Academic literature on the topic 'Veterinary virology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Veterinary virology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Veterinary virology"
Plowright, W. "Veterinary virology." British Veterinary Journal 144, no. 2 (March 1988): 207–8. http://dx.doi.org/10.1016/0007-1935(88)90058-9.
Full textSpradbrow, Peter B. "Veterinary virology." Veterinary Microbiology 21, no. 4 (February 1990): 380–81. http://dx.doi.org/10.1016/0378-1135(90)90011-j.
Full textRoberts, D. H. "Advances in veterinary virology." British Veterinary Journal 147, no. 2 (March 1991): 183–84. http://dx.doi.org/10.1016/0007-1935(91)90110-9.
Full textMurphy, Frederick A. "Advances in veterinary virology." Virus Research 20, no. 2 (July 1991): 201. http://dx.doi.org/10.1016/0168-1702(91)90110-h.
Full textPurchase, H. G. "Marek’s Disease. In: Developments in Veterinary Virology." Poultry Science 65, no. 2 (February 1986): 405–6. http://dx.doi.org/10.3382/ps.0650405a.
Full textPastoret, Paul-Pierre, and Steve Edwards. "The European Society for Veterinary Virology (ESVV)." Veterinary Microbiology 46, no. 1-3 (September 1995): 343–46. http://dx.doi.org/10.1016/0378-1135(95)00100-o.
Full textDinter, Z. "Why a European society for veterinary virology?" Veterinary Microbiology 23, no. 1-4 (June 1990): 8–10. http://dx.doi.org/10.1016/0378-1135(90)90132-f.
Full textBecht, H. "Diagnostic Virology." Veterinary Microbiology 24, no. 2 (August 1990): 211–12. http://dx.doi.org/10.1016/0378-1135(90)90069-8.
Full textGaragulya, G. I., S. G. Matkovska, and I. I. Panikar. "Visualization method in teaching veterinary microbiology, immunology and virology." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 21, no. 92 (May 11, 2019): 180–85. http://dx.doi.org/10.32718/nvlvet-e9232.
Full textBasgall, Edward J., Gail Scherba, and Howard B. Gelberg. "Diagnostic virology in veterinary pathology: techniques for negative staining." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 366–67. http://dx.doi.org/10.1017/s0424820100103899.
Full textDissertations / Theses on the topic "Veterinary virology"
Ballagi-Pordány, András. "Application of polymerase chain reaction (PCR) in veterinary virology /." Uppsala : Sveriges lantbruksuniv, 1995. http://epsilon.slu.se/avh/1995/91-576-4997-9.gif.
Full textSosa, Portugal Silvana Nelly. "Epidemiological surveillance of swine influenza viruses in pig farms." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670891.
Full textEn el primer estudio de la presente tesis, se estudiaron brotes de enfermedad respiratoria compatible con virus de la influenza de tipo A (IAV) así como granjas que no mostraban sintomatología clínica. Para el estudio de los brotes, se recogieron muestras de hisopos nasales de animales con signos respiratorios y fiebre (≥40°C), mientras que en las granjas sin sintomatología clínica, se recogieron hisopos nasales de lechones de maternidad, transición y cerdos de engorde (20 por grupo). Se estudió un total de 211 brotes y 19 granjas aparentemente subclínicas. La presencia y linaje se determinaron por RT-qPCR, y se hizo el aislamiento de muestras seleccionadas usando células MDCK. Los aislados fueron secuenciados (genoma completo) mediante la tecnología Illumina Miseq. Se confirmó la presencia de IAV en 145 casos de brotes (68.7%), y en 15 granjas aparentemente subclínicas (78.9%). Los linajes mayormente detectados fueron H1avN2hu (33.6%), H1avN1av (24.3%) y H1huN2hu (18.7%). Se obtuvo un total de 60 aislados, y sus genomas fueron completamente secuenciados. Los genotipos mayoritariamente detectados fueron el tipo D y el A, que se corresponden a los linajes H1avN2hu y H1avN1av, respectivamente. Se detectaron un total de 14 genotipos diferentes, de los cuales, 7 de ellos no habían sido previamente reportados.En el segundo estudio de la presente tesis, se estudió la dinámica de transmisión de IAV en las transiciones de una granja endémica antes y después de la aplicación de diferentes esquemas de vacunación en las cerdas. Se realizaron un total de tres estudios longitudinales: antes de la vacunación, después de la vacunación con una vacuna comercial polivalente inactivada H1N1-H1N2-H3N2 y después de la vacunación con una vacuna comercial monovalente pandémica H1N1. Se recogieron muestras semanales de hisopos nasales de los lechones desde las 3-9 semanas de vida, y muestras de sangre a las 3, 6 y 9 semanas de vida. En el primer longitudinal antes de la vacunación, se evaluó la circulación vírica basal en 50 lechones de 4 lotes consecutivos. En el segundo longitudinal, se realizó vacunación en sábana de cerdas usando la vacuna comercial polivalente (grupo control) y la mitad de estas fueron revacunadas 3 semanas antes del parto (grupo tratamiento). Se seleccionó un grupo aleatorio de 10 cerdas de cada grupo y se hizo el seguimiento semanal de 5 lechones por cerda. El estudio fue repetido en 4 lotes consecutivos. En el tercer estudio longitudinal, el procedimiento fue el mismo que en el anterior, pero usando la vacuna inactivada pandémica H1N1. Hisopos nasales fueron examinados por RT-qPCR y los sueros fueron analizados usando un ELISA comercial (Civtest-Suis Influenza). En el segundo longitudinal después de la aplicación de la primera vacuna, el inicio de la infección se retrasó en dos semanas, pero no se observaron diferencias significativas entre ambos grupos; y en el tercero, el inicio de la infección se movió hacia la izquierda en todos los grupos, sin diferencias significativas entre ellos. En los tres estudios, se detectaron animales que excretaron virus en dos o hasta en tres muestreos consecutivos, así como algunos casos de re-infecciones. El linaje presente en la granja durante los dos primeros estudios longitudinales se corresponde a un H1avN1av. Sin embargo, durante el tercer estudio, se detectó circulando en todos los grupos de animales un H3huN2hu que llevaba un nuevo linaje de H3 humano derivado de un virus de la gripe estacional humana.
In the first study of the present thesis, we investigated outbreaks of respiratory disease (n=211) compatible with influenza A virus (IAV) as well as farms without overt respiratory disease (n=19) for the presence of IAV. In the outbreak investigations, nasal swabs were taken from animals with respiratory signs and fever (≥40°C) while in the farms with no evident respiratory disease, nasal swabs were randomly taken from suckling piglets, weaners and fatteners (20 animals per phase). Presence of IAV and lineage determination were assessed by RT-qPCR and isolation was attempted in selected samples using MDCK cells. Isolates were sequenced (full genome) by using Illumina Miseq technology. IAV participation was confirmed in 145 (68.7%) of the outbreaks, and in 15 (78.9%) of the farms without overt disease. The most commonly detected lineages were H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%). Sixty IAV isolates were obtained and the genomes were fully sequenced. Genotypes D and A, H1avN2hu and H1avN1av, respectively, were predominant but up to 14 genotypes were identified, of which seven had not been previously reported. Four isolates containing a new H3hu lineage derived from a human seasonal virus were detected, and isolates containing genes from the pandemic virus represented a 31.7 % of the total. In the second study of the present thesis, the transmission dynamics of IAV in the nurseries from an endemic farm were assessed before and after the application of different vaccination schemes for sows. Three follow-up periods were examined: before vaccination, after vaccination with a commercial inactivated polyvalent H1N1-H1N2-H3N2 and after vaccination with a monovalent pandemic H1N1. Nasal swabs of piglets were taken weekly from 3-9 weeks of age and blood samples were taken at three, six and nine weeks of age. In the first follow-up before vaccination, the basal IAV circulation was assessed by sampling 50 piglets in 4 batches. In the second longitudinal study, sows were blanket vaccinated with the polyvalent vaccine (control group) and half of them received an extra dose 3 weeks pre-farrowing (treatment group). A random cohort of 10 sows in each group was selected and 5 piglets per sow were weekly followed. The trial was replicated in 4 consecutive batches. In the third follow-up period, the procedure was the same as in the second, but using a pandemic H1N1 inactivated vaccine. Nasal swabs were examined by RT-qPCR and serum samples were analysed using a commercial ELISA (Civtest-Suis Influenza). Incidences and beta values per week and pen were calculated after the RT-qPCR results. Before applying any vaccination scheme, the patterns of incidence were diverse in the examined pens but often viral circulation was detected as early as 4 weeks of age. At three weeks of age, most of the analysed animals were positive with high S/P ratios. In the second follow-up period after the application of the first vaccination scheme, the onset of infection was delayed by two weeks but there were no other significant differences between both groups, and in the third, the onset of infection shifted to the left for all groups, without significant differences among them. In all of the three studies, animals that shed virus in two and even three consecutive sampling times were detected, as well as some cases of re-infection. Interestingly, an H1avN1av virus was initially detected in the farm, but during the third study, a H3huN2hu was found circulating in the batches, carrying a new H3 human-like derived from human seasonal virus.
Universitat Autònoma de Barcelona. Programa de Doctorat en Medicina i Sanitat Animals
Nolting, Jacqueline Michele. "Phenotypic And Genotypic Variations In Low Pathogenic H1n1 Waterfowl-Origin Avian Influenza Viruses." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228250591.
Full textMangia, Simone Henriques [UNESP]. "Avaliação do tratamento experimental de cães naturalmente infectados com vírus da cinomose com ribavirina, prednisona e DMSO através da RT-PCR." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/101965.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O estudo objetivou identificar efeitos do tratamento com ribavirina, prednisona e DMSO na cinomose; identificar a presença viral no sangue, medula óssea e líquor antes e após o tratamento, os efeitos colaterais dos fármacos experimentais e associações. Foram utilizados 60 cães apresentando sinais neurológicos da cinomose com evolução de dez dias. Animais foram internados para tratamento de suporte; avaliados diariamente e submetidos ao hemograma e dosagens bioquímicas. Os grupos 1 e 2 foram tratados com ribavirina associada ao DMSO; os grupos 3 e 4 foram tratados com DMSO e prednisona e os grupos 5 e 6 foram tratados com ribavirina e prednisona, ribavirina, prednisona e DMSO. Os animais foram anestesiados e colhidos líquor, medula óssea e sangue, antes e após o tratamento e realizada a RTPCR das amostras; as negativas foram analisadas pela técnica de hn-PCR. O vírus foi encontrado em 95% das amostras de sangue, 90% de medula óssea e 53,3% de líquor pré-tratamento. O efeito adverso da ribavirina quando associada com a prednisona foi anemia. A prednisona na dose imunossupressora causou aumento da dosagem de proteína e diminuição da celularidade liquórica, leucocitose. Já a dose antinflamatória causou diminuição de proteína no líquor. Baseado nos índices de sobrevida e melhora clínica, o tratamento mais efetivo foi o G2 (80%); seguido do G1, G5 e G3 (70%); o G6 (60%); o G4 com o pior índice (30%). Pós-tratamento, a frequência viral foi 97,7% no sangue, 86,4% na medula óssea e 27,3% no líquor
The present study aims at the identification of ribavirin, prednisone and DMSO’s treatment effects in dogs with canine distemper, at the identification of the viral presence in the blood, bone marrow and cerebrospinal fluid (CSF) before and after the treatment and also at the identification of side effects of the experimental drugs and its combinations. Sixty dogs presenting canine distemper with neurological signs about ten days evolution were observed. The animals were hospitalized for the support treatment, assessed on daily basis and subjected to blood cells count and biochemical analysis. Groups 1 and 2 were treated with ribavirin and its combination with DMSO; Groups 3 and 4 treated with prednisone and DMSO, Group 5 treated with ribavirin and prednisone, while Group 6 with ribavirin, prednisone and DMSO. The animals were anesthetized for the cerebrospinal fluid, bone marrow and blood samples collection before and after the treatment, then the RT-PCR of the samples was proceeded. The negative were analysed according to the hn-PCR technique. The canine distemper virus were found in 95% of blood samples, 90% of bone marrow and 53,3% of CSF before the treatment. The adverse effect of ribavirin and its association with prednisone was anemia. Prednisone, at its immunosuppressive dose, led to the increase of protein and decrease of cellularity in CSF, and increase of leukocytes blood count. The antiinflammatory dose led to the CSF protein concentration’s decrease. Considering the survival and clinical improvement rates, the most successful treatment was the one applied to the G2 (80%); followed by G1 (70%); G5 (70%) and G3 (70%); G6 (60%); and the lowest rate G4 (30%). After the treatment, the virus frequency was 97,7% in the blood, 86,4% in the bone marrow and 27,3% in the CSF
Sanfilippo, Luiz Francisco. "Epidemiologia e caracterização molecular do vírus da Influenza em quatro espécies de pinguins na Região Antártica." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/42/42132/tde-11082011-105843/.
Full textEpidemics and pandemics of influenza usually refer to infections in human beings. The influenza virus is not, however, restricted to humans and can cause infirmity and death in other species including horses, swine, marine mammals, birds, and others. Ecological studies of viral infections have led to the hypothesis that the influenza viruses that attack mammals have their origin in the accumulation of these viruses in birds (avian flu). In some countries with influenza cases caused by the avian H5N1 virus, there was monitoring of wild birds but little had been done in Antarctica. The present work was therefore carried out during the Antarctic summer seasons of 2006, 2007, and 2008 in two Antarctic locations: The Commander Ferraz Antarctic Station, on the Keller Peninsula of King George Island, and at the Base of Advanced Studies located on Elephant Island (61°08S, 55°07W). Two hundred eighty-three (283) samples from four different penguin species Pygoscelis adeliae, Pygoscelis papua, Pygoscelis antarctica; and Aptenodytes patagonicus were collected for this study. Diagnoses of the samples were performed not only by application of direct detection and amplification according to the RT-PCR method in agar-gel, but also by Real-Time PCR (Applied Biosystems), and by RT-PCR gene scan at the Laboratory of Clinical and Molecular Virology of the Department of Microbiology of the University of Sao Paulo. Eight of the penguin samples tested positive for the Influenza-A virus. The positive samples, as determined by RT-PCR, were sent to the Influenza Laboratory of the Department of Infectious Diseases of the St. Jude Research Hospital in Memphis, Tennessee, USA, to be isolated in egg embryos where no further growth of the Influenza-A virus took place. Four of these positive samples could be sequenced and compared with those of Influenza-A on deposit at the Gene Bank and ranged from 96.85 to 100% when compared with the control samples (100% positive), thus confirming the presence of the virus in the tested birds.
Feliciano, Ruiz Ninoshkaly. "Poly(I:C) adjuvanted corn nanoparticle enhances the breadth of inactivated influenza virus vaccine immune response in pigs." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587079541961411.
Full textAxthelm, Michael K. "Studies on the entry and persistence of canine distemper virus in the central nervous system /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487261553058067.
Full textGyarmati, Péter. "Implementation of molecular detection techniques in the field of veterinary virology : with special reference to the ligation-based methodologies /." Uppsala : Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 2008. http://epsilon.slu.se/200883.pdf.
Full textFernando, Filipe Santos [UNESP]. "Avaliação da patogenicidade e da imunidade cruzada de estirpe variante do vírus da bronquite infecciosa aviária isolada no Brasil." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/96006.
Full textNesse estudo, um isolado de campo do vírus da bronquite infecciosa (VBI) no Brasil (IBVPR-12), previamente classificado como um genótipo variante, foi caracterizado de forma comparativa com a estirpe M41 do VBI, sendo levantadas as características de patogenicidade em diferentes órgãos como a traqueia, o pulmão, os rins, as gônadas e as tonsilas cecais (patotipo) e a imunidade cruzada com relação à estirpe vacinal H120 do VBI (protectotipo), incluindo as respostas imunes humorais sistêmicas e locais induzidas. Para tanto, foram utilizados grupos experimentais de galinhas “specific pathogen free” (SPF) previamente vacinadas ou não com a estirpe H120 do VBI e depois desafiados com essa variante viral, ou com a estirpe M41. Para essas duas estirpes virais foram avaliadas a capacidade de replicação e as lesões produzidas em diferentes órgãos, a atividade inibidora do movimento ciliar no epitélio traqueal e as respostas imunes humorais desenvolvidas no soro sanguíneo e na secreção lacrimal dessas aves. Foram observadas diferenças marcantes na patogenicidade e no tropismo tecidual desses vírus, sendo que a estirpe M41 apresentou replicação mais intensa e lesões mais pronunciadas no trato respiratório, especialmente na traqueia, enquanto que a estirpe variante foi encontrada de forma mais distribuída em vários dos órgãos analisados, tendo-se replicado e provocado menos lesões na traqueia, mas alcançando maior replicação e tendo causado lesões mais severas nos rins e nos testículos. Nas regiões teciduais mais afetadas por lesões, a presença do VBI foi detectada por marcação específica com anticorpos policlonais contra a nucleoproteína do VBI pela técnica de imuno-histoquímica. As aves vacinadas com a estirpe H120 do VBI, revelaram proteção parcial contra a estirpe variante em órgãos como traqueia e...
In this study a Brazilian field isolate of infectious bronchitis virus (IBV), previously classified as variant genotype, was characterized comparatively with the M41 strain of IBV, by evaluating the pathogenicity in different organs (trachea, lung, kidney, gonads and caecal tonsil) and the cross-immunity with H120 vaccine strain, including the systemic and local humoral immune responses. Experimental groups of specific pathogen free (SPF) chickens were vaccinated or not with H120 strain of IBV and challenged with this variant isolate. The viral replication and histopathology in different tissues and organs, the ability to inhibit ciliar movement of tracheal epithelial cells, and local and systemic humoral immune responses were evaluated in these chickens. The pathogenicity and tissue tropism of these IBV strains showed marked differences, and while the M41 strain damaged more the respiratory tract, specially the trachea, the variant isolated has a wide tissue distribution, showing less replication and lesions in the trachea, but affecting more severely the kidney and the testicles. In the most affected tissue regions, the presence of IBV was detected by immunohistochemistry technique, using an anti-nucleoprotein polyclonal antibodies. The H120 vaccine induced against this variant isolate a partial protection with regard to the infection of trachea and kidney and no cross-protection to the infection of testicles. In conclusion, a new pathotype and a new protectotype of a variant genotype of a Brazilian IBV isolate were characterized in this study with regard to Massachusetts genotype and serotype strains of IBV, indicating the importance for... (Complete abstract click electronic access below)
Bowman, Andrew. "Active Influenza A Virus Surveillance in Swine at Agricultural Fairs." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1371840961.
Full textBooks on the topic "Veterinary virology"
Wilks, C. R. Veterinary virology. Palmerston North, N.Z: Veterinary Continuing Education, Massey University, 1992.
Find full textA, Murphy Frederick, ed. Veterinary virology. 3rd ed. San Diego: Academic Press, 1999.
Find full text1914-, Fenner Frank, ed. Veterinary virology. 2nd ed. San Diego: Academic Press, 1993.
Find full textJ, Dubovi Edward, Fenner Frank 1914-2010, and ScienceDirect (Online service), eds. Fenner's veterinary virology. 4th ed. London: Academic, 2011.
Find full textN, Edington, ed. Veterinary viruses. London: Obtainable from Edington and Russell, 1985.
Find full textN, Black Donald, Shukla Dharma D, and Rishi Narayan, eds. Topics in tropical virology. New Delhi: Malhotra Pub. House, 1998.
Find full textMuhammad, Munir. Mononegaviruses of veterinary importance. Wallingford, Oxfordshire, UK: CABI, 2013.
Find full textBook chapters on the topic "Veterinary virology"
Murph, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Preface." In Veterinary Virology, ix—x. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50000-3.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "The Nature of Viruses as Etiologic Agents of Veterinary and Zoonotic Diseases." In Veterinary Virology, 3—II. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50001-5.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Viral Taxonomy and Nomenclature." In Veterinary Virology, 23–42. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50002-7.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Viral Replication." In Veterinary Virology, 43–59. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50003-9.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Viral Genetics and Evolution." In Veterinary Virology, 61—III. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50004-0.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Virus-Cell Interactions." In Veterinary Virology, 81–92. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50005-2.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Mechanisms of Infection and Viral Spread through the Body." In Veterinary Virology, 93–109. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50006-4.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Determinants of Viral Virulence and Host Resistance/Susceptibility." In Veterinary Virology, 111–25. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50007-6.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Immune Response to Viral Infections." In Veterinary Virology, 127–44. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50008-8.
Full textMurphy, Frederick A., E. Paul J. Gibbs, Marian C. Horzinek, and Michael J. Studdert. "Pathogenesis of Viral Diseases." In Veterinary Virology, 145—IV. Elsevier, 1999. http://dx.doi.org/10.1016/b978-012511340-3/50009-x.
Full text