Academic literature on the topic 'VHF scintillation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'VHF scintillation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "VHF scintillation"

1

Pathak, K. N., R. D. Jivrajani, H. P. Joshi, and K. N. Iyer. "Characteristics of VHF scintillations in the equatorial anomaly crest region in India." Annales Geophysicae 13, no. 7 (1995): 730–39. http://dx.doi.org/10.1007/s00585-995-0730-7.

Full text
Abstract:
Abstract. The characteristics of ionospheric scintillations at Rajkot in the equatorial anomaly crest region in India are described for the years 1987–1991 by monitoring the 244-MHz transmission from the satellite FLEETSAT. This period covers the ascending phase of solar cycle 22. Scintillations occur predominantly in the pre-midnight period during equinoxes and winter seasons and in the post-midnight period during summer season. During equinoxes and winter, scintillation occurrence increases with solar activity, whilst in summer it is found to decrease with solar activity. Statistically, scin
APA, Harvard, Vancouver, ISO, and other styles
2

Chatterjee, S., and S. K. Chakraborty. "Variability of ionospheric scintillation near the equatorial anomaly crest of the Indian zone." Annales Geophysicae 31, no. 4 (2013): 697–711. http://dx.doi.org/10.5194/angeo-31-697-2013.

Full text
Abstract:
Abstract. Multistation observations of ionosphere scintillation at VHF (250 MHz) and GNSS L1 frequency from three locations – (i) Bokkhali (BOK) (geographic 21.6° N, 88.2° E, dip 31.48°, (ii) Raja Peary Mohan College Centre (RPMC) (geographic 22.66° N, 88.4° E, dip 33.5°) and (iii) Krishnath College Centre (KNC), Berhampore (geographic 24.1° N, 88.3° E, dip 35.9°) – at ~ 1° latitudinal separations near the northern crest of the equatorial ionization anomaly (EIA) of the Indian longitude sector are investigated in conjunction with total electron content (TEC) data and available ionosonde data n
APA, Harvard, Vancouver, ISO, and other styles
3

Shume, E. B., A. J. Mannucci, and R. Caton. "Phase and coherence analysis of VHF scintillation over Christmas Island." Annales Geophysicae 32, no. 3 (2014): 293–300. http://dx.doi.org/10.5194/angeo-32-293-2014.

Full text
Abstract:
Abstract. This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF) equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity), and 2011 (moderate solar activity). In statistically significant and high spectral coherenc
APA, Harvard, Vancouver, ISO, and other styles
4

Vijayakumar, P. N., and P. K. Pasricha. "Parametrization of spectra of plasma bubble induced VHF satellite scintillations and its geophysical significance." Annales Geophysicae 15, no. 3 (1997): 345–54. http://dx.doi.org/10.1007/s00585-997-0345-2.

Full text
Abstract:
Abstract. An important component of ionospheric plasma irregularity studies in the Indian low latitudes involves the study of the plasma bubbles which produce intense scintillations of the transionospheric satellite signals. Many such plasma bubble induced (PBI) scintillation events were identified while recording 244 MHz signal from the geostationary satellite Fleetsat (73°E) at Delhi (28.6°N, 77.2°E) during March-April 1991. This type of scintillations represents changes in plasma processes. These scintillations are spectrally analyzed using an autoregressive (AR) scheme, which is equivalent
APA, Harvard, Vancouver, ISO, and other styles
5

Rama Rao, P. V. S., P. T. Jayachandran, P. Sri Ram, B. V. Ramana Rao, D. S. V. V. D. Prasad, and K. K. Bose. "Characteristics of VHF radiowave scintillations over a solar cycle (1983−1993) at a low-latitude station: Waltair (17.7°N, 83.3°E)." Annales Geophysicae 15, no. 6 (1997): 729–33. http://dx.doi.org/10.1007/s00585-997-0729-3.

Full text
Abstract:
Abstract. The characteristics of VHF radiowave scintillations at 244 MHz (FLEETSAT) during a complete solar cycle (1983–93) at a low-latitude station, Waltair (17.7°N, 83.3°E), are presented. The occurrence of night-time scintillations shows equinoctial maxima and summer minima in all the epochs of solar activity, and follows the solar activity. The daytime scintillation occurrence is negatively correlated with the solar activity and shows maximum occurrence during the summer months in a period of low solar activity. The occurrence of night-time scintillations is inhibited during disturbed day
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, R. P., R. P. Patel, and A. K. Singh. "Effect of solar and magnetic activity on VHF scintillations near the equatorial anomaly crest." Annales Geophysicae 22, no. 8 (2004): 2849–60. http://dx.doi.org/10.5194/angeo-22-2849-2004.

Full text
Abstract:
Abstract. The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N) have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February) and near equinoxes (March-April; Septe
APA, Harvard, Vancouver, ISO, and other styles
7

Tiwari, D., B. Engavale, A. Bhattacharyya, C. V. Devasia, T. K. Pant, and R. Sridharan. "Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities." Annales Geophysicae 24, no. 5 (2006): 1419–27. http://dx.doi.org/10.5194/angeo-24-1419-2006.

Full text
Abstract:
Abstract. Simultaneous observations of equatorial spread F (ESF) irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N) and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N), have been used to study the evolution of Equatorial Spread F (ESF) irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz r
APA, Harvard, Vancouver, ISO, and other styles
8

Gupta, J. K., Lakha Singh, and R. S. Dabas. "Faraday polarization fluctuations and their dependence on post sunset secondary maximum and amplitude scintillations at Delhi." Annales Geophysicae 20, no. 2 (2002): 185–90. http://dx.doi.org/10.5194/angeo-20-185-2002.

Full text
Abstract:
Abstract. VHF Faraday rotation (FR) and amplitude scintillation data recorded simultaneously during May 1978–December 1980 at Delhi (28.63° N, 77.22° E; Dip 42.44° N) is analyzed in order to study the Faraday polarization fluctuations (FPFs) and their dependence on the occurrence of post sunset secondary maximum (PSSM) and amplitude scintillations. It is noted that FPFs are observed only when both PSSM and scintillations also occur simultaneously. FPFs are observed only during winter and the equinoctial months of high sunspot years. FPFs events are associated with intense scintillation activit
APA, Harvard, Vancouver, ISO, and other styles
9

Rama Rao, P. V. S., P. Sri Ram, P. T. Jayachandran, and D. S. V. V. D. Prasad. "Multistation VHF scintillation studies at low latitudes." Planetary and Space Science 44, no. 10 (1996): 1209–17. http://dx.doi.org/10.1016/s0032-0633(96)00014-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Engavale, B., K. Jeeva, K. U. Nair, and A. Bhattacharyya. "Solar flux dependence of coherence scales in scintillation patterns produced by ESF irregularities." Annales Geophysicae 23, no. 10 (2005): 3261–66. http://dx.doi.org/10.5194/angeo-23-3261-2005.

Full text
Abstract:
Abstract. The coherence scale length, defined as the 50% decorrelation scale length along the magnetic east-west direction, in the ground scintillation pattern obtained at a dip equatorial location, due to scattering of VHF radio waves by equatorial spread F (ESF) irregularities, is calculated, using amplitude scintillation data recorded by two spaced receivers. The average east-west drift of the ground scintillation pattern, during the pre- and post-midnight periods, also calculated from the same observations, shows an almost linear increase with 10.7-cm solar flux. In the present paper the v
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!