Dissertations / Theses on the topic 'Vibration-damping materials and structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Vibration-damping materials and structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Agnese, Fabio. "Enhanced vibration damping materials and structures for wind turbine blades inspired from auxetic configurations." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.653091.
Full textTremaine, Kellie Michelle. "MODAL ANALYSIS OF COMPOSITE STRUCTURES WITH DAMPING MATERIAL." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/823.
Full textAo, Wai Kei. "Electromagnetic damping for control of vibration in civil structures." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/31145.
Full textLi, Zhuang. "Vibration and acoustical properties of sandwich composite materials /." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Fall/Dissertation/LI_ZHUANG_26.pdf.
Full textVerstappen, André Paul. "Passive damping treatments for controlling vibration in isotropic and orthotropic structural materials." Thesis, University of Canterbury. Mechanical Engineering, 2015. http://hdl.handle.net/10092/10197.
Full textLee, Yong Keat. "Active vibration control of a piezoelectric laminate plate using spatial control approach." Title page, abstract and table of contents only, 2005. http://hdl.handle.net/2440/37711.
Full textThesis (M.Eng.Sc.)--School of Mechanical Engineering, 2005.
Hegewald, Thomas. "Vibration Suppression Using Smart Materials in the Presence of Temperature Changes." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/32068.
Full textThis research uses a special vibration test rig for evaluating the performance of different vibration suppression systems on a representative aircraft panel. The test panel is clamped rigidly in a frame and can be excited in various frequencies with an electromagnetic shaker. To simulate temperature fluctuations the temperature on the panel can be increased up to 65°C (150°F). Smart material based sensors and actuators are used to interface the mechanical system with the electronic controller. The active controller utilizes three positive position feedback (PPF) filters implemented through a digital signal processor board. This research develops two different adaptation methods to perform vibration suppression in the presence of thermally induced frequency changes of the representative panel. To adjust the PPF filter parameters an open-loop adaptation method and an auto-tuning method are investigated. The open-loop adaptation method uses a measurement of the plate temperature and a look-up table with pre-determined parameters to update the filters accordingly. The auto-tuning methods identifies the frequencies of the poles and zeros in the structure's collocated transfer function. From the knowledge of the pole and zero locations the optimal PPF parameters are calculated online.
The results show that both adaptation methods are capable of reducing the vibration levels of the test specimen over the temperature range of interest. Three PPF filters with parameter adaptation through temperature measurement achieve magnitude reductions of the resonance peaks as high as 13.6 decibel. Using the auto-tuning method resonance peak reductions up to 17.4 decibel are possible. The pole/zero identification routine proves to detect the frequencies correctly. The average identification error remained at around one percent even in the presence of external disturbances.
Master of Science
Hara, Deniz. "Investigation Of The Use Of Sandwich Materials In Automotive Body Structures." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12614046/index.pdf.
Full textTing, Joseph Ming-Shih. "Characterization of damping of materials and structures at nanostrain levels." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/42439.
Full textBravo, Rafael. "Vibration control of flexible structures using smart materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0034/NQ66256.pdf.
Full textHornig, Klaus H. Flowers George T. "Heuristic optimization methods for the characterization of dynamic mechanical properties of composite materials." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/HORNIG_KLAUS_7.pdf.
Full textRuggiero, Eric John. "Active Dynamic Analysis and Vibration Control of Gossamer Structures Using Smart Materials." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/32299.
Full textMaster of Science
Kadam, Ruthvik Dinesh. "Design and Additive Manufacturing of Carbon-Fiber Reinforced Polymer Microlattice with High Stiffness and High Damping." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/103009.
Full textMaster of Science
Byun, Chansup. "Free vibration and nonlinear transient analysis of imperfect laminated structures." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-135342/.
Full textJeric, Kristina Marie. "An Experimental Evaluation of the Application of Smart Damping Materials for Reducing Structural Noise and Vibrations." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/31833.
Full textMaster of Science
Huang, Da. "Approximate analytical solutions for vibration control of smart composite beams." Thesis, Peninsula Technikon, 1999. http://hdl.handle.net/20.500.11838/1262.
Full textSmart structures technology featuring a network of sensors and actuators, real-time control capabilities, computational capabilities and host material will have tremendous impact upon the design, development and manufacture of the next generation of products in diverse industries. The idea of applying smart materials to mechanical and structural systems has been studied by researchers in various disciplines. Among the promising materials with adaptable properties such as piezoelectric polymers and ceramics, shape memory alloys, electrorheological fluids and optical fibers, piezoelectric materials can be used both as sensors and actuators because of their high direct and converse piezoelectric effects. The advantage of incorporating these special types of material into the structure is that the sensing and actuating mechanism becomes part of the structure by sensing and actuating strains directly. This advantage is especially apparent for structures that are deployed in aerospace and civil engineering. Active control systems that rely on piezoelectric materials are effective in controlling the vibrations of structural elements such as beams, plates and shells. The beam as a fundamental structural element is widely used in all construction. The purpose of the present project is to derive a set of approximate governing equations of smart composite beams. The approximate analytical solution for laminated beams with piezoelectric laminae and its control effect will be also presented. According to the review of the related literature, active vibration control analysis of smart beams subjected to an impulsive loading and a periodic excitation are simulated numerically and tested experimentally.
Idrisi, Kamal. "Heterogeneous (HG) Blankets for Improved Aircraft Interior Noise Reduction." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/29678.
Full textPh. D.
Maurini, Corrado. "ELECTROMECHANICAL COUPLING OF DISTRIBUTED PIEZOELECTRIC TRANSDUCERS FOR PASSIVE DAMPING OF STRUCTURAL VIBRATIONS: COMPARISON OF NETWORK CONFIGURATIONS." Phd thesis, Virginia Tech, 2002. http://tel.archives-ouvertes.fr/tel-00994396.
Full textSwathanthira, Kumar Murali Murugavel Manjakkattuvalasu. "Implementation of an actuator placement, switching algorithm for active vibration control in flexible structures." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-1120102-210634.
Full textKeywords: Actuator placement algorithm; piezoelectric actuators; LQR; Galerkin; supervisory control; active vibration control; FEA; switching policy; dSPACE. Includes bibliographical references (p. 58-64).
Zhu, Guanghong. "Experimental study, mathematical modelling and dynamical analysis of magnetorheological elastomer materials and structures for vibration control." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/386319/.
Full textde, Luna Richard M. "EFFECT OF LOW VELOCITY IMPACT ON THE VIBRATIONAL BEHAVIOR OF A COMPOSITE WING." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1551.
Full textParra, John R. "An Investigation of E-glass Structure with Different Filler Material under Vibration and Bending Loading." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/116.
Full textlin, weiwei. "Creation and Evaluation of Polymer/Multiwall Carbon Nanotube Films for Structural Vibration Control and Strain Sensing Properties." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/3025.
Full textCarter, Justin B. "Vibration and Aeroelastic Prediction of Multi-Material Structures based on 3D-Printed Viscoelastic Polymers." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1627048967306654.
Full textHeras, Segura Mariona. "Vibration Characteristics of Axially Graded Viscoelastic Beams." Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1556911763120726.
Full textUddin, Md Mosleh. "Active Vibration Control of Helicopter Rotor Blade by Using a Linear Quadratic Regulator." ScholarWorks@UNO, 2018. https://scholarworks.uno.edu/td/2499.
Full textHallak, Yanina Soledad. "DESIGN, MANUFACTURE, DYNAMIC TESTING, AND FINITE ELEMENT ANALYSIS OF A COMPOSITE 6U CUBESAT." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1572.
Full textRider, Kodi A. "The Effect of a Low-Velocity Impact on the Flexural Strength and Dynamic Response of Composite Sandwiches with Damage Arrestment Devices." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/842.
Full textAndrade, Guilherme de Oliveira. "Projeto ótimo de um sistema automotivo utilizando materiais viscoelásticos." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7067.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-04T10:35:40Z (GMT) No. of bitstreams: 2 Dissertação - Guilherme de Oliveira Andrade - 2017.pdf: 3342486 bytes, checksum: f35bb27c1451d7b8969dbf1fe3332a30 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-04-04T10:35:40Z (GMT). No. of bitstreams: 2 Dissertação - Guilherme de Oliveira Andrade - 2017.pdf: 3342486 bytes, checksum: f35bb27c1451d7b8969dbf1fe3332a30 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-10
Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG
In order to attenuate unwanted vibrations, coming from mechanical systems, are increasing research in developing efficient products in the vibrant energy dissipation, being carried out in this line, full characterization of viscoelastic materials for the identification of its main phenomena and effectiveness check, reliability and security. The non-linear behavior of viscoelastic materials, when subjected to cyclic loading, is due to their microstructural characteristics, where it is possible that an effective vibration attenuation occurs. However, the complexity of the proposed problem suggests the implementation of numerical-computational procedures, the So that the deformation rates can be evaluated through harmonic analysis, so that the temperature variations can be defined and the phenomena associated with the material can be analyzed. With this, based on the dissipative characteristics of the material, the present work aims at the application of the same in the automotive area, being applied on the vehicular structure of utility vehicles aiming at the attenuation of the vibrations that arrive to the passenger compartment. To prove the efficacy of the material, the structural modeling of the viscoelastic was carried out in a computer environment (MatLab®) and then the material was inserted into the vehicle structure in the finite element software (Ansys®), where the structural and modal harmonic analysis , Thus verifying attenuations of the order of 8.746% for the second vibrating mode of the structure. However, due to the safety involved in automotive projects, it was necessary to analyze the computational effectiveness of these materials on the wide range of operational and environmental factors in which utility vehicles are submitted, thus guaranteeing the necessary reliability to the project.
Com o objetivo de atenuar as vibrações indesejadas, oriundas de sistemas mecânicos, são crescentes as pesquisas nas áreas de desenvolvimento de produtos eficientes na dissipação de energia vibrante, sendo realizados nesta linha, a caracterização completa de materiais viscoelásticos visando a identificação de seus principais fenômenos e verificação de eficácia, confiabilidade e segurança. O comportamento não-linear de materiais viscoelásticos, quando submetido a carregamentos cíclicos, é devido a suas características microestruturais, onde é possível que ocorra uma eficaz atenuação de vibrações. Entretanto, a complexidade do problema proposto sugere a implementação de procedimentos numérico-computacionais, a fim de que se avalie as taxas de deformações através de analises harmônicas, para que desta forma possam ser definidos as variações de temperaturas e analisados os fenômenos associados ao material. Com isso, tendo como base as características dissipativas do material, o presente trabalho visa a aplicação do mesmo na área automotiva, sendo aplicado sobre a estrutura veicular de automóveis utilitários objetivando a atenuação das vibrações que chegam até o habitáculo. Para comprovação da eficácia do material, primeiramente foi realizada a modelagem estrutural do viscoelástico em ambiente computacional (MatLab®) e em seguida realizada a inserção do material na estrutura veicular no software de elementos finitos (Ansys®), onde foram realizadas a análise harmônica estrutural e modal, verificando assim atenuações da ordem de 8,746 % para o segundo modo de vibrar da estrutura. Porém, vale ressaltar, que devido a segurança envolvida em projetos automotivos, foi necessário que se analisasse computacionalmente a eficácia destes materiais sobre a ampla faixa de fatores operacionais e ambientais na qual veículos utilitários estão submetidos, garantindo assim a confiabilidade necessária ao projeto.
Aumjaud, Pierre. "Vibration damping of lightweight sandwich structures." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/20730.
Full textEhnes, Charles W. "Damping in stiffener welded structures." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FEhnes.pdf.
Full textFurger, Steve M. "Analysis and Mitigation of the CubeSat Dynamic Environment." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1042.
Full textMarhadi, Kun Saptohartyadi. "Particle impact damping: influence of material and size." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/1459.
Full textHoward, Carl. "Active isolation of machinery vibration from flexible structures." Title page, abstract and table of contents only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phh8478.pdf.
Full textCopy 2 does not have a CD-ROM. Includes bibliographical references (p. 317-330). Also available in an electronic version.
Gessel, David Jacob. "Impulse damping in structural materials." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/49583.
Full textKoo, Jeong-Hoi, Björn Kiefer, and Uwe Marschner. "Special Issue: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Symposium on Modeling, Simulation and Control." Sage, 2016. https://tud.qucosa.de/id/qucosa%3A35626.
Full textButaud, Pauline. "Contribution à l'utilisation des polymères à mémoire de forme pour les structures à amortissement contrôlé." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2018/document.
Full textThis work proposes to use shape memory polymers to control structural vibrations. These materials exhibit amemory hysteresis which is practically associated with intrinsic damping properties which are very highwhen the memory effect is strong. First, a thermomechanical characterization of the shape memory polymerof interest (tBA/PEGDMA) is performed by dynamic mechanical analysis. A rheological model based on timetemperaturesuperposition is used to represent the viscoelastic behavior of the polymer. Secondly, anexperimental campaign is performed over a wide frequency and temperature range, through variousexperimental techniques (static, modal, nanoindentation, ultrasounds, high frequency dynamic analysis,acoustic microscopy) to define the area of validity, in frequency and temperature, of the rheological model.Third, the shape memory polymer is integrated into a composite sandwich structure to highlight the awesomedamping capabilities of the material. Finally, a damping tuning methodology by temperature control isproposed. Indeed, the power dissipation in the sandwich is related to physical properties of the tBA/PEGDMA core which are temperature-controlled to optimize the damping over a given frequency range
Lougou, Komla Gaboutou. "Méthodes multi-échelles pour la modélisation des vibrations de structures à matériaux composites viscoélastiques." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0044/document.
Full textIn this thesis, multiscale homogenization techniques are proposed for vibration analysis of structures with viscoelastic composite materials. In the first part, the Double Scale Asymptotic Method is proposed for vibration modeling of large repetitive viscoelastic sandwich structures. For this kind of structures, la eigenfrequencies are closely located in well separated packets. The DSAM splits the initial problem of large size into two problems of relatively small sizes. The first problem is posed on few basic cells, and the second one is an amplitude equation with complex coefficients. The resolution of these equations permits to compute the damping properties that correspond to the beginning and the end of every packets of eigenmodes. In case of structure with frequency dependent Young modulus in the core, the diamant approach is used to solve the nonlinear problem posed on basic cells. The ADF and fractional derivative models are considered in numerical tests. By using the DSAM, one avoid the discretization of the whole structure, and the computation time and needed CPU memory are thus reduced. The proposed method is validated by comparing its results with those of the direct finite element method using the diamant approach. In the second part of this thesis, the multiscale finite element method (FE2) is proposed for computation of modal properties (resonant frequency and modal loss factors) of structures with composite materials. In the principle of the (FE2) method, the vibration problem is formulated at two scales: the scale of the whole structure (macroscopic scale) and the scale of a Representative Volume Element (RVE) considered as the microscopic scale. The microscopic problem is a nonlinear one and the macroscopic problem is linear. The nonlinearity at the microscopic scale is introduced by the frequency dependence of the Young modulus of the viscoelastic phases. This nonlinear problem is solved by the Asymptotic Numerical Method and its automatic differentiation tools realizable in Matlab, Fortran or C++. From this approach, numerical tool that is generic, flexible, robust and inexpensive in term of CPU time and memory is proposed for vibration analysis of viscoelastic structures. The constant Young modulus and frequency dependent Young modulus are considered in validation tests. The results of numerical simulation with ABAQUS are used are reference. The model is then used to compute the modal properties of sandwich structure with viscoelastic composite core. To test the capacities of the proposed approach to design sandwich viscoelastic structure with high damping properties, the influence of parameters of the inclusions are studied
Malushte, Sanjeev R. "Seismic response of structures with Coulomb damping." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54235.
Full textPh. D.
Lossouarn, Boris. "Multimodal vibration damping of structures coupled to their analogous piezoelectric networks." Thesis, Paris, CNAM, 2016. http://www.theses.fr/2016CNAM1062/document.
Full textStructural vibrations can be reduced by benefiting from the electromechanical coupling that is offered by piezoelectric materials. In terms of passive damping, piezoelectric shunts allow converting the vibration energy into electrical energy. Adding an inductor in the circuit creates an electrical resonance due to the charge exchanges with the piezoelectric capacitance. By tuning the resonance of the shunt to the natural frequency of the mechanical structure, the equivalent of a tuned mass damper is implemented. This strategy is extended to the control of a multimodal structure by increasing the number of piezoelectric patches. These are interconnected through an electrical network offering modal properties that approximate the behavior of the structure to control. This multi-resonant network allows the simultaneous control of multiple mechanical modes. An adequate electrical topology is obtained by discretizing the mechanical structure and applying the direct electromechanical analogy. The analogous network shows inductors and transformers, whose numbers and values are chosen according to the frequency band of interest. After focusing on the design of suitable magnetic components, the passive control strategy is applied to the damping of one-dimensional structures as bars or beams. It is then extended to the control of thin plates by implementing a two-dimensional analogous network
Chu, Ping-nin Raymond. "The vibration and noise radiation characteristics of damped sandwich structures /." [Hong Kong] : University of Hong Kong, 1987. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12223001.
Full textDarleux, Robin. "Development of analogous piezoelectric networks for the vibration damping of complex structures." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAC011.
Full textThis doctoral thesis focuses on the development of analogous piezoelectric networks for broadband damping of complex structures. The objective is to damp the modes of largest wavelengths of mechanical structures, which are covered by piezoelectric patches to this end. This allows coupling them to fully passive electrical devices which exhibit similar wave propagating properties. Multimodal vibration mitigation is hence achieved. To do so, we first propose a method to derive the electrical analogue of any mechanical structure. It is applied to create a library of elementary analogues that represent classical wave propagation cases, such as 1D traction, 1D bending or 2D bending. Then, the electrical analogue of a rectangular plate covered by piezoelectric transducers is assembled with elements from the library. Following design methods of passive inductors and transformers, the produced network is fully passive. Vibration tests prove the mitigation efficiency of the setup when the plate is connected to its analogous network. Meanwhile, we develop a finite element model of a structure covered with thin piezoelectric transducers connected to a lumped element network. Comparisons with experiments validate this model. Thus it is used to finally investigate the achievable performance by of piezoelectric network damping applied to more complex structures. Numerical simulations are performed on complex plates and single curved structures. Results are promising: they highlight it might be possible to develop fully passive piezoelectric analogous networks to damp vibrations of complex structures
Wang, Zhen. "Enhanced self-powered vibration damping of smart structures by modal energy transfer." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0067/document.
Full textIn a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy
Snyder, Nicholas B. "DESIGN, VALIDATION, AND VERIFICATION OF THE CAL POLY EDUCATIONAL CUBESAT KIT STRUCTURE." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2148.
Full textFournier, Nicolas. "Développement de méthodes optiques pour la mesure de champs cinématiques sur des structures." Saint-Etienne, 1998. http://www.theses.fr/1998STET4022.
Full text朱炳年 and Ping-nin Raymond Chu. "The vibration and noise radiation characteristics of damped sandwich structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B31231123.
Full textMorlier, Joseph. "METHODES D'ANALYSE DES DEFORMEES MODALES PAR TRAITEMENT DU SIGNAL POUR LE DIAGNOSTIC IN SITU DE STRUCTURES." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2005. http://tel.archives-ouvertes.fr/tel-00078449.
Full textet d'autre part d'identifier le meilleur outil pratique pour acquérir ces données modales. On s'est donc attaché à développer des méthodes d'analyse des déformées modales par traitement du signal afin de caractériser les défauts structuraux mais aussi d'essayer de quantifier la qualité des assemblages. Nous avons, à ces fins, mis en oeuvre des outils numériques de simulation (MEF) et des algorithmes d'analyse (ondelettes, dimension fractale, réseaux de neurones) sous Matlab permettant d'automatiser le diagnostic. La validation s'est aussi bien effeectuée sur des déformées simulées, mais aussi sur
des déformées issues de la bibliographie et finalement sur des déformées expérimentales d'un portique de dimension laboratoire (en utilisant un vibromètre laser à balayage).
Stahlberg, Martin. "Acoustic monitoring and control system to determine the properties of damping materials." Thesis, Nelson Mandela Metropolitan University, 2012.
Find full textRavish, Masti Sarangapany. "Vibration damping analysis of cylindrical shells partially coated withconstrained visco-elastic layers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31242169.
Full textMokrani, Bilal. "Piezoelectric shunt damping of rotationally periodic structures." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209112.
Full textstructures with extremely low damping which may be responsible for severe vibrations
and possible high-cycle fatigue problems. To solve this, various techniques
of damping enhancement are under investigation. The present work is focused on
piezoelectric shunt damping.
This thesis considers the RL shunt damping of rotationally periodic structures using
an array of piezoelectric patches, with an application to a bladed drum representative
of those used in turbomachinery. Due to the periodicity and the cyclic symmetry of
the structure, the blade modes occur by families with very close resonance frequencies,
and harmonic shape in the circumferential direction; the proposed RL shunt
approaches take advantage of these two features.
When a family of modes is targeted for damping, the piezoelectric patches are
shunted independently on identical RL circuits, and tuned roughly on the average
value of the resonance frequencies of the targeted modes. This independent
configuration offers a damping solution effective on the whole family of modes, but
it requires the use of synthetic inductors, which is a serious drawback for rotating
machines.
When a specific mode with n nodal diameters has been identified as critical and
is targeted for damping, one can take advantage of its harmonic shape to organize
the piezoelectric patches in two parallel loops. This parallel approach reduces considerably
the demand on the inductors of the tuned inductive shunt, as compared
to independent loops, and offers a practical solution for a fully passive integration
of the inductive shunt in a rotating structure.
Various methods are investigated numerically and experimentally on a cantilever
beam, a bladed rail, a circular plate, and a bladed drum. The influence of blade
mistuning is also investigated.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished