Academic literature on the topic 'Very large data sets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Very large data sets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Very large data sets"
Zhang, Kui, Linlin Ge, Zhe Hu, Alex Hay-Man Ng, Xiaojing Li, and Chris Rizos. "Phase Unwrapping for Very Large Interferometric Data Sets." IEEE Transactions on Geoscience and Remote Sensing 49, no. 10 (October 2011): 4048–61. http://dx.doi.org/10.1109/tgrs.2011.2130530.
Full textKettaneh, Nouna, Anders Berglund, and Svante Wold. "PCA and PLS with very large data sets." Computational Statistics & Data Analysis 48, no. 1 (January 2005): 69–85. http://dx.doi.org/10.1016/j.csda.2003.11.027.
Full textBottou, L�on, and Yann Le Cun. "On-line learning for very large data sets." Applied Stochastic Models in Business and Industry 21, no. 2 (2005): 137–51. http://dx.doi.org/10.1002/asmb.538.
Full textCressie, Noel, and Gardar Johannesson. "Fixed rank kriging for very large spatial data sets." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, no. 1 (January 4, 2008): 209–26. http://dx.doi.org/10.1111/j.1467-9868.2007.00633.x.
Full textHarrison, L. M., and G. G. R. Green. "A Bayesian spatiotemporal model for very large data sets." NeuroImage 50, no. 3 (April 2010): 1126–41. http://dx.doi.org/10.1016/j.neuroimage.2009.12.042.
Full textKazar, Baris. "High performance spatial data mining for very large data-sets (citation_only)." ACM SIGPLAN Notices 38, no. 10 (October 2003): 1. http://dx.doi.org/10.1145/966049.781509.
Full textAngiulli, F., and G. Folino. "Distributed Nearest Neighbor-Based Condensation of Very Large Data Sets." IEEE Transactions on Knowledge and Data Engineering 19, no. 12 (December 2007): 1593–606. http://dx.doi.org/10.1109/tkde.2007.190665.
Full textMaarel, Eddy, Ileana Espejel, and Patricia Moreno-Casasola. "Two-step vegetation analysis based on very large data sets." Vegetatio 68, no. 3 (January 1987): 139–43. http://dx.doi.org/10.1007/bf00114714.
Full textHathaway, Richard J., and James C. Bezdek. "Extending fuzzy and probabilistic clustering to very large data sets." Computational Statistics & Data Analysis 51, no. 1 (November 2006): 215–34. http://dx.doi.org/10.1016/j.csda.2006.02.008.
Full textWang, Liang, James C. Bezdek, Christopher Leckie, and Ramamohanarao Kotagiri. "Selective sampling for approximate clustering of very large data sets." International Journal of Intelligent Systems 23, no. 3 (2008): 313–31. http://dx.doi.org/10.1002/int.20268.
Full textDissertations / Theses on the topic "Very large data sets"
Quddus, Syed. "Accurate and efficient clustering algorithms for very large data sets." Thesis, Federation University Australia, 2017. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/162586.
Full textDoctor of Philosophy
Harrington, Justin. "Extending linear grouping analysis and robust estimators for very large data sets." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/845.
Full textSandhu, Jatinder Singh. "Combining exploratory data analysis and scientific visualization in the study of very large, space-time data sets /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487683401443166.
Full textGeppert, Leo Nikolaus [Verfasser], Katja [Akademischer Betreuer] Ickstadt, and Andreas [Gutachter] Groll. "Bayesian and frequentist regression approaches for very large data sets / Leo Nikolaus Geppert ; Gutachter: Andreas Groll ; Betreuer: Katja Ickstadt." Dortmund : Universitätsbibliothek Dortmund, 2018. http://d-nb.info/1181427479/34.
Full textMcNeil, Vivienne Heather. "Assessment methodologies for very large, irregularly collected water quality data sets with special reference to the natural waters of Queensland." Thesis, Queensland University of Technology, 2001.
Find full textCordeiro, Robson Leonardo Ferreira. "Data mining in large sets of complex data." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22112011-083653/.
Full textO crescimento em quantidade e complexidade dos dados armazenados nas organizações torna a extração de conhecimento utilizando técnicas de mineração uma tarefa ao mesmo tempo fundamental para aproveitar bem esses dados na tomada de decisões estratégicas e de alto custo computacional. O custo vem da necessidade de se explorar uma grande quantidade de casos de estudo, em diferentes combinações, para se obter o conhecimento desejado. Tradicionalmente, os dados a explorar são representados como atributos numéricos ou categóricos em uma tabela, que descreve em cada tupla um caso de teste do conjunto sob análise. Embora as mesmas tarefas desenvolvidas para dados tradicionais sejam também necessárias para dados mais complexos, como imagens, grafos, áudio e textos longos, a complexidade das análises e o custo computacional envolvidos aumentam significativamente, inviabilizando a maioria das técnicas de análise atuais quando aplicadas a grandes quantidades desses dados complexos. Assim, técnicas de mineração especiais devem ser desenvolvidas. Este Trabalho de Doutorado visa a criação de novas técnicas de mineração para grandes bases de dados complexos. Especificamente, foram desenvolvidas duas novas técnicas de agrupamento e uma nova técnica de rotulação e sumarização que são rápidas, escaláveis e bem adequadas à análise de grandes bases de dados complexos. As técnicas propostas foram avaliadas para a análise de bases de dados reais, em escala de Terabytes de dados, contendo até bilhões de objetos complexos, e elas sempre apresentaram resultados de alta qualidade, sendo em quase todos os casos pelo menos uma ordem de magnitude mais rápidas do que os trabalhos relacionados mais eficientes. Os dados reais utilizados vêm das seguintes aplicações: diagnóstico automático de câncer de mama, análise de imagens de satélites, e mineração de grafos aplicada a um grande grafo da web coletado pelo Yahoo! e também a um grafo com todos os usuários da rede social Twitter e suas conexões. Tais resultados indicam que nossos algoritmos permitem a criação de aplicações em tempo real que, potencialmente, não poderiam ser desenvolvidas sem a existência deste Trabalho de Doutorado, como por exemplo, um sistema em escala global para o auxílio ao diagnóstico médico em tempo real, ou um sistema para a busca por áreas de desmatamento na Floresta Amazônica em tempo real
Chaudhary, Amitabh. "Applied spatial data structures for large data sets." Available to US Hopkins community, 2002. http://wwwlib.umi.com/dissertations/dlnow/3068131.
Full textArvidsson, Johan. "Finding delta difference in large data sets." Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74943.
Full textTricker, Edward A. "Detecting anomalous aggregations of data points in large data sets." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512050.
Full textRomig, Phillip R. "Parallel task processing of very large datasets." [Lincoln, Neb. : University of Nebraska-Lincoln], 1999. http://international.unl.edu/Private/1999/romigab.pdf.
Full textBooks on the topic "Very large data sets"
International Conference on Very Large Data Bases (16th 1990 Brisbane, Qld.). Very large data bases. Edited by McLeod Dennis, Sacks-Davis Ron, and Schek H. -J. Palo Alto, Ca: Morgan Kaufmann, 1990.
Find full textCordeiro, Robson L. F., Christos Faloutsos, and Caetano Traina Júnior. Data Mining in Large Sets of Complex Data. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4890-6.
Full textCordeiro, Robson L. F. Data Mining in Large Sets of Complex Data. London: Springer London, 2013.
Find full textInternational Conference on Very Large Data Bases (12th 1986 Kyoto, Japan). Very large data bases: Proceedings. Edited by VLDB Endowment. Los Altos, CA, USA: Distributed by Morgan Kaufmann Publishers, 1986.
Find full textP, Keenan Maryanne, and United States. Agency for Health Care Policy and Research., eds. Measuring cognitive impairment with large data sets. Rockville, MD (18-12 Parklawn Bldg., Rockville 20857): U.S. Dept. of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, 1990.
Find full text1973-, Wang Wei, and Yang Jiong, eds. Mining sequential patterns from large data sets. New York: Springer, 2005.
Find full textStock, James H. Estimating turning points using large data sets. Cambridge, MA: National Bureau of Economic Research, 2010.
Find full textInternational Conference on Very Large Data Bases (11th 1985 Stockholm, Sweden). Very large data bases, Stockholm 1985: 11th International Conference on Very Large Data Bases, Stockholm, August 21-23, 1985. Palo Alto, Calif: [distributed by] Morgan Kaufmann Publishers, 1985.
Find full textInternational Conference on Very Large Data Bases (13th 1987 Brighton, England). Very large data bases, Brighton 1987: 13th International Conference on Very Large Data Bases, Brighton, September 1-4, 1987. Edited by Stocker P. M, Kent William 1936-, and Hammersley P. Los Altos, Calif: Morgan Kaufmann, 1987.
Find full textInternational Conference on Very Large Data Bases (11th 1985 Stockholm, Sweden). Very large data bases, Stockholm 1985: 11th International Conference on Very Large Data Bases, Stockholm, August 21-23, 1985. [S.l: s.n., 1985.
Find full textBook chapters on the topic "Very large data sets"
Johnson, Theodore, and Damianos Chatziantoniou. "Joining Very Large Data Sets." In Databases in Telecommunications, 118–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10721056_9.
Full textHammer, Barbara, and Alexander Hasenfuss. "Clustering Very Large Dissimilarity Data Sets." In Artificial Neural Networks in Pattern Recognition, 259–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12159-3_24.
Full textMcNabb, David E. "Researching With Very Large DATA SETS." In Research Methods for Public Administration and Nonprofit Management, 251–63. Fourth edition. | New York ; London : Routledge, [2018]: Routledge, 2017. http://dx.doi.org/10.4324/9781315181158-20.
Full textStrobel, Norbert, Chrisian Gosch, Jürgen Hesser, and Christoph Poliwoda. "Multiresolution Data Handling for Visualization of Very Large Data Sets." In Informatik aktuell, 106–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-18993-7_22.
Full textKrogh, Benjamin, Ove Andersen, and Kristian Torp. "Analyzing Electric Vehicle Energy Consumption Using Very Large Data Sets." In Database Systems for Advanced Applications, 471–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18123-3_28.
Full textFu, Lixin. "Querying and Clustering Very Large Data Sets Using Dynamic Bucketing Approach." In Advances in Web-Age Information Management, 279–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45703-8_26.
Full textAngiulli, Fabrizio, Stefano Basta, Stefano Lodi, and Claudio Sartori. "A Distributed Approach to Detect Outliers in Very Large Data Sets." In Euro-Par 2010 - Parallel Processing, 329–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15277-1_32.
Full textAngiulli, Fabrizio, Clara Pizzuti, and Massimo Ruffolo. "DESCRY: A Density Based Clustering Algorithm for Very Large Data Sets." In Lecture Notes in Computer Science, 203–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28651-6_30.
Full textLerman, Israel, Joaquim Pinto da Costa, and Helena Silva. "Validation of Very Large Data Sets Clustering by Means of a Nonparametric Linear Criterion." In Classification, Clustering, and Data Analysis, 147–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56181-8_16.
Full textBraverman, Amy. "A Strategy for Compression and Analysis of Very Large Remote Sensing Data Sets." In Nonlinear Estimation and Classification, 429–41. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21579-2_29.
Full textConference papers on the topic "Very large data sets"
Almeida, Virgilio. "Exploring very large data sets from online social networks." In the 22nd International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2487788.2488143.
Full textSung, E., Zhu Yan, and Li Xuchun. "Accelerating the SVM Learning for Very Large Data Sets." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.201.
Full textKazar, Baris. "High performance spatial data mining for very large data-sets (citation_only)." In the ninth ACM SIGPLAN symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/781498.781509.
Full textLittau, David, and Daniel Boley. "Using Low-Memory Representations to Cluster Very Large Data Sets." In Proceedings of the 2003 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003. http://dx.doi.org/10.1137/1.9781611972733.42.
Full textEkpar, Frank, Masaaki Yoneda, and Hiroyuki Hase. "On the Interactive Visualization of Very Large Image Data Sets." In 7th IEEE International Conference on Computer and Information Technology (CIT 2007). IEEE, 2007. http://dx.doi.org/10.1109/cit.2007.80.
Full textOwens, A. J. "Empirical modeling of very large data sets using neural networks." In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. http://dx.doi.org/10.1109/ijcnn.2000.859413.
Full textMarks, D., E. Ioup, J. Sample, M. Abdelguerfi, and F. Qaddoura. "Spatio-temporal Knowledge Discovery in Very Large METOC Data Sets." In 2010 4th International Conference on Network and System Security (NSS). IEEE, 2010. http://dx.doi.org/10.1109/nss.2010.61.
Full textCudre-Mauroux, Philippe, Eugene Wu, and Samuel Madden. "TrajStore: An adaptive storage system for very large trajectory data sets." In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icde.2010.5447829.
Full textZhi-Qiang Zeng, Hua-Rong Xu, Yan-Qi Xie, and Ji Gao. "A geometric approach to train SVM on very large data sets." In 2008 3rd International Conference on Intelligent System and Knowledge Engineering (ISKE 2008). IEEE, 2008. http://dx.doi.org/10.1109/iske.2008.4731074.
Full textChan, Chien-Chung, and Sivaraj Selvaraj. "Distributed Approach to Feature Selection From Very Large Data Sets Using BLEM2." In 2006 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2006. http://dx.doi.org/10.1109/nafips.2006.365470.
Full textReports on the topic "Very large data sets"
Ramnarayan, R., C. Baker, H. Lu, K. Mikkilineni, and J. Richardson. Very Large Parallel Data Flow. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada196205.
Full textStock, James, and Mark Watson. Estimating Turning Points Using Large Data Sets. Cambridge, MA: National Bureau of Economic Research, November 2010. http://dx.doi.org/10.3386/w16532.
Full textCarr, D. B. Looking at large data sets using binned data plots. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6930282.
Full textLenat, Douglas B., Keith Goolsbey, Kevin Knight, and Pace Smith. Efficient Pathfinding in Very Large Data Spaces. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada475328.
Full textDeVore, Ronald A., Peter G. Binev, and Robert C. Sharpley. Advanced Mathematical Methods for Processing Large Data Sets. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada499985.
Full textGertz, E. M., and J. D. Griffin. Support vector machine classifiers for large data sets. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/881587.
Full textHammond, William E., Vivian West, David Borland, Igor Akushevich, and Eugenia M. Heinz. Novel Visualization of Large Health Related Data Sets. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada614184.
Full textHammond, William E., Vivian L. West, David Borland, Igor Akushevich, and Eugenia M. Heinz. Novel Visualization of Large Health Related Data Sets. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada624744.
Full textHammond, William E., Vivian West, David Borland, Igor Akushevich, and Eugenia M. Heinz. Novel Visualization of Large Health Related Data Sets - NPHRD. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada624632.
Full textHodson, Stephen W., Stephen W. Poole, Thomas Ruwart, and Bradley W. Settlemyer. Moving Large Data Sets Over High-Performance Long Distance Networks. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1016604.
Full text