Academic literature on the topic 'Vertical tube baffle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Vertical tube baffle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Vertical tube baffle"
Greenwood, Andrew, J. Christian Dupuis, Anton Kepic, and Milovan Urosevic. "Experimental testing of semirigid corrugated baffles for the suppression of tube waves in vertical seismic profile data." GEOPHYSICS 84, no. 3 (May 1, 2019): D131—D149. http://dx.doi.org/10.1190/geo2017-0636.1.
Full textSusmiati, Yuana, Bambang Purwantana, Nursigit Bintoro, and Sri Rahayoe. "Kinerja Internal Reboiler Tipe Vertical Tubular Baffle pada Proses Distilasi Etanol secara Batch." Jurnal Rekayasa Proses 15, no. 1 (June 30, 2021): 59. http://dx.doi.org/10.22146/jrekpros.65483.
Full textLi, Dan Dan, and Zhi Jian Fan. "Design for Electrolyte Sedimentation Basin Based on COMSOL." Advanced Materials Research 411 (November 2011): 299–302. http://dx.doi.org/10.4028/www.scientific.net/amr.411.299.
Full textMilligan, Paul A., James W. Rector, and Robert W. Bainer. "Hydrophone VSP imaging at a shallow site." GEOPHYSICS 62, no. 3 (May 1997): 842–52. http://dx.doi.org/10.1190/1.1444193.
Full textLin, Shu Biao, Xin Chun Cai, and Yan Jin. "Study on Reasons of Frequent Outfire in a Boiler with Horizontal Concentrated Burners." Advanced Materials Research 354-355 (October 2011): 350–54. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.350.
Full textHošťálek, Miloslav, and Ivan Fořt. "Description of vortex turbulent flow of mixed liquid." Collection of Czechoslovak Chemical Communications 50, no. 4 (1985): 930–46. http://dx.doi.org/10.1135/cccc19850930.
Full textRosa, Vitor da Silva, Thiago Cesar de Souza Pinto, Aldo Ramos Santos, Carlos Alberto Amaral Moino, Karina Tamião, Luiz Renato Bastos Lia, Elias Basile Tambourgi, Marcílio Dias Lopes, Juliana Tófano de Campos Leite Toneli, and Deovaldo de Mores Júnior. "External Coefficient of Heat Transfer by Convection in Mixed Vessels Using Vertical Tube Baffles." Industrial & Engineering Chemistry Research 52, no. 6 (February 4, 2013): 2434–38. http://dx.doi.org/10.1021/ie301841q.
Full textda Silva Rosa, Vitor, Marlene Silva de Moraes, Juliana Tófano de Campos Leite Toneli, and Deovaldo de Moraes Júnior. "External Heat Transfer Coefficient in Agitated Vessels Using a Radial Impeller and Vertical Tube Baffles." Industrial & Engineering Chemistry Research 53, no. 35 (August 22, 2014): 13797–803. http://dx.doi.org/10.1021/ie5008618.
Full textVazquez-Ramirez, E. E., J. M. Riesco-Avila, and G. T. Polley. "Two-phase flow and heat transfer in horizontal tube bundles fitted with baffles of vertical cut." Applied Thermal Engineering 50, no. 1 (January 2013): 1274–79. http://dx.doi.org/10.1016/j.applthermaleng.2012.08.053.
Full textda Silva Rosa, Vitor, Daniel Lopes Muiños Torneiros, Henrique Weiss de Albuquerque Maranhão, Marlene Silva de Moraes, Maria Elena Santos Taqueda, José Luis de Paiva, Aldo Ramos Santos, and Deovaldo de Moraes Júnior. "Heat transfer and power consumption of Newtonian and non-Newtonian liquids in stirred tanks with vertical tube baffles." Applied Thermal Engineering 176 (July 2020): 115355. http://dx.doi.org/10.1016/j.applthermaleng.2020.115355.
Full textDissertations / Theses on the topic "Vertical tube baffle"
Rosa, Vitor da Silva. "Transferência de calor e scale-up de tanques com impulsores mecânicos em operação com fluidos não-newtonianos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-12032018-141529/.
Full textCurrent literature has limited information on the design of the thermal exchange area of tanks with jacket, helical coil, spiral coil and vertical tuber baffle, in operation with non-Newtonian fluids. The main purpose of this thesis was to analyze heat transfer, power consumption and scale-up in tanks with mechanical impellers in the agitation of non-Newtonian fluids with two heat transfer surfaces, vertical tube baffle and spiral coil. The work also aimed to provide methods of scale-up tank scale with agitation for non-Newtonian fluids that follow the rheology model of the law of powers. The experimental unit included two acrylic tanks, with a volume of 10 liters and 50 liters, respectively, vertical tube baffles and spiral coil. The mechanical impellers used were the 45° pitched blade turbine (PBT) and the Rushton turbine (RT). Aqueous solutions of carboxymethylcellulose (0.5%, 1.0% and 1.5%), aqueous solution of carbopol 940 (1.5%), aqueous solution of sucrose (50%) and water were used as fluids. All the experiments were conducted in batch. With the obtained data, we used the regressions to obtain the Nusselt Equation, which provided coefficient of determination values adjusted between 0.83 and 0.89 with Reynolds in the range of 20 to 405000, Prandtl in the range of 4 to 6400 and rheological index of the power law model between 0.45 and 1.00. It was observed that in the heating performed with the vertical tube baffle, the RT provided convection coefficients 20% higher when compared to the axial impeller, however the power consumption was about 66% higher in relation to the PBT. In the case of the spiral coil, the PBT promoted convection coefficients around 15% higher than the RT with 65% lower power consumption. Thus, in processes where high turbulence is not required, it is recommended to use the PBT with the spiral coil, but if the process requires significant turbulence, the RT must be used with the vertical tubular chassis. In a final analysis, the nonlinear models obtained for scaling provided errors between 11% and 20% in the prediction of rotation in the industrial tank, which are valid for Metzner and Otto (1957) modified Reynolds in the range of 20 to 4000 and for non-Newtonian pseudoplastic fluids with rheological indexes between 0.45 and 1.00.
Rosa, Vitor da Silva. "Análise da transferência de calor por convecção em tanques com impulsores mecânicos equipados com chicanas verticais tubulares." reponame:Repositório Institucional da UFABC, 2014.
Find full textDissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Energia, 2014.
Os tanques com impulsores mecânicos são empregados nas indústrias químicas, petroquímicas, alimentícia, farmacêutica e mineral, como reatores químicos, diluidores, decantadores, misturadores e trocadores de calor. A transmissão de calor em tanques com agitação é realizada através das jaquetas, serpentinas helicoidais, serpentinas em espiral e chicanas tubulares verticais, sendo que existe uma carência de dados na literatura sobre a utilização das chicanas tubulares, em projetos em escala industrial. O presente estudo teve por objetivo principal comparar a transferência de calor e o consumo energético em tanques com impulsores mecânicos, axial e radial, equipados com chicanas tubulares verticais. Como objetivos específicos, o presente estudo visou determinar correlações semi-empíricas para o coeficiente convectivo no escoamento externo, em relação aos impulsores mecânicos utilizados em função dos parâmetros de similaridade Reynolds e Prandtl, e avaliar o efeito do impulsor mecânico sobre a potência consumida e a transmissão de calor. A unidade experimental consistiu, basicamente, de um tanque de acrílico com um volume útil de 50 litros, um impulsor mecânico axial, um impulsor radial tipo turbina, um motor elétrico de 2,5 hp e uma chicana tubular com 4 bancos de tubos de cobre. Os fluidos frios utilizados foram água e solução de sacarose com concentrações de 20% e 50% em massa. O fluido quente utilizado foi água à temperatura constante de 60°C e vazão de 1,2 LPM. Os ensaios foram realizados alternando as rotações na faixa de 90 a 330 RPM e a temperatura de entrada do fluido frio no intervalo de 28°C a 45°C. A potência consumida por ambos os impulsores mecânicos foi determinada a partir da técnica da medição do torque gerado no motor elétrico. O modelo obtido para a previsão do coeficiente externo de convecção, com o impulsor axial apresentou, um desvio médio de 21% e o modelo para o impulsor radial, um desvio médio de 25%. A partir dos modelos obtidos, verificou-se que o impulsor radial incrementa a transmissão de calor em 43% quando comparado com o impulsor axial. A rotação ideal para a maior transmissão de calor, durante o aquecimento das soluções, com o menor consumo de energia foi de 300 rpm. A partir das curvas simultâneas do número de potência e do número de Nusselt, conclui-se que o impulsor axial é o mais indicado para o aquecimento tendo em vista o seu baixo consumo de potência em relação ao impulsor radial.
EThe tanks with mechanical impellers are employed in chemical, petrochemical, food, pharmaceutical and mineral industries, as chemical reactors, thinners, decanters, mixers and heat exchangers. The heat transmission in tanks with agitation is performed through the jackets, helical coils, coils in spiral and vertical tubular baffles, considering that there is a lack of data in the literature on the use of tubular baffles, in industrial scale projects. The present study aimed to compare the main heat transfer and energy consumption in tanks with mechanical axial and radial impellers equipped with tubular vertical baffles. As specific objectives, this study aimed to determine correlations for convective coefficient in the external flow in relation to mechanical impellers used in function of Reynolds and Prandtl similarity parameters, and evaluate the mechanical effect on power consumption and heat transmission. The experimental unit consisted primarily of an acrylic tank with a useful volume of 50 liters, an axial mechanical and turbine type radial impeller, a 2.5 hp electric motor and a tubular chicanery with 4 banks of copper tubes. The cold fluids applied were water, and sucrose solution with concentrations of 20% and 50% by mass. The hot fluid applied was water at constant temperature of 60° C and a 1.2 LPM flow. The tests were carried out in the range of rotations by 90 to 330 RPM and the cold fluid inlet temperature in the range from 28° C to 45° C. The power consumed by both mechanical impellers was determined through the thechnique of measurement of the torque generated at electric motor. The model obtained for external coefficient prediction of convection with the axial impeller presented an average deviation of 21% and the template for the radial impeller, a standard deviation of 25%. From the models obtained, it was found that the radial impeller increases the transmission of heat in 43% when compared with the axial impeller. The ideal rotation for greater heat transfer during heating of the solutions with the lowest energy consumption amounted to 300 rpm. From the number of concurrent power curves and Nusselt number, it is concluded that the axial impeller is the most indicated for heating in view of its low power consumption compared to radial impeller.
Conference papers on the topic "Vertical tube baffle"
Mohammadi, K., W. Heidemann, and H. Mu¨ller-Steinhagen. "Semi-Analytical Calculation of the Inlet Zone Performance of Ideal Shell and Tube Heat Exchangers." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22276.
Full textMa, T., Y. P. Ji, M. Zeng, and Q. W. Wang. "CFD Optimization of Gas-Side Flow Channel Configuration Inside a High Temperature Bayonet Tube Heat Exchanger With Inner and Outer Fins." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46036.
Full text