Academic literature on the topic 'Vertical Seismic Profiling (VSP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vertical Seismic Profiling (VSP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Vertical Seismic Profiling (VSP)"

1

Zimmerman, Linda J., and Sen T. Chen. "Comparison of vertical seismic profiling techniques." GEOPHYSICS 58, no. 1 (January 1993): 134–40. http://dx.doi.org/10.1190/1.1443343.

Full text
Abstract:
To study the imaging characteristics of various vertical seismic profiling techniques, two vertical seismic profiles (VSP) and a reversed vertical seismic profile (RVSP), where source and receiver positions are interchanged, were collected in the Loudon Oil Field in Illinois. Both VSPs were collected using a line of dynamite charges on the surface as sources. One was collected with geophones and the other with hydrophones as downhole receivers. The RVSP was collected by detonating 25 gram explosive charges in a well and detecting the seismic response with geophones at the surface. Three subsurface images (VSP with geophones, VSP with hydrophones, and RVSP) were produced using VSP-CDP transforms. For comparison, a surface seismic profile was collected along the same line with dynamite sources and vertical geophone receivers. The RVSP and hydrophone VSP stacked sections both produced higher frequency images at shallower depths than did the geophone VSP stacked section. However, the lower frequency geophone VSP stacked section produced an interpretable subsurface image at much greater depths than either the RVSP or the hydrophone VSP sections. The differences are due in part to the more powerful surface sources that were used for the VSPs than the downhole sources used for the RVSP. Furthermore, tube‐wave noise was a more severe problem for both the RVSP and the hydrophone VSP than for the geophone VSP. The results of this experiment demonstrate that if tube‐wave noise could be suppressed, hydrophone VSPs would provide attractive alternatives to geophone VSPs, because it is much easier and cheaper to deploy multilevel hydrophones downhole than geophones. Also, if a high‐powered, nondestructive source is developed, RVSP could be a practical alternative to VSP since one can easily lay out numerous receivers on the surface to record multioffset or three‐dimensional (3-D) VSP data.
APA, Harvard, Vancouver, ISO, and other styles
2

Suprajitno, M., and S. A. Greenhalgh. "Theoretical vertical seismic profiling seismograms." GEOPHYSICS 51, no. 6 (June 1986): 1252–65. http://dx.doi.org/10.1190/1.1442178.

Full text
Abstract:
Offset vertical seismic profiling (VSP) theoretical seismograms which include multiples and mode conversions can be computed using a modified “reflectivity” method. In this method, the transformed displacement potentials are first calculated by multiplying the source spectrum by the composite reflectivity function. Integration over wavenumber, followed by inverse Fourier transformation over the frequency range of the signal, yields the synthetic trace. The composite reflectivity function for a buried receiver is derived from Kennett’s matrices (Kennett, 1974, 1979) which are synthesized to form phase‐related reflection and transmission coefficients from a layer stack. Both conventional fixed source‐moving receiver and fixed receiver‐walkaway source (multioffset) VSP geometries can be handled easily. The method can also readily accommodate deviated‐hole VSP. The method is general in that no ray needs to be specified. Because the order of the multiples can be controlled, wraparound problems with the discrete Fourier transform can be avoided. The normal‐incidence VSP seismograms can be rapidly generated as a special case. Several examples illustrate the method. Some classes of laterally varying structures can be approximately handled by restricting the range of ray‐angle integration and by using the principle of superposition.
APA, Harvard, Vancouver, ISO, and other styles
3

Gulati, Jitendra S., Robert R. Stewart, and John M. Parkin. "Analyzing three‐component 3D vertical seismic profiling data." GEOPHYSICS 69, no. 2 (March 2004): 386–92. http://dx.doi.org/10.1190/1.1707057.

Full text
Abstract:
A three‐component 3D vertical seismic profile (VSP) was acquired over the Blackfoot oil field in Alberta, Canada. The VSP survey was recorded simultaneously with a surface seismic program. The objectives of the VSP were to develop recording logistics, data handling, and processing procedures and to determine if the 3D VSP volumes could image the glauconitic sand reservoir of the Blackfoot field. Dynamite shots from the surface seismic survey, which fell within a 2200‐m offset from the recording well, were used in the VSP analysis. The shots were recorded by a string of three‐component borehole receivers that was moved seven times, resulting in a receiver depth range of 400 to 910 m. The borehole data were processed using basic VSP processing techniques that included hodogram analysis, wavefield separation using median filters, and VSP deconvolution. The final P‐P and P‐S image volumes were obtained by VSP common‐depth point and VSP common‐conversion point stacking the upgoing wavefields followed by f‐xy deconvolution. The P‐P and P‐S images from the VSP correlate well with those from the surface seismic survey. Time slices from the VSP also indicate the trend of the sand channel of the Blackfoot field.
APA, Harvard, Vancouver, ISO, and other styles
4

Carswell, Allan, and Wooil M. Moon. "Application of multioffset vertical seismic profiling in fracture mapping." GEOPHYSICS 54, no. 6 (June 1989): 737–46. http://dx.doi.org/10.1190/1.1442701.

Full text
Abstract:
Multioffset vertical seismic profiling (VSP) combines the improved vertical resolution of VSP with the lateral resolution of the conventional seismic method. In this study, the multioffset VSP technique was employed to map the fracture zones in a granite batholith in which the Atomic Energy of Canada Ltd.’s Underground Research Laboratory (URL) is located. With shotpoints along a vertical shaft and receiver arrays on the surface (cemented to outcrops), six 2-D seismic sections were obtained. The upcoming and downgoing events were separated using a Radon transform wave‐field separation method. For the given multioffset experimental configuration, the VSP-CDP transformation converted the VSP section into conventional type seismic sections. The results indicate that the multioffset configuration is an effective method for mapping deep fracture zones, in this case with respect to the URL shaft. However, the VSP-CDP transformation method used in this study tends to stretch the shallow reflection events, resulting in reduced resolution.
APA, Harvard, Vancouver, ISO, and other styles
5

Marzetta, Thomas L., Marion Orton, Alfred Krampe, Lucian K. Johnston, and Paul C. Wuenschel. "A hydrophone vertical seismic profiling experiment." GEOPHYSICS 53, no. 11 (November 1988): 1437–44. http://dx.doi.org/10.1190/1.1442423.

Full text
Abstract:
To reduce the cost of VSP data acquisition, it is necessary to record the VSP signal from a vertical array of geophones for a single operation of the source. Until a vertical array of clamped three‐component geophones is available, it seems logical to evaluate the capabilities of a vertical array of hydrophones, which is much easier to fabricate. It is well known that elastic waves in the solid couple to pressure waves in the borehole fluid. It is also well known that this coupling excites in the borehole fluid energy known as tube‐wave noise that dominates the borehole pressure signal after the first arrival. (The borehole acts as a waveguide.) In this paper we test the effectiveness of velocity filtering of the borehole pressure signal to attenuate the slowly propagating tube‐wave noise and enhance the faster propagating body‐wave signals. Our initial test satisfactorily extracted from the hydrophone array data a strong reflected event that was also observed in the conventional clamped geophone VSP taken in the same borehole. We were not as successful in recovering subsequent weaker reflected signals from the hydrophone data, because of the strong incoherent ambient tube‐wave noise. This incoherency resulted from instrumental limitations that allowed us to record, for each shot, only three of the twelve hydrophone channels available in the vertical array.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Jun, Chun Hui Xie, and Peng Yang. "Calculate Formation Velocity from Vertical Seismic Profiling Data." Applied Mechanics and Materials 599-601 (August 2014): 639–42. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.639.

Full text
Abstract:
Extracting interval velocity is one of important applications of VSP data. Also, imaging of VSP data requires accurate velocity information. Two kinds of algorithms on the assumption of straight-ray and curve-ray are employed to calculate interval velocity respectively. Comparison of the extracted velocity from the two methods above with real velocity shows that both methods are suitable for VSP data recorded in the vicinity of well, while the algorithm derived from straight-ray fails in the long-offset. Moreover, the curve-ray is more reliable when there are some random errors due to the first arrivals picking.
APA, Harvard, Vancouver, ISO, and other styles
7

Freire, Sergio L. M., and Tad J. Ulrych. "Application of singular value decomposition to vertical seismic profiling." GEOPHYSICS 53, no. 6 (June 1988): 778–85. http://dx.doi.org/10.1190/1.1442513.

Full text
Abstract:
An essential part of the interpretation of vertical seismic profiles (VSP) is the separation of the upgoing and downgoing waves. This paper presents a new approach which is based on the decomposition of time‐shifted VSP sections into eigenimages, using singular value decomposition (SVD). The first few eigenimages of the time‐shifted VSP section contain the contributions of the horizontally aligned downgoing waves. The last few eigenimages contain the contribution of uncorrelated noise components. The separated upgoing waves are recovered as a partial sum of the eigenimages. Important aspects of this approach are that regular sampling of the recording levels is not required, that the first‐break times need not be measured with extreme accuracy, that noise rejection may be automatically included in the processing, and that eigenimages or sums of eigenimages which may be computed as part of the approach can provide important additional information.
APA, Harvard, Vancouver, ISO, and other styles
8

IKAWA, Takeshi. "Exploration of Subsurface Structures: Reflection Seismic Method and VSP (Vertical Seismic Profiling)." Zisin (Journal of the Seismological Society of Japan. 2nd ser.) 47, no. 1 (1994): 103–12. http://dx.doi.org/10.4294/zisin1948.47.1_103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Payne, Michael A. "Looking ahead with vertical seismic profiles." GEOPHYSICS 59, no. 8 (August 1994): 1182–91. http://dx.doi.org/10.1190/1.1443676.

Full text
Abstract:
Several operations enhance our ability to predict the subsurface below the bottom total depth (TD) of the well when applied to zero‐offset vertical seismic profiling (VSP) data. Other key issues regarding the use of VSP data in this fashion are resolution and look‐ahead distance. An impedance log is the most useful form for presenting VSP data to look ahead of the drill bit. The VSP composite trace must first tie reliably to the surface seismic section and to the well log synthetic seismogram. The impedance log is obtained by inverting this VSP composite trace. However, before performing the inversion, we need to (1) correct the composite trace for attenuation effects below TD and (2) input velocities to provide low‐frequency information. An exponential gain function applied to the VSP data below TD adequately compensates for the loss of amplitude caused by attenuation. A calibration of the seismically derived velocities with VSP velocities yields the necessary low‐frequency information. These concepts are illustrated using a field data set and its subset truncated above TD. The output of these operations on the VSP data are compared to well log data. The question of resolution with these data was determined with a model VSP data set based on the well log data. The investigations indicate that the resolution attainable from look‐ahead data is on the order of 50–75 ft (15–23 m). This is one‐quarter seismic wavelength for the frequencies present in these data. In addition, the maximum look‐ahead distance for these data is shown to be easily 2000 ft (600) m and, perhaps, 4000 ft (1200 m5). By way of illustration, the techniques described and investigated 6were applied to an offshore VSP data set to yield an impedance log. After calibrating this curve with the well log data, the base of the target sand was correctly identified below TD. This prediction successfully yielded the thickness of the sand. Individual zones within the sand unit were identified with less confidence.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhou, Hua-wei. "First-break vertical seismic profiling tomography for Vinton Salt Dome." GEOPHYSICS 71, no. 3 (May 2006): U29—U36. http://dx.doi.org/10.1190/1.2192970.

Full text
Abstract:
Building laterally depth-varying velocity models for vertical seismic profiling (VSP) imaging is challenging because of the narrow ray-angle coverage of VSP data, especially if only first arrivals are used. This study explores the potential of a new deformable-layer tomography (DLT) for building velocity models with a VSP data set acquired over the Vinton salt dome in southwestern Louisiana. The DLT method uses first breaks to constrain the geometry of velocity interfaces from an initial model of flat, constant-velocity layers parameterized using a priori geologic and geophysical information. A progressive multiscale inversion loop gradually updates the interface geometry. The final solution model, containing 3D geometry, is well supported by resolution and reliability tests and closely matches the long-wavelength trends of area sonic logs. The presence of velocity anisotropy is also indicated.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Vertical Seismic Profiling (VSP)"

1

Kästner, Felix. "Vertical Seismic Profiling in the Krafla Geothermal Field, NE-Iceland." Master's thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-215820.

Full text
Abstract:
A VSP test experiment at the high temperature geothermal field Krafla in NE-Iceland has been carried out. In two boreholes a zero-, far-, and multi-offset VSP were applied to assess the applicability of VSP as a method for delineating subsurface structures like magmatic bodies, zones of supercritical fluids, superheated steam, and high permeability in volcanic geothermal fields. Because of high well temperatures (>150°C) and high attenuating surface layers, challenging field preparations were necessary. Three-component seismic data were recorded with a sufficient signal-to-noise ratio and dominant signal frequencies around 20 Hz and 40 Hz, down to 2200 m depth, for air gun and explosive sources, respectively. As a result, the data provide a good basis for several processing and imaging techniques. As part of this Master\'s thesis, standard and novel processing techniques of a subset of the data (zero and far-offset VSP in a single well) have been tested and show promising results in accordance with the lithology from well data. Besides velocity profiles and a corridor stack for both P- and S-waves were determined, a 3D Kirchhoff depth migration and Fresnel volume migration have been applied and tested. Already for a single source location, results show structures in the vicinity and below the well, and it can be assumed that further interpretation and data integration will provide a great potential in addition to hitherto applied teleseismic and potential methods. Especially, for geothermal sites it has been shown, that VSP can be applied and provide information of geometries where dipping faults and fracture zones are expected. The research leading to these results has received funding from the European Community\'s Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).
APA, Harvard, Vancouver, ISO, and other styles
2

Schilke, Sven. "Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042/document.

Full text
Abstract:
Les capteurs distribués à fibre optique (aussi nommés DAS) sont une nouvelle technologie d'acquisition sismique qui utilise des câbles traditionnels à fibre optique pour fournir une mesure de la déformation le long du câble. Ce système d'acquisition est largement utilisé dans les profils sismiques verticaux (PSV). Le couplage est un facteur clé qui a une grande influence sur la qualité des données. Alors que, pour les acquisitions PSV, les géophones sont attachés à la paroi du puits, le câble de fibre optique est soit cimenté derrière le tubage, soit attaché avec des pinces rigides au tubage ou simplement descendu dans le puits. Cette dernière stratégie de déploiement donne généralement le plus petit rapport signal sur bruit, mais est considérée comme la plus rentable en particulier pour les installations dans des puits existants. Cette thèse porte sur la problématique du couplage du DAS quand le câble est simplement descendu dans le puits. Nous développons des modèles numériques pour analyser les données réelles. L'interprétation de ces résultats nous permet de conclure qu'un contact immédiat du câble avec la paroi du puits avec une force de contact calculée est nécessaire pour fournir des bonnes conditions de couplage. Sur la base de ces résultats, nous proposons des solutions pour optimiser davantage les acquisitions avec le système DAS. Nous modifions numériquement la force de contact et les propriétés élastiques du câble DAS et démontrons comment ces modifications peuvent améliorer mais aussi détériorer la qualité des données. Enfin, nous proposons un algorithme de détection du couplage qui permet d'assurer l'acquisition de données réelles avec un rapport signal / bruit élevé
Distributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
APA, Harvard, Vancouver, ISO, and other styles
3

Gulati, Jitendra. "Borehole seismic surveying, 3C-3D VSP and land vertical cable analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38587.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roberts, Mark Alvin. "Full waveform inversion of walk-away VSP data." Paris, Institut de physique du globe, 2007. http://www.theses.fr/2007GLOB0020.

Full text
Abstract:
Du fait de l’épuisement des réserves de pétrole, l’exploration et la production sont réalisées dans des environnements de plus en plus complexes. Faire de l’imagerie sismique sous le sel allochtone (par exemple dômes de sel) demeure une tâche difficile à cause du fait contraste de vitesse dentre le sel et les sédiments voisins et les structures très complexes produites par les déplacements de sel. Les nappes de sel allochtone couvrent de nombreuses régions potentiellement productives dans l’offshore profond du Golfe du Mexique. Forer la base du sel est une tâche extrêmement difficile en raison des pressions de pore fortement variables que l’on recontre dans les sédiments sous le sel. Des méthodes sismiques pour estimer la vitesse des ondes sismiques peuvent être employées en même temps que des formules empiriques pour prévoir la pression de pore. Cependant, il est souvent impossible de mesures précises depuis la surface, et nous avons donc employé des données VSP (Vertical Seismic Profile) “walk-away” cela implique d’effectuer plusieurs tirs sismique à diverses distances du forage (géneralement avec un dispositif de canons á air) tout en enregistrement les vitesses mesurees par des geophones placés à des profondeurs appropriées dans le forage. Avant cette thèse, les données étaient traitées en utilisant l’information d’amplitude en fonction de l’angle dans un simple approximation 1D ou en utilisant l’information de temps de parcours (également avec une approximation 1D). Dans cette thèse, j’ai effectué une inversion 2D de forme d’onde pour résoudre le problème d’estimation des vitesses. Cela a l’avantage d’inverser simultanément l’ensemble des données (comprenant les ondes transmises, les ondes refléchies et les ondes converties) et la méthode inclut l’information de temps de parcours et d’amplitude. L’inversion a été exécute avec des méthodes locales d’inversion du fait de la taille du problème inverse et de la difficulté du problème direct. Les problèmes liés aux grandes variations de le sensibilité inhérents à l’acquisition de données, ont conduit à un examen de la méthode de Gauss- Newton et à des matrices, de préconditionnement possibles pour la méthode du gradient conjugué. En raison de la nature mal contrainte du problème inverse, une régularisation a été appliquée avec une méthode de préconditionnement innovatrice. La méthodologie a été appliquée à des données réelles et la pression de pore a été prédite en utilisant l’équation bien établie de Eaton. En outre, les structures sous le sel ont été déterminées, confirment ainsi l’efficacité de cette technique
Depletion of the earth’s hydrocarbon reserves has led to exploration and production in increasingly complex environments. Imaging beneath allochthonous salt (e. G. Salt domes) remains a challenging task for seismic techniques due to the large velocity contrast of the salt with neighbouring sediments and the very complex structures generated by salt movement. Extensive allochthonous salt sheets cover many potentially productive regions in the deep-water Gulf of Mexico. Drilling through the base of salt is an extremely challenging task due to widely varying pore-pressure found in the sediments beneath. Seismic methods to estimate the seismic velocity can be used in conjunction with empirical formula to predict the pore pressure. However, accurate measurements are often not possible from surface reflection seismic data, so walk-away Vertical Seismic Profile (VSP) data has been used. This involves repeatedly firing a seismic source at various distances from the borehole (usually an airgun array) while recording the velocities measured by geophones in the borehole placed at appropriate depths near the base of the salt. Before this thesis, the data had been processed using the amplitude versus angle information in a simple one-dimension approximation or using travel time information (also using a 1D assumption). In this thesis, I have used 2D full waveform inversion to tackle the problem of velocity estimation. This has the advantage of simultaneously inverting the whole dataset (including transmitted waves, reflected waves, converted waves) and the method includes traveltime and amplitude information. The inversion was performed using local inversion methods due to the size of the inverse problem and the cost of the forward problem. Concerns over large sensitivity variations, that are inherent in the data acquisition, have lead to an examination of the Gauss-Newton method and possible preconditioning matrices for the conjugate gradient method. Due to the poorly constrained nature of the inverse problem, a smoothness constraint has been applied with an innovative preconditioning method. The methodology has been applied to real data and the pore pressure has been predicted using the well established Eaton equation. In addition, the sub-salt structure was recovered, further demonstrating the value of this technique
APA, Harvard, Vancouver, ISO, and other styles
5

Bohm, Mirjam. "3-D Lokalbebentomographie der südlichen Anden zwischen 36⁰ und 40⁰S /." Potsdam : GeoForschungsZentrum Potsdam, 2004. http://www.gfz-potsdam.de/bib/zbstr.htm.

Full text
Abstract:
Thesis (doctoral)--Freie Universität Berlin, 2004.
Title from cover. "Dezember 2004"--P. [2] of cover. Vita. Includes bibliographical references (p. 103-113). Also available via the World Wide Web.
APA, Harvard, Vancouver, ISO, and other styles
6

Cicerone, Robert D. "Detection and characterization of in-situ fractures in the earth from vertical seismic profiling data." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13530.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1991.
Includes bibliographical references (leaves 202-208).
by Robert D. Cicerone.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
7

Siebert, Mark G. "Vertical seismic profiling : a study of a standard zero-offset survey recorded in the Cooper Basin /." Adelaide, 1986. http://web4.library.adelaide.edu.au/theses/09SB/09sbs571.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beilecke, Thies Carl Helmut [Verfasser]. "The seismic conversion log and its application to vertical seismic profiling at the German continental deep drilling site (KTB) / vorgelegt von Thies Carl Helmut Beilecke." Kiel, [Hansastr. 15] : T. Beilecke, 2003. http://d-nb.info/970138792/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steht, Markus von. "Imaging of vertical seismic profiling data using the common-reflection-surface stack Abbildungsverfahren für seismische Daten aus Bohrlochmessungen mit der Common-Reflection-Surface Stapelung /." [S.l. : s.n.], 2008. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Menier, David. "Morphologie et remplissage des vallées fossiles sud-armoricaines : apport de la stratigraphie sismique /." Rennes : Géosciences-Rennes, 2004. http://catalogue.bnf.fr/ark:/12148/cb39955706d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Vertical Seismic Profiling (VSP)"

1

Hinds, Ronald C. VSP interpretive processing: Theory and practice. Tulsa, Okla: Society of Exploration Geophysicists, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamamizu, Fumio. Kantō chiiki no chūshinsō chikaku katsudō kansokusei o riyōshita VSP-hō sokudo kōzō chōsa =: Seismic wave velocitty structures in Kanto area as revealed by th crustal activity observation well VSP. Tsukuba-shi: Bōsai Kagaku Gijutsu Kenkyūjo, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hardage, Bob Adrian. Vertical seismic profiling. 2nd ed. Oxford: Pergamon Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vertical seismic profiling: Principles. 3rd ed. Amsterdam: Pergamon, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peter, Kennett, ed. Vertical seismic profiling and its exploration potential. Dordrecht: D. Reidel, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galperin, E. I. Vertical Seismic Profiling and Its Exploration Potential. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, John J. Non-zero offset vertical seismic profile data recorded using a downhole marine airgun source and vertical- and horizontal-component surface geophones: Edward J. Kubat Government #1 well, San Juan County, Utah. [Denver, Colo.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Popenoe, Peter. Bottom character map of the northern Blake Plateau. Woods Hole, MA: U.S. Geological Survey, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hardage, B. A., and K. Helbig. Vertical Seismic Profiling Vol. 14: Principles (Vertical Seismic Profiling Vol. 14). 2nd ed. Pergamon, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hardage, Bob Adrian. Vertical Seismic Profiling: Principles/Part A (Handbook of Geophysical Exploration, Vol 14). 2nd ed. Pergamon, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Vertical Seismic Profiling (VSP)"

1

Galperin, E. I. "VSP Instrumentation and Techniques." In Vertical Seismic Profiling and Its Exploration Potential, 16–41. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Galperin, E. I. "Physical and Geological Principles of VSP." In Vertical Seismic Profiling and Its Exploration Potential, 3–15. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Galperin, E. I. "Specific Features of VSP Wave Kinematics." In Vertical Seismic Profiling and Its Exploration Potential, 85–108. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Galperin, E. I. "The VSP Method for Refracted Waves." In Vertical Seismic Profiling and Its Exploration Potential, 182–211. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Galperin, E. I. "The VSP Method for Longitudinal Reflected Waves." In Vertical Seismic Profiling and Its Exploration Potential, 139–81. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galperin, E. I. "The VSP Method for Transverse (Monotype and Converted) Waves." In Vertical Seismic Profiling and Its Exploration Potential, 212–56. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Galperin, E. I. "Certain Aspects of the Determination of Velocities from VSP Data." In Vertical Seismic Profiling and Its Exploration Potential, 259–79. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Galperin, E. I. "The Exploration Potential of VSP and the Prospects for its Progressive Development." In Vertical Seismic Profiling and Its Exploration Potential, 373–427. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Galperin, E. I., L. A. Pevzner, and V. A. Silaev. "Vertical Seismic Profiling (VSP) and Ultradeep Borehole Section Prediction." In Super-Deep Continental Drilling and Deep Geophysical Sounding, 388–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-50143-2_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rector, James W., and Maria-Daphne Mangriotis. "Vertical Seismic Profiling." In Encyclopedia of Solid Earth Geophysics, 1507–9. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_168.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Vertical Seismic Profiling (VSP)"

1

A. Al-Yarubi, Saeed, and Shadia F. Al-Farsi and Nasser T. Al-Touqi. "Learnings from a vertical seismic profiling (VSP) programme." In GEO 2008. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609-pdb.246.65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reiser, F., C. Schmelzbach, H. Maurer, and S. Greenhalgh. "Vertical Seismic Profiling (VSP) Survey Optimization for Imaging Fracture Zones over Geothermal Areas." In 78th EAGE Conference and Exhibition 2016. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201600680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daoud, Ahmed M., and Muhammad A. Abd El Dayem. "Look-Ahead Vertical Seismic Profiling VSP Inversion Approach for Density and Velocity in Bayesian Framework." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/191627-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Chuanwen, Norman C. Griswold, and Philip D. Rabinowitz. "Application of the recursive approaching signal filter (RASF) to VSP (vertical seismic profiling) data processing." In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, J., J. Zong, Y. E. Li, and A. Cheng. "Application of Reverse Time Migration with Random Space Shift to Vertical Seismic Profiling (VSP) Data." In EAGE 2020 Annual Conference & Exhibition Online. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202011498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reiser, F., C. Schmelzbach, H. Maurer, S. Greenhalgh, S. Planke, G. P. Hersir, S. Halldórsdóttir, R. Giese, and F. Kästner. "Testing Vertical Seismic Profiling (VSP) as a Subsurface Mapping Method at the Krafla Volcanic Geothermal Field in Iceland." In 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hinds, R. C., and W. J. Botha. "Interpretational Processing Of Vertical Seismic Profiles (Vsp)." In 1st SAGA Biennial Conference and Exhibition. European Association of Geoscientists & Engineers, 1989. http://dx.doi.org/10.3997/2214-4609-pdb.222.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bailey, J., E. Asakawa, M. Humphries, and K. Tara. "Vertical Cable Seismic Processed Using VSP Methods." In Fourth EAGE Borehole Geophysics Workshop. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Vertical Seismic Profile Complete Session." In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-vsp.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hornby, Brian, and Jianhua Yu. "Vertical Seismic Profile (VSP): Beyond Time-to-Depth." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2007. http://dx.doi.org/10.2523/11777-abstract.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Vertical Seismic Profiling (VSP)"

1

Kelley, Mark, Autumn Haagsma, and Neeraj Gupta. Time-Lapse Vertical Seismic Profiling (VSP) for CO2 Storage in a Depleted Oil Field in Northern Michigan. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1755653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kelley, Mark, Autumn Haagsma, and Neeraj Gupta. Time-Lapse Vertical Seismic Profiling (VSP) for CO2 Storage in a Depleted Oil Field in Northern Michigan. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1773352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arsenault, J. L., J. Hunter, and H. Crow. Shear wave velocity logs from vertical seismic profiles (VSP). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/291766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daley, T. M., T. V. McEvilly, and A. Michelini. VSP (Vertical Seismic Profile) site characterization at NTS (Nevada Test Site). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6440445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bainer, R., J. Rector, and P. Milligan. 3-D vertical seismic profiling at LLNL Site 300. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/515373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walia, R., Y. Mi, R. D. Hyndman, and A. Sakai. Vertical seismic profile (VSP) in the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Daley, T. M. Analysis of P- and S-wave VSP (vertical seismic profile) data from the Salton Sea Geothermal Field. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5495434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Daley, T. M., E. L. Majer, and E. Karageorgi. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/60915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feighner, M. A., T. M. Daley, and E. L. Majer. Results of vertical seismic profiling at Well 46-28, Rye Patch Geothermal Field, Pershing County, Nevada. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/753012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rector, J., R. Bainer, P. Milligan, and C. Tong. Shallow 3-D vertical seismic profiling around a contaminant withdrawal well on the Lawrence Livermore National Laboratory Site. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/515380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography