropy and may undergo polarization switching. Furthermore, VCSELs may emit light in multiple transverse modes. These VCSEL properties provide new features to the rich nonlinear dynamics induced by an external perturbation. We demonstrate for the case of orthogonal optical injection that new Hopf bifurcation on a two-polarization-mode solution delimits the injection locking region and that polarization switching and injection locking of first-order transverse mode lead to a new resonance tongue for large positive detunings. Similarly, the underlying polarization mode competition leads to chaotic-like behavior in case of gain switching and the presence of two transverse modes additionally reduces the possibility of regular dynamics. The bistable property of VCSEL makes it possible to investigate very fundamental problems of bistable systems with time-delay, such as the coherence resonance phenomenon. We also demonstrate that the synchronization quality between unidirectionally coupled VCSELs can be significantly enhanced when the feedback-induced chaos in the master laser involves both orthogonal LP fundamental transverse modes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography