Academic literature on the topic 'Vertical load bearing structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vertical load bearing structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vertical load bearing structures"
Jin, Shu Cheng, Yong Tao Zhang, and Qi He Wu. "A Study on the Failure Mechanism of Suction Caisson under Vertical Load." Applied Mechanics and Materials 256-259 (December 2012): 1985–89. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.1985.
Full textIvankova, Olga, Lenka Konecna, and Eva Vojtekova. "Static Analysis of Load-Bearing Structure of a Transparent Roof." Applied Mechanics and Materials 769 (June 2015): 69–76. http://dx.doi.org/10.4028/www.scientific.net/amm.769.69.
Full textTyler, R. G. "Rubber bearings in base-isolated structures." Bulletin of the New Zealand Society for Earthquake Engineering 24, no. 3 (September 30, 1991): 251–74. http://dx.doi.org/10.5459/bnzsee.24.3.251-274.
Full textŠapalas, Antanas, Gintas Šaučiuvėnas, Konstantin Rasiulis, Mečislovas Griškevičius, and Tomas Gečys. "BEHAVIOUR OF VERTICAL CYLINDRICAL TANK WITH LOCAL WALL IMPERFECTIONS." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 25, no. 3 (March 29, 2019): 287–96. http://dx.doi.org/10.3846/jcem.2019.9629.
Full textBelostotsky, Alexander M., Pavel A. Akimov, Dmitry S. Dmitriev, Andrey S. Pavlov, Yulia N. Dyadchenko, and Alexander I. Nagibovich. "Numerical analysis of mechanical safety parameters of Congress Hall building in Chelyabinsk." Structural Mechanics of Engineering Constructions and Buildings 15, no. 4 (December 15, 2019): 251–60. http://dx.doi.org/10.22363/1815-5235-2019-15-4-251-260.
Full textCampbell, T. I., M. F. Green, N. C. Koppens, and A. C. Agarwal. "Pressure Distribution in Sliding Interface of Spherical Bridge Bearing." Transportation Research Record: Journal of the Transportation Research Board 1594, no. 1 (January 1997): 154–62. http://dx.doi.org/10.3141/1594-17.
Full textHe, Xiao Ping, Yang Gao, Yong Jiu Shi, Yuan Qing Wang, and Kai Lu. "Analyses of Temperature Loads’ and Support Settlements’ Effect on Load Bearing Capacity of Arch-Reticulated Shell Hybrid Steel Structure of Beijing Jiangtai Winter Garden." Advanced Materials Research 243-249 (May 2011): 879–84. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.879.
Full textZhang, Puyang, Yan’e Li, Yajun Lv, Hongyan Ding, and Conghuan Le. "Bearing Capacity Characteristics of Composite Bucket Foundation Under Torque Loading." Energies 12, no. 13 (June 28, 2019): 2487. http://dx.doi.org/10.3390/en12132487.
Full textMan, Yiran, Xudong Luo, Zhipeng Xie, and Dianli Qu. "Influence of 3D Printed Topological Structure on Lightweight Mullite Load Bearing Board in Thermal Environment." Advances in Materials Science and Engineering 2020 (March 11, 2020): 1–8. http://dx.doi.org/10.1155/2020/8340685.
Full textLang, Ruiqing, Run Liu, Jijian Lian, and Hongyan Ding. "Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine." Scientific World Journal 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/394104.
Full textDissertations / Theses on the topic "Vertical load bearing structures"
Ptáček, Lukáš. "Polyfunkční dům." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227485.
Full textHradečný, Štěpán. "Stavebně technologický projekt polyfunkčního domu, Staré Brno." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372235.
Full textŠmíd, Václav. "Bytový dům, Brno - Židenice." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227633.
Full textRůžička, Radek. "Příprava realizace bytového domu v Brně - Modřicích." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-391883.
Full textBartolucci, Stefano 1976. "Commercial application of aluminum honeycomb and foam in load bearing tubular structures." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28868.
Full textIncludes bibliographical references.
Small dimension engineering tubular structures subjected to a complex load system are designed like hollow circular shells. For minimum weight design, the ratio between the shell radius and the thickness has to be as large as possible, but its maximum value is limited by the onset of local buckling. Tubular natural structures subjected to a complex load system have often an outer shell of solid material supported by a low density, compliant core, which makes them more resistant to local buckling. Biomimicking of natural constructions offer the potential to improve the design of small diameter tubular engineering structures. Here, the fabrication technology of biomimicked engineering tubular structures integrating aluminum foam or honeycomb as core material is discussed. A viability analysis is presented including technical performance, cost, utility, and risk assessments. Aluminum compliant core shells have potential for substituting CFRP and aluminum tubular structures in aerospace and high-level sport applications. The case of sailboat masts was considered in detail. Results of our analysis proved that use of honeycomb as core material can lead to a significant reduction of the mast weight. Business opportunities based on this application are discussed.
by Stefano Bartolucci.
M.Eng.
Lilja, Andreas. "Temperature analysis of fire exposed load-bearing structures of mono glazed balconies." Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81730.
Full textUnder det tidigare gällande regelverket boverkets konstruktionsregler, BKR, dimensionerades brandmotståndet för den bärande konstruktionen av enkelinglasade balkonger med testmetoden SP fire 105. När BKR ersattes av boverkets föreskrifter och allmänna råd om tillämpning av europeiska konstruktionsstandarder, EKS, tillsammans med Eurokoderna, slutade man att använda SP fire 105 och började istället använda nominella temperatur-/tidförlopp. I tidigare versioner av EKS föreskrevs det att dimensionering enligt klassificering ska utföras med en brandexponering enligt standardtemperatur/-tidkurvan (ISO 834). Men i och med upphörandet av BKR år 2011, genomfördes en överenskommelse mellan Balkongförening och Boverket där man bestämde att den bärande konstruktionen för enkelinglasade balkonger och öppna balkonger skulle få dimensioneras med exponeringskurvan för utvändig brand istället för standardtemperatur-/tidkurvan. Dimensionering enligt exponeringskurvan för utvändig brand resulterar i en dimensionerande temperatur på 680 °C för brandteknisk klass R30, istället för en temperatur på 842 °C vid dimensionering med standardtemperatur-/tidkurvan. Vid införandet av EKS 11 år 2019 skedde en förändring i föreskrifterna gällande branddimensionering av bärande konstruktioner. I EKS 11 framgår det explicit att byggnadsdelar vilka är placerade inom inglasade balkonger inte bör betraktas som utvändiga byggnadsdelar. Detta medför att den bärande konstruktionen för enkelinglasade balkonger inte längre kan dimensioneras enligt exponeringskurvan för utvändig brand, utan måste dimensioneras enligt standardtemperatur-/tidkurvan. Denna studie syftar till att klargöra vilken temperatur som är rimlig att använda vid dimensionering av den bärande konstruktionen för enkelinglasade balkonger. Är den tidigare exponeringskurvan för utvändig brand mer rimlig, eller är föreskriften om att använda standardtemperatur-/tidkurvan motiverad? I studien har 16 scenarion analyserats med hjälp av CFD beräkningar i simuleringsprogrammet FDS, och med hjälp av FEM beräkningar i simuleringsprogrammet TASEF. Med FDS beräknades den adiabatiska yttemperaturen för den bärande konstruktionen, vilken sedan användes som indata i TASEF för att beräkna temperaturen i den bärande konstruktionen. Maxtemperaturen på konstruktionselementen som utgörs av stål uppnår generellt temperaturer som understiger temperaturen för exponeringskurvan vid utvändig brand. I ett ”worst-case” scenario där brandkällan står i direkt anslutning till en stålkonstruktion, kan temperaturer uppnås vilka överstiger temperaturen i standardtemperatur-/tidkurvan. Maxtemperaturen på balkongplattan är högre än temperaturen i exponeringskurvan vid utvändig brand, men lägre än temperaturen i standardtemperatur-/tidkurvan. 15 mm in i balkongplattan understiger temperaturen på betongen 500 °C. Enligt 500 °C isotermmetoden som är publicerad i SS-EN 1992-1-2 innebär detta förenklat att all betong på ett djup överstigande 15 mm har kvar sin fulla bärförmåga. En slutsats är att det krävs vidare studier för att kunna fastställa vilket nominellt temperatur-/tidförlopp som borde användas vid dimensionering av den bärande konstruktionen för enkelinglasade balkonger. Ett förslag på vidare studier är att utföra brandtester på en enkelinglasad balkong, varav resultaten sedan kan jämföras med resultaten i denna studie. Sådana resultat skulle förhoppningsvis möjliggöra ett fastställande av vilket nominellt temperatur-/tidförlopp som bör användas vid dimensionering av den bärande konstruktionen för enkelinglasade balkonger.
Sahota, Mankinder Kaur. "The use of lead in infilled frame structures to reduce vertical load transfer." Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321489.
Full textTurkmen, Haydar Kursat. "An Experimental Study Into Bearing Of Rigid Piled Rafts Under Vertical Loads." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609420/index.pdf.
Full textkaolinite mixture. It has been observed that when a piled raft is loaded gradually, piles take more load initially and after they reach their full capacity additional loads are carried by raft. The proportion of load that was carried by the raft decreases with the increasing number of piles and the load per pile is decreased. Center, edge and corner piles are not loaded equally under rafts. It has been found that rafts share foundation loads at such levels that should not be ignored.
Armaleh, Sonia Hanna 1956. "ANALYSIS OF SINGLE AND GROUP PILES IN COHESIONLESS SOILS (BEARING CAPACITY, FINITE ELEMENT METHOD, LOAD-DEFORMATION, VERTICAL LOADING, SPACING)." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/291192.
Full textDennison, John Sebastian, and n/a. "Load-bearing structures : Pakeha identity and the cross-cultural poetry of James K. Baxter and Glenn Colquhoun." University of Otago. Department of English, 2003. http://adt.otago.ac.nz./public/adt-NZDU20070507.113327.
Full textBooks on the topic "Vertical load bearing structures"
Horváth, Z. Kálmán. The selection of load-bearing structures for buildings. Amsterdam: Elsevier, 1986.
Find full textEschenauer, Hans. Applied structural mechanics: Fundamentals of elasticity, load-bearing structures, structural optimization : including exercises. Berlin: Springer, 1997.
Find full textNational Conference on the Use of Composite Materials in Load-bearing Marine Structures (1991 Arlington, Va.). National conference on the use of composite materials in load-bearing marine structures: 25-26 September 1990. Washington, DC: National Academy Press, 1991.
Find full textSetkovSerbin, Evgeniy. Building structures. Calculation and design. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1030129.
Full textSzabó, Bálint. Dicționar ilustrat de intervenții la structuri portante istorice: Illustrated dictionary of intervention on historic load-bearing structures = Történeti tartószerkezeti beavatkozások illusztrált szakszótára = Bildworterbuch der Eingriffe in historische Tragwerke. Cluj-Napoca: Utilitas, 2008.
Find full textAlekseenko, Vasiliy, and Oksana Zhilenko. Design, construction and operation of buildings in seismic areas. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1000210.
Full textSchnell, Walter, Niels Olhoff, and Hans Eschenauer. Applied Structural Mechanics: Fundamentals of Elasticity, Load-Bearing Structures, Structural Optimization. Springer, 1996.
Find full textY, Rajapakse, Kardomateas George A, American Society of Mechanical Engineers. Applied Mechanics Division., and International Mechanical Engineering Congress and Exposition (1999 : Nashville, Tenn.), eds. Thick composites for load bearing structures: Presented at the 1999 ASME International Mechanical Engineering Congress and Exposition, November 14-19, 1999, Nashville, Tennessee. New York: American Society of Mechanical Engineers, 1999.
Find full textAmerican Society of Mechanical Engineers. Applied Mechanics Division (Corporate Author), Yapa D. S. Rajapakse (Editor), George A. Kar (Editor), and George A. Kardomateas (Editor), eds. Thick Composites for Load Bearing Structures: Presented at the 1999 Asme International Mechanical Engineering Congress and Exposition, November 14-19, ... Tennessee (Ams Series, Volume 235). Amer Society of Mechanical, 1999.
Find full textBook chapters on the topic "Vertical load bearing structures"
Muench, Ingo. "Evolution of Load-Bearing Structures with Phase Field Modeling." In Lecture Notes in Computational Science and Engineering, 335–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96415-7_29.
Full textQuang, Pham Ngoc, Ohtsuka Satoru, Isobe Koichi, and Fukumoto Yutaka. "Bearing Capacity of Footing Resting on Sand for Eccentric Vertical Load." In Lecture Notes in Civil Engineering, 1135–42. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-2184-3_148.
Full textWang, Chao, Peng Li, Zemin Ren, and Fanbo Meng. "3-D Printed Non-developable Surface Conformal Load-Bearing Antenna Structures." In Lecture Notes in Electrical Engineering, 812–23. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9437-0_83.
Full textWierzbicki, K., and M. Szumigała. "Influence of bimoment restraints on load-bearing capacity of steel I-beams." In Modern Trends in Research on Steel, Aluminium and Composite Structures, 141–47. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-15.
Full textMaślak, Mariusz. "Critical Temperature Evaluation for Steel Load-Bearing Structure Exposed to Fire by Means of Probability-Based Approach." In Design, Fabrication and Economy of Metal Structures, 389–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36691-8_59.
Full textDahy, Hanaa. "Towards Sustainable Buildings with Free-Form Geometries: Development and Application of Flexible NFRP in Load-Bearing Structures." In Biocomposite Materials, 31–43. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4091-6_2.
Full textPasternak, Hartmut, Agnieszka Chwastek, and Ádám Sebők. "Effects of Welding Repairs on the Load Bearing Capacity and on the Fatigue Life of Fillet Welds of Normal and Low Alloy High Strength Steels." In Design, Fabrication and Economy of Metal Structures, 281–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36691-8_42.
Full textSychev, Sergey, Vasiliy Komov, Moreno Ferrarese, and Alexandr Koposov. "Single-Element Construction System for Differentiated Installation of Load-Bearing and Enclosing Structures of Buildings Based on a Flat Monoelement." In Lecture Notes in Civil Engineering, 247–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72404-7_25.
Full textWeller, Bernhard, Felix Nicklisch, Volker Prautzsch, and Iris Vogt. "Outline of Testing and Evaluation Program Used in Selection of Adhesives for Transparent Adhesive Joints in All-Glass Load-Bearing Structures." In Durability of Building and Construction Sealants and Adhesives: 4th Volume, 152–76. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2012. http://dx.doi.org/10.1520/stp49517t.
Full textWeller, Bernhard, Felix Nicklisch, Volker Prautzsch, and Iris Vogt. "Outline of Testing and Evaluation Program Used in Selection of Adhesives for Transparent Adhesive Joints in All-Glass Load-Bearing Structures." In Durability of Building and Construction Sealants and Adhesives: 4th Volume, 152–76. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2012. http://dx.doi.org/10.1520/stp154520120007.
Full textConference papers on the topic "Vertical load bearing structures"
Caussignac, Jean-Marie, Mohamed Barbachi, and Alain Chabert. "Bridge bearings equipped with optical fiber sensor for measuring vertical load through the support." In 1996 Symposium on Smart Structures and Materials, edited by Larryl K. Matthews. SPIE, 1996. http://dx.doi.org/10.1117/12.238842.
Full textSim, Kyuho, and Jisu Park. "Performance Measurements of Gas Bearings With High Damping Structures of Polymer and Bump Foil via Electric Motor Driving Tests and 1-DOF Shaker Dynamic Loading Tests." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57345.
Full textMasaki, Nobuo, Sadamitsu Takeuchi, and Hisashi Hirata. "Dynamic Characteristics of a Sliding Bearing Using Lubricant Material for Base Isolation of Light Structures." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2101.
Full textSuñol, Anna, Dean Vucinic, and Lars De Laet. "Tensairity Concept Applied to Lighter-Than-Air Vehicles for Light-Weight Structures." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38174.
Full textTeo, Fwu Chyi, Leong Hien Poh, and Sze Dai Pang. "Breaking Load of Thick Ice on Sloping Structures." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54397.
Full textFukasawa, Tsuyoshi, Shigeki Okamura, Tomohiko Yamamoto, Nobuchika Kawasaki, Takahiro Somaki, Yu Sakurai, and Nobuo Masaki. "Development on Rubber Bearings for Sodium-Cooled Fast Reactor: Part 2 — Fundamental Characteristics of Half-Scale Rubber Bearings Based on Static Test." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45263.
Full textDroogné, Didier, Wouter Botte, and Robby Caspeele. "Assessment of current design guidelines for vertical ties in relation to progressive collapse of RC structures." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0226.
Full textSuhara, Junji, Tadashi Tamura, Yasuo Okada, and Katsuhiko Umeki. "Development of Three Dimensional Seismic Isolation Device With Laminated Rubber Bearing and Rolling Seal Type Air Spring." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1430.
Full textFukasawa, Tsuyoshi, Shigeki Okamura, Tomohiko Yamamoto, Nobuchika Kawasaki, Tsutomu Hirotani, Eriko Moriizumi, Yu Sakurai, and Nobuo Masaki. "Development on Rubber Bearings for Sodium-Cooled Fast Reactor: Part 3 — Ultimate Properties of a Half Scale Thick Rubber Bearings Based on Breaking Test." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63397.
Full textHöltke, Tim, and Achim Bleicher. "Timber-concrete composite frame joint for high-rise buildings." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1136.
Full textReports on the topic "Vertical load bearing structures"
Prakash, Vikas, Mike Bifano, and Pankaj Kaul. Carbon-Nanotube-Based Epoxy Matrix Thermal Interface Materials for Thermal Management in Load Bearing Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada564111.
Full textRollett, A. D., and A. R. Ingraffea. Prognosis of Long-Term Load-Bearing Capability in Aerospace Structures: Quantification of Microstructurally Short Crack Growth. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada588099.
Full textBishop, Nicholas A., Mohammod Ali, Jason Miller, David L. Zeppettella, William Baron, and James Tuss. A Broadband High-Gain Bi-Layer Log-Periodic Dipole Array (LPDA) for Ultra High Frequency (UHF) Conformal Load Bearing Antenna Structures (CLAS) Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada609576.
Full text