Dissertations / Theses on the topic 'Vibration mécanique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Vibration mécanique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Renault, Amélie. "Caractérisation mécanique dynamique de matériaux poro-visco-élastiques." Thèse, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1915.
Full textPaquin, Simon, and Simon Paquin. "Récupération d'énergie mécanique à partir de sources vibratoires déterministes et aléatoires." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27751.
Full textTableau d'honneur de la Faculté des études supérieures et postdorales, 2016-2017
L'alimentation électrique d'un appareil électronique sans fil est souvent effectuée via une pile électrique. Une solution alternative pour produire une alimentation en continue est de récupérer l'énergie provenant des vibrations d'une structure mécanique. Il a déjà été démontré que le récupérateur d'énergie vibratoire classique est efficace uniquement lorsque la source d'excitation vibratoire a un contenu fréquentiel à bande étroite. Les sources vibratoires étant souvent composées d'un large spectre fréquentiel, le récupérateur classique est alors peu performant. L'objectif principal de cette thèse est donc de proposer et d'évaluer une architecture de récupération d'énergie permettant de récupérer efficacement de l'énergie provenant d'une source vibratoire dont le contenu fréquentiel est déterministe ou aléatoire. Une revue de documentation scientifique permet d'abord de classifier et de hiérarchiser les différentes stratégies qui ont déjà été proposées pour récupérer de l'énergie à partir des sources vibratoires les plus courantes. Basée sur cette revue, une architecture composée de plusieurs récupérateurs piézoélectriques couplés via des impédances électriques est ensuite proposée. Afin de prédire la densité de puissance adimensionnelle de cette architecture, un modèle électromécanique de celle-ci est développé puis validé expérimentalement avec un prototype composé de deux récupérateurs. Ce modèle est ensuite introduit dans une procédure d'optimisation qui maximise un critère de performances basé sur le type de source vibratoire d'excitation, soit une source stationnaire ou non-stationnaire. Les résultats d'optimisation sont par la suite analysés sous forme d'études paramétriques. Pour différentes sources vibratoires, ces études établissent l'influence de chacun des paramètres composant l'architecture sur ses performances tout en développant un outil de conception de l'architecture proposée. La première partie de ces études considère le cas où l'architecture est excitée par une source vibratoire harmonique tandis que la seconde partie le fait pour une source aléatoire stationnaire et non-stationnaire. Finalement, des cas d'application sont présentés pour démontrer comment utiliser l'outil de conception. Bien que les résultats obtenus dans ces cas ne soient pas généraux, il y est démontré que l'utilisation de l'architecture proposée permet d'augmenter la densité de puissance ou de l'uniformiser sur un plus large spectre fréquentiel : comparativement au récupérateur classique, une architecture de deux récupérateurs permet un gain de performances de 51% pour une source vibratoire harmonique, de 184% pour une source de type passe-bas et de 212% pour une source non-stationnaire.
L'alimentation électrique d'un appareil électronique sans fil est souvent effectuée via une pile électrique. Une solution alternative pour produire une alimentation en continue est de récupérer l'énergie provenant des vibrations d'une structure mécanique. Il a déjà été démontré que le récupérateur d'énergie vibratoire classique est efficace uniquement lorsque la source d'excitation vibratoire a un contenu fréquentiel à bande étroite. Les sources vibratoires étant souvent composées d'un large spectre fréquentiel, le récupérateur classique est alors peu performant. L'objectif principal de cette thèse est donc de proposer et d'évaluer une architecture de récupération d'énergie permettant de récupérer efficacement de l'énergie provenant d'une source vibratoire dont le contenu fréquentiel est déterministe ou aléatoire. Une revue de documentation scientifique permet d'abord de classifier et de hiérarchiser les différentes stratégies qui ont déjà été proposées pour récupérer de l'énergie à partir des sources vibratoires les plus courantes. Basée sur cette revue, une architecture composée de plusieurs récupérateurs piézoélectriques couplés via des impédances électriques est ensuite proposée. Afin de prédire la densité de puissance adimensionnelle de cette architecture, un modèle électromécanique de celle-ci est développé puis validé expérimentalement avec un prototype composé de deux récupérateurs. Ce modèle est ensuite introduit dans une procédure d'optimisation qui maximise un critère de performances basé sur le type de source vibratoire d'excitation, soit une source stationnaire ou non-stationnaire. Les résultats d'optimisation sont par la suite analysés sous forme d'études paramétriques. Pour différentes sources vibratoires, ces études établissent l'influence de chacun des paramètres composant l'architecture sur ses performances tout en développant un outil de conception de l'architecture proposée. La première partie de ces études considère le cas où l'architecture est excitée par une source vibratoire harmonique tandis que la seconde partie le fait pour une source aléatoire stationnaire et non-stationnaire. Finalement, des cas d'application sont présentés pour démontrer comment utiliser l'outil de conception. Bien que les résultats obtenus dans ces cas ne soient pas généraux, il y est démontré que l'utilisation de l'architecture proposée permet d'augmenter la densité de puissance ou de l'uniformiser sur un plus large spectre fréquentiel : comparativement au récupérateur classique, une architecture de deux récupérateurs permet un gain de performances de 51% pour une source vibratoire harmonique, de 184% pour une source de type passe-bas et de 212% pour une source non-stationnaire.
The power supply of a wireless electronic device is often conducted via an electric battery. An alternative solution to produce a continuous supply is to harvest energy from the vibrations of a mechanical structure. It has already been shown that the classical vibration energy harvester is effective only when the vibration excitation source has a narrowband frequential content. Vibration sources are often composed of a broad frequency spectrum so the classic energy harvester is inefficient. The main objective of this thesis is to propose and evaluate an energy harvester architecture that would lead to efficient energy harvesting from a vibration source of any frequential content. A review of the scientific literature allows to classify and prioritize the different strategies that have previously been proposed to harvest energy from the most common vibration sources. Based on this review, a harvester architecture composed of several piezoelectric harvesters coupled via electric impedances is then proposed. To predict the dimensionless power density of this architecture, its electromechanical model is developed and experimentally validated with a two-harvester prototype. This model is then introduced into an optimization procedure that maximizes a performance criterion based on the type of vibration excitation source, which is either stationary or non-stationary. The optimization results are then analyzed as parametric studies. For various vibration sources, these analyses establish the influence of every architectural parameter on its performance while developing a design tool for the proposed architecture. The first part of these studies considers the case where the architecture is excited by a harmonic vibration source, while the second part deals with stationary and non-stationary random sources. Finally, case studies are presented to demonstrate how to use the design tool. Although the results obtained in these cases are not general, it is shown that the use of the proposed architecture increases the power density or uniformizes it on a broader frequency spectrum. Indeed, when compared to the conventional harvester, a two-harvester architecture enables a performance gain of 51% for a harmonic vibration source, 184% for a low-pass source and 212% for a non-stationary source.
The power supply of a wireless electronic device is often conducted via an electric battery. An alternative solution to produce a continuous supply is to harvest energy from the vibrations of a mechanical structure. It has already been shown that the classical vibration energy harvester is effective only when the vibration excitation source has a narrowband frequential content. Vibration sources are often composed of a broad frequency spectrum so the classic energy harvester is inefficient. The main objective of this thesis is to propose and evaluate an energy harvester architecture that would lead to efficient energy harvesting from a vibration source of any frequential content. A review of the scientific literature allows to classify and prioritize the different strategies that have previously been proposed to harvest energy from the most common vibration sources. Based on this review, a harvester architecture composed of several piezoelectric harvesters coupled via electric impedances is then proposed. To predict the dimensionless power density of this architecture, its electromechanical model is developed and experimentally validated with a two-harvester prototype. This model is then introduced into an optimization procedure that maximizes a performance criterion based on the type of vibration excitation source, which is either stationary or non-stationary. The optimization results are then analyzed as parametric studies. For various vibration sources, these analyses establish the influence of every architectural parameter on its performance while developing a design tool for the proposed architecture. The first part of these studies considers the case where the architecture is excited by a harmonic vibration source, while the second part deals with stationary and non-stationary random sources. Finally, case studies are presented to demonstrate how to use the design tool. Although the results obtained in these cases are not general, it is shown that the use of the proposed architecture increases the power density or uniformizes it on a broader frequency spectrum. Indeed, when compared to the conventional harvester, a two-harvester architecture enables a performance gain of 51% for a harmonic vibration source, 184% for a low-pass source and 212% for a non-stationary source.
Mohammadi, Saber. "Semi-passive vibration control using shunted piezoelectric materials." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0043/these.pdf.
Full textLes travaux de cette thèse concernent l'étude d'une technique particulière se rapportant au traitement de la tension générée par les éléments piézoélectriques. Cette technique non linéaire augmente considérablement l'effet de la conversion électromécanique des matériaux piézoélectriques. Cette technique appelée synchronise switch damping (SSD) a été mis au point en laboratoire de génie électrique et férroélectricite de l'INSA-Lyon. L’un des avantages de ces techniques est la possibilité d’être autoalimenté par la conversion de l’énergie électrique par des éléments piézoélectriques. Le présent travail propose une nouvelle approche du contrôle pour les techniques SSD permettant l'augmentation de l'amortissement dans le cas de vibrations complexes tels que les excitations aléatoires. Cette nouvelle approche est l'approche statistique sur fenêtre glissante dans le temps par rapport à la tension piézo-électrique ou le déplacement de l'ouvrage. Les résultats numériques et expérimentaux ont été présentés pour une poutre encastrée libre. Ces résultats montrent l’efficacité de cette nouvelle stratégie de contrôle, avec la capacité des patchs piézoélectrique pour amortir les vibrations de la structure. L'effet de la taille des patchs piézo-électrique sur l’amortissement des vibrations et leur sensibilité aux variations de la force d'excitation sont aussi présentées. Enfin, il montre l'effet des conditions aux limites sur la technique SSDI
Aouachria, Zéroual. "L'Eolienne Savonius : comportements mécanique et aérodynamique." Aix-Marseille 1, 1987. http://www.theses.fr/1987AIX11062.
Full textDeng, Fengyan. "Contrôle modal autoadaptatif de vibrations de structures évolutives." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00749905.
Full textCuenca, Jacques. "Wave models for the flexural vibrations of thin plates : model of the vibrations of polygonal plates by the image source method : vibration damping using the acoustic black hole effect." Le Mans, 2009. http://cyberdoc.univ-lemans.fr/theses/2009/2009LEMA1011.pdf.
Full textFlexural vibrations of thin structures are strongly related to sound radiation and structural damage, for which they deserve careful attention in many domains of science and engineering. Two aspects of crucial importance are the development of accurate tools for the prediction and analysis of vibrations and efficient vibration damping. In the first part of the thesis, a model of the flexural vibrations of thin convex polygonal plates based on the image source method is presented. The developed approach allows to predict the vibrations of individual plates and plate assemblies of arbitrary convex polygonal geometry and having arbitrary boundary conditions. The method is particularly suitable for mid- and high-frequency dynamics, in that its accuracy is improved with an increase in frequency or structural damping. A tool for estimating the Young's modulus and structural damping ratio of highly damped flat panels is also proposed. The second part of the thesis concerns vibration damping using the acoustic black hole effect. It is weel-known that a flexural wave travelling in a thin plate or beam slows down in a zone of decreasing thickness. Thus, if the thickness decreases sufficiently smoothly to zero, the wave stops travelling, without being reflected back. Such is the principle of the so-called acoustic black hole effect. A model of the flexural vibrations of such profile is proposed, allowing to determine optimal geometrical and material properties in order to maximise vibration damping. Simulated and measured responses show a reduction of vibration level up to 20 decibels
Chouvion, Benjamin. "Vibration Transmission and Support Loss in MEMS Sensors." Phd thesis, University of Nottingham, 2010. http://tel.archives-ouvertes.fr/tel-00938163.
Full textHammami, Maroua. "Comportement mécanique et vibratoire des composites stratifiés sains et endommagés par délaminage." Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1022/document.
Full textThe aim of this work is to investigate the effects of delamination lengths on the static, fatigue, linear and nonlinear vibration behaviour of composite materials. An analytical model is first presented using laminated beams theory of bending behavior. A study was conducted in static and cyclic fatigue loading with various debonding lengths. Flexural modulus in static tests was determined using the composite plate theory. The effects of delamination lengths on the stiffness, hysteresis loops and damping were studied for various numbers of cycles during fatigue tests. Then, modeling of the damping of a composite with delaminaton was established considering finite element analysis which evaluated the different energies dissipated in the material directions. The effects of delamination variable lengths on natural frequencies and damping were studied numerically and compared with experimental results. Finally, the nonlinear vibration method was used to characterize the behaviour of composite beams with delamination. The nonlinear parameters corresponding to the elastic modulus and damping were determined for each frequency mode and each debonding length. The results showed that nonlinear parameters were much more sensitive to damage than linear parameters
Chaline, Jennifer. "Analogie macroscopique et acousto-mécanique d'une microbulle : application aux agents de contraste ultrasonore." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR3304/document.
Full textUnder specific ultrasound excitation, contrast microbubbles undergo nonlinear oscillations. Considering the size and the complexity of the phenomenon, expensive and complex experiments and/or simulations are required. To overcome this, the use of an analogy is proposed and validated numerically. When subjected to ultrasound, microbubbles present a fairly rich and complex dynamics of which some aspects can be described by a lattice of nonlinearly coupled oscillators. In this thesis, we propose to study the oscillatory behavior of a microbubble through an acousto-mechanical setup of coupled pendula parametrically excited by a vertical force. The aim of this work is to understand the dynamics of a single bubble, to subsequently study it in experimental and clinical conditions for both imaging and therapy. From the theoretical point of view, we have shown that both systems are described by a Mathieu type equation. From the experimental point of view, we have developped the pendula ring. It consists of an aluminum ring on which pendula are fixed with nylon strings. The pendula chain lies on the excitation system that generate a sinusoidal excitation ranging from 1 Hz to 5 Hz. Results obtained (vibration modes, subharmonic oscillations, radial mode) are in agreement with simulations and are similar to the results obtained for microbubbles
Meuterlos, Maxime. "Développement de méthodes de normalisation des indicateurs de santé vibratoires pour la surveillance d'ensembles mécaniques basées sur les paramètres d’utilisation. Application à l’hélicoptère." Electronic Thesis or Diss., Lyon, INSA, 2023. http://www.theses.fr/2023ISAL0097.
Full textThe VHMS (Vibration Health Monitoring System) installed on helicopters plays a strategic role in increasing the safety of operators and passengers during flight. These systems consist of recording operational data during flight, particularly vibration-related data, and monitoring the integrity of mechanical components through indicators derived from signal processing. The basic principle is based on the assumption that the appearance of a failure mode generates a characteristic evolution of indicator values. However, one limitation of VHMS systems is the strong dependence of indicators on flight conditions, which can vary rapidly and complex for helicopters. These variations, which are difficult to control, can mask the signature of a mechanical failure, resulting in ambiguity in interpreting the origin of the observed indicator evolution. In this manuscript, normalization methods are developed to estimate normalized vibration indicators, which are insensitive to flight conditions. First, a review of normalization methods commonly used in the literature is presented. Second, a parametric statistical framework modeling vibration indicators is proposed based on cyclostationary modeling of the vibration signal. This parametric framework will be used to construct two approaches to normalizing vibration indicators. The first approach is based on clustering-classification, linking the helicopter flight phases to the statistics of the vibration indicator. Then, a second approach is based on the regression of quantile distribution parameters conditioned on flight parameters that explain the variability of health indicators. In parallel, a sensitivity analysis is conducted to identify these flight parameters
Ogam, Erick. "Caractérisation ultrasonore et vibroacoustique de la santé mécanique des os humains." Aix-Marseille 1, 2007. http://www.theses.fr/2007AIX11067.
Full textThe human bone is both a material (bone tissue) and a structure (e. G. The femur). Trauma often generates structural failure (fractures) of the bone, but its mechanical integrity can also be affected in an insidious manner, and not the less dangerous, by certain diseases. Very schematically, one can say that trauma is the cause of macrofractures (to the bone structure), and diseases cause of microfractures if no treatment (of the bone material) is undertaken. The microfractures develop gradually into macrofractures, or if the treatment is not effective, the bone loses its function of support. This thesis relates primarily to one of the diseases of bone : osteoporosis. To treat this disease, and/or to prevent the macrofractures of which it is in the long term the cause, it is initially necessary to make its diagnosis. This problem is complicated owing to the fact that it is about characterization (primarily mechanical) of living material (biological tissue) and that it is imperative that the probe be of nondestructive type, especially if the examination must be repeated often (in particular to follow the progress of a treatment). The work of this thesis thus relates to the development of new methods, and/or improvement of more older methods relating to the nondestructive evaluation (NDE) mechanical deteriorations of bone tissue in connection with osteoporosis. As the NDE is also a term employed for the characterization of inert material, the applicability of this work's framework exceeds that of living tissue
Munera, Ramirez Marcela. "Analyse vibro-biomécanique et dynamique en sport/santé. Cas du cyclisme." Thesis, Reims, 2014. http://www.theses.fr/2014REIMS016/document.
Full textVibration phenomenon presents two faces in the sports world. Got under control ; it can be useful in body and muscle building and muscle re-education ; otherwise this phenomenon leads deleterious consequences for the human body. These deleterious effects depend on the vibration nature but also of its propagation background : structural or human. Usually, the vibration suffered by the human body cannot be decoupled either the motion analysis or the analysis of muscular fatigue. This topic research is based in three notions : vibration, motionand the physiologie. The aim of this work will be to define the characteristics of performance and health through the study of the dynamical and physiological response of the human body
Thomas, Benjamin. "Dynamique d’une structure complexe à non linéarités localisées sous environnement vibratoire évolutif : Application à l'isolation vibratoire d'un équipement automobile." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0106/document.
Full textThis research work regards the development of a complex structure model with non-linear viscoelastic components. The purpose of this study is to simulate the response of this structure submitted to a random vibration excitation based on a power spectral density definition (PSD). The industrial applicative case is the vibratory insulation of a automotive engine cooling module supported by elastomer mounts. A brief review of elastomers behavior depending on solicitations types enables to identify the parameters of the different investigated models. Preliminary tests have been conducted to define the range of amplitudes of excitations and evaluate the internal warming of rubbers during the full structure validation test. The experimental characterization of the suspension is based on rubbers mounts and their interfaces with the cooling module, in order to take into account in a unique model all nonlinearities due to the viscoelastic behavior, the slidings, and the friction. Measured force-deflection hysteretic cycles in axial and radial direction are post-processed with an expert system developed to obtain the parameters of the retained model: the modified Dahl’s model, generalized to viscoleastic aspect. This process has been developed with Octave/Matlab code. Interpolation and extrapolation methods enable to obtain a good model response on the global operating range. These methods have been coded in an Abaqus UserSubroutine. Imposing random vibration excitation of a non linear mechanical system based on PSD imposes to take into account signal processing aspects. To evaluate response levels versus norms requirements, it’s mandatory to consider the time-frequency transfer. In addition, the size and the complexity of the total finite element model of the industrial structure don’t allow a global resolution in the time domain for all the degrees of freedom. Homogenization and dynamic reduction techniques are used to evaluate the response of the system submitted to large frequency range excitations, and to analyse the behavior of the suspension
Paquin, Simon. "Modélisation et optimisation mécanique d'un récupérateur piézoélectrique d'énergie vibratoire." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27833/27833.pdf.
Full textDjimadoum, Myriam. "Prévision des vibrations stationnaires et instationnaires aux moyennes fréquences : : approche en énergie moyenne et approche par admittances impulsionnelles." Lyon, INSA, 1993. http://www.theses.fr/1993ISAL0111.
Full textThe study of vibration of assembled structure excited by stationary or non stationary forces is made through two different but complementary procedures: -The first one is based on the development of an energetic approach in the mid-frequency range, which consists of a simplified second order equation in terms of an energetic space- and frequency- averaged quantity and the associated conditions at the discontinuities. This development is applied to the case of two damped coupled beams and emphasis is placed on the influence of the averages for the simplification of the problem. A brief generalization is made for two dimensional systems such as s1mply supported plates. As the excitation can be either stationary or non-stationary, one cane calculate another energetic value domain, firstly through the construction of an approximate phase and secondly through the assumption of an exponential decay of energy with time. - The second procedure is more exact and is thus used as a reference for the first one, i. E. , the problem of two coupled beams is solved by geometrical decomposition of the assembly and modelling of the isolated structures by impulse admittances. This allows one to obtain the coupling moments at the junction using different solution methods that are described and numerically compared: direct numerical integration, inverse Fourier transform and a method of the Galerkin type
Mermoz, Emmanuel. "Automatisation du diagnostic vibratoire des transmissions de puissance d'hélicoptère." Paris, ENSAM, 2002. http://www.theses.fr/2002ENAM0016.
Full textThe presented works become integrated within the framework of the vibratory surveillance of the mechanical transmissions of helicopter. After a presentation of the general principles of the vibratory analysis and the various associated methods of diagnosis, a new methodology of automatic diagnosis is defined. This method is realized by a computer application allowing to make a manual or automatic vibratory diagnosis. The procedure of study of data is described with the features of the software associated. Finally a research on the possibilities of modeling allowing to improve the capacities of diagnosis is presented. It articulates around two axes: the statistical vision of the vibratory indicators and the mechanical modeling of the dynamic efforts
Fagiani, Ramona. "Tribological activation of tactile receptors by vibrations induced at the finger contact surface." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00715822.
Full textMarsiquet, Cyril. "Contribution à l’étude tribologique d’une lamelle en vibration : application au développement d’un capteur." Mulhouse, 2008. https://www.learning-center.uha.fr/opac/resource/contribution-a-letude-tribologique-dune-lamelle-en-vibration-application-au-developpement-dun-capteu/BUS4085725.
Full textThese work lie in the development and transfer of an industrial method of measuring of the surface state by the vibrating analysis of a blade-disc tribometer "named" MODALSENS. " The study of the modes of vibration (frequency and energy) provides criteria where roughness, adhesion and compressibility are mixed. As a first step, the work has been to take stock of the interactions friction / vibration typical phenomenon which relies on the technology studied. Indeed, the blade is considered highly sensitive to "stick slip. " An experimental approach has led to compare, on the basis of a varied sampling of surfaces, conventional measurement techniques and MODALSENS. By comparing the reference methods and MODALSENS it has been showed that the differences between the geometric, static and dynamics conditions of contacts make hardly possible correlations between the results obtained. A model of the surface and the MODALSENS blade was essential to understand and explain the principle of interaction between the surface to be analyzed and the vibrating blade of MODALSENS. Finally, to better see the experimental results, they are represented in the form of three-dimensional graphs which contain the frequency, energy and bandwidth mode studied. Thus, interpretation of results measurement of MODALSENS (frequencies, energies and damping of modes 1 and 3) are now made
Najm, Désirée. "Quels capteurs de vibrations pour la surveillance de santé des structures mécaniques ?" Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1072/document.
Full textThe aim of the thesis is to define principles and approaches of a practical implementation of vibration sensors for dynamic monitoring of structures, specially damage detection. The general idea is to study the combinations instrumentation /detection method. Thus, a numerical sensitivity study of different damage detection and localization methods using modal parameters (mainly natural frequencies and mode shapes) was performed according to the type of sensor used, to the number of sensors, to the severity of the damage, and to dispersion of modal parameters. The case-study is conducted on an aluminium clamped-clamped beam. A panorama of the capacity of each method for dynamic assessment of structures has been presented. Overall, long base strain gauges provide better results for damage detection methods. A method developed in the Dynamic group applied to numerical and experimental data, is able to locate mass and/or flexural rigidity modifications and to quantify these perturbations
Mottard, Patrick. "Méthodes semi-analytiques en vibration non linéaire." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27781/27781.pdf.
Full textGrampeix, Guillaume. "Vibration des bétons." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1179/document.
Full textIn the field of construction, concrete is the most used material. In order to facilitate the casting process, concretes are liquefied punctually following the successive insertion of an internal vibrating poker. Despite the introduction of very fluid to self-compacting concrete, ordinary concrete represents more than 90% of the mix-design used on building sites. However, international recommendations are based on studies carried out during the first half of last century. Thus, we choose to investigate theses recommendations in order to incorporate the current progress on the rheology of cementitious materials. From a study of the literature, we establish the relationship between the mechanical properties of vibrating poker and the fresh behavior of concrete. Then, in chapter two, we determine, for which consistency, the vibration is really needed. Thereafter, we develop a simple analytical model to predict the diameter of action of internal poker and we compare two configurations of casting. Finally, we propose a minimum time of vibration required for compaction of the material and a maximum time to ensure a surface quality
Ben, henni Mohamed. "Contribution à l'étude de la vibration des plaques en matériaux composites sous chargements mécanique et thermomécanique." Thesis, Reims, 2019. http://www.theses.fr/2019REIMS020.
Full textThe aim of this work is to analyze the vibration behavior of hybrid fiber composite laminates by using, on the one hand, the fourvariable high order theory taking into account the transverse shear effect for strain calculation; and on the other hand by the finite element method analysis. The equation of motion of the laminated plate is obtained using Hamilton's principle. The mathematical expressions are obtained using the Navier solution for different boundary conditions. In order to validate the proposed models, we compared our results with existing models in the literature for non-hybrid composites. The elastic moduli of the hybrid plate were calculated using the law of mixtures. Then, we studied the effects of the plate dimensions, the volume fraction, the type of fiber, the position of layers (in the case of interlayer hybridization) on the fundamental frequencies of hybrid composite plates.Since, there is no data available in the literature for hybrid composite plates, the finite element solution is used to validate the results obtained by the high order theory. The results show good accuracy of the proposed analytical solution for the prediction of the fundamental frequencies of hybrid stratified plates. Hygrothermal conditions generally degrade the rigidity of structures, we studied the effects of temperature and humidity on the stability of hybrid and non-hybrid composite plates. The results obtained for the fundamental frequencies show that the hygrothermal conditions can affect the behavior of composite plates but with a lesser effect
André, Hugo. "Surveillance angulaire d’une ligne d’arbre d’éolienne sous conditions non stationnaires." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0124.
Full textThe overall background for the thesis is the need to develop new methods for monitoring machines subject to nonstationary operating conditions of speed and load, as typified by wind turbines. This has become particularly important because of the increasing prevalence of wind turbines for the sustainable supply of electrical power. Because of the cost of installing and maintaining wind turbines, often situated in remote areas and increasingly used off-shore, it has become imperative to use the most up-to-date monitoring methods to avoid unforeseen failure. For the same reason there has been a tendency to increase the size of individual units, but this gives problems for the transmissions used to convert the low speed input at a fraction of a Hz to the speed of conventional generators in the range 16-30 Hz or so. The power delivered by a turbine is proportional to the square of its diameter, but the input torque is proportional to the cube, and a large part of the cost of the gearbox is related to the torque. Anecdotally, this appears to have resulted in a situation where many transmissions are failing in a shorter time than their design life, and this means not only that their design must be improved, but also that they must be monitored more closely than many other machines, to detect and diagnose incipient faults at the earliest possible stage. The thesis seeks to help to redress the situation by proposing a number of innovative methods to improve the detection and diagnosis of faults in machines with variable speed and load, and especially wind turbine transmissions, not only to make the monitoring more efficient, but also more economical
Ganguli, ABHIJIT. "Chatter reduction through active vibration damping." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210980.
Full textThe regenerative process theory explains chatter as a closed loop interaction between the structural dynamics and the cutting process. This is considered to be the most dominant reason behind machine tool chatter although other instability causing mechanisms exist.
The stability lobe diagram provides a quantitative idea of the limits of stable machining in terms of two physical parameters: the width of contact between tool and the workpiece, called the width of cut and the speed of rotation of the spindle. It is found that the minimum value of the stability limit is proportional to the structural damping ratio for turning operations. This important finding provides the motivation of influencing the structural dynamics by active damping to enhance stability limits of a machining operation.
A direct implementation of active damping in an industrial environment may be difficult. So an intermediate step of testing the strategy in a laboratory setup, without conducting real cutting is proposed. Two mechatronic "Hardware in the Loop" simulators for chatter in turning and milling are presented, which simulate regenerative chatter experimentally without conducting real cutting tests. A simple cantilever beam, representing the MDOF dynamics of
the machine tool structure constitutes the basic hardware part and the cutting process is simulated in real time on a DSP board. The values of the cutting parameters such as spindle speed and the axial width of cut can be changed on the DSP board and the closed loop interaction between the structure and the cutting process can be led to instability.
The demonstrators are then used as test beds to investigate the efficiency of active damping, as a potential chatter stabilization strategy. Active damping is easy to implement, robust and does not require a very detailed model of the structure for proper functioning, provided a collocated sensor and actuator configuration is followed. The idea of active damping is currently being implemented in the industry in various metal cutting machines as part of the European Union funded SMARTOOL project (www.smartool.org), intended to propose smart chatter control technologies in machining operations.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Rodriguez, Jonathan. "Contrôle actif d’une suspension de boîte de transmission principale d’hélicoptère." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0033.
Full textOne of the main causes of discomfort in helicopters are the vibrations transmitted from the rotor to the structure. In forward flight, the blades are submitted to cyclic aerodynamic loads which generate low frequency (around 17Hz) but high energy mechanical vibrations. These vibrations are transmitted from the rotor to the main gearbox, then to the structure and finally to the crew and passengers. In order to maintain acceptable comfort for crew members and passengers, a lot of antivibration devices have been developed since the last 30 years. These systems are generally passive because most of the mechanical energy transmitted to the structure is at only one frequency ωc which is equal to the product bΩ with b the number of blades and Ω the rotor rotational speed. However, modern helicopters evolve and the rotor rpm, which has always been considered as fixed during flight is now a function of time, depending on the flight phases in order to increase performances and reduce energy consumption (variation bandwidth of Ω +/- 10%). This new constraint on the design of helicopters makes the active antivibration technology completely relevant with its capacity to adapt in terms of amplitude and frequency to the perturbation. During this thesis, the passive suspension called SARIB from Airbus Helicopters, based on the DAVI principle (Dynamic Antiresonant Vibration Isolator) is modified in order to implement active components and command (actuation). The theory of the control algorithms used in this thesis is presented in detail in order to define the theoretical tools of the active DAVI control which are : FXLMS control (adaptive control) and LQG (optimal control). To simulate the complete system, a 3D multibody model of the active suspension has been set up, coupled to a the flexible structure of a NH90 (Airbus Helicopters). On this model are applied the different control algorithms presented before and their performances are compared for different loads with variable frequency on the rotor hub. In the same way, different locations for the error sensors in the structure are studied to find the optimal control configuration. The simulations show that the FXLMS algorithm is well suited for the control of harmonic perturbations and reduce significantly the dynamic acceleration level on the cabin floor, without parasite reinjection on other parts of the structure. A comparison of the active SARIB with classical cabin vibration absorbers is also made in terms of efficiency in order to show the advantages of using the DAVI system as a base for an active antivibration device. Finally, this thesis also presents the experiments realized in the dynamics laboratory of Airbus Helicopters on a 1:1 scale prototype of the active SARIB suspension with FXLMS control. The results demonstrate the efficiency of the active suspension architecture and control algorithms
Thomas, Benjamin. "Dynamique d’une structure complexe à non linéarités localisées sous environnement vibratoire évolutif : Application à l'isolation vibratoire d'un équipement automobile." Electronic Thesis or Diss., Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0106.
Full textThis research work regards the development of a complex structure model with non-linear viscoelastic components. The purpose of this study is to simulate the response of this structure submitted to a random vibration excitation based on a power spectral density definition (PSD). The industrial applicative case is the vibratory insulation of a automotive engine cooling module supported by elastomer mounts. A brief review of elastomers behavior depending on solicitations types enables to identify the parameters of the different investigated models. Preliminary tests have been conducted to define the range of amplitudes of excitations and evaluate the internal warming of rubbers during the full structure validation test. The experimental characterization of the suspension is based on rubbers mounts and their interfaces with the cooling module, in order to take into account in a unique model all nonlinearities due to the viscoelastic behavior, the slidings, and the friction. Measured force-deflection hysteretic cycles in axial and radial direction are post-processed with an expert system developed to obtain the parameters of the retained model: the modified Dahl’s model, generalized to viscoleastic aspect. This process has been developed with Octave/Matlab code. Interpolation and extrapolation methods enable to obtain a good model response on the global operating range. These methods have been coded in an Abaqus UserSubroutine. Imposing random vibration excitation of a non linear mechanical system based on PSD imposes to take into account signal processing aspects. To evaluate response levels versus norms requirements, it’s mandatory to consider the time-frequency transfer. In addition, the size and the complexity of the total finite element model of the industrial structure don’t allow a global resolution in the time domain for all the degrees of freedom. Homogenization and dynamic reduction techniques are used to evaluate the response of the system submitted to large frequency range excitations, and to analyse the behavior of the suspension
Gouttel, Badraoui Hadjira. "Approche des matrices de rigidité dynamique exactes pour l'analyse des structures." Rouen, 2000. http://www.theses.fr/2000ROUES032.
Full textFagiani, Ramona. "Tribological activation of tactile receptors by vibrations induced at the finger contact surface." Electronic Thesis or Diss., Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0143.
Full textThis thesis deals with the tribological and dynamic aspects of tactile perception given by the scanning of the finger on a surface. The attention is focused on a direct analysis of the vibration spectrum characteristics, induced by the surface features that is a relatively new research field. In fact, it is accepted that vibrations activate the tactile afferents and their essential role for the perception of fine textures (duplex theory of tactile texture perception) but it is still unknown the link with the surface texture characteristics and the features of the induced vibration spectra. The work is aimed to contribute to a better understanding of the mechanisms of the tactile sense, that is basilar for manifold different applications: textile quality quantification, ergonomics of everyday objects (which largely affects their commercial competitiveness), identification of surface imperfections, the design of tactile communication devices, the development of artificial tactile sensors for intelligent prostheses or robotic assistants, the development of human-machine interfaces for interaction with virtual realities or teleoperation systems, such as for telediagnosis or microsurgery, reproducing real perception (virtual reality), increasing the human perception (augmented reality), development of tests for evaluation of tactile sensitivity during diagnosis or monitoring process in rehabilitation. The study of a finger that moves on a surface involves different difficulties that are related to the material characteristics and to the measurements themselves. For these reasons, a new experimental set-up, named TriboTouch, has been developed to reproduce the finger/surface scanning phenomena under real values of the contact feature (scanning velocity and amplitude, surface roughness, etc..), avoiding undesired vibrations. The test bench has been designed to guarantee the measurements reproducibility and to perform measurements without introducing external noise. The set-up permits to carry out both measurements of the global dynamics and local ones (at the contact zone) employing a silicone fake finger. In the presented analysis, the behavior of the right hand index finger scanning on the surface sample with periodical and isotropic roughness and on textiles has been investigated for different scanning speed, highlighting the role of fingerprints A simple numerical model have been developed for reproducing the behavior of the induced vibrations when sliding two periodical surfaces and the numerical results have been compared with the experimental ones. The presented work has shown the possibility to obtain objective indexes for the tactile perception characterization, by means of the friction induced vibration spectrum analysis, in agreement with the neurophysiological studies present in literature
Monteil, Mélodie. "Comportement vibratoire du steelpan : effet des procédés de fabrication et dynamique non linéaire." Phd thesis, Palaiseau, École nationale supérieure de techniques avancées, 2013. http://pastel.archives-ouvertes.fr/pastel-00913650.
Full textNguyen, Hong-Hai. "Une nouvelle approche pour structures périodiques. Application au calcul des vibrations d'un pneumatique." Phd thesis, Ecole des Ponts ParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00005240.
Full textGabrielli, François. "Apport des techniques temps fréquence à la caractérisation mécanique du corps humain en choc." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22006/document.
Full textThis work introduces a new tool to be used in biomechanical experiment based on human surrogates. Those xperiments need human bodies or anatomic segments. They can be ‘full scale’when dealing with crash reconstruction or ‘sub system’ when dealing with any investigation that focuses on mechanical behavior of biological structure. Actual means of post processing of these experiments include accelerometers signal processing, necropsy and fast video recording. The objectives are usually to understand all injury mechanisms. The final necropsy indicates a listing of all injuries sustained by a human surrogate and an important issue is to recover the chronology of these injuries. Current signal post processing methods lack any injury identification system. Accelerometric signals recorded during impact biomechanical tests are definitely non stationary. We propose to use an approach based on time frequency visualization in order to detect and characterize any injury occurrence within those signals. More precisely we applied continuous wavelet transform and introduced a new criterion that quantifies any transient, or singularity, of the signal: we made the hypothesis that singularities are images of injury occurrence. The quantification of the singularity is calculated from the amount of high frequency contained in the signal. The criterion is applied to two anatomical structures of the human body. Firstly on the thorax, as it supports all vital organs and it is the object of intense safety system development. Secondly the criterion is applied on the lower limb, as it s the primary impacted structure during car/pedestrian collision. The application of the transient criterion to the thorax showed that transient signal caused by rib fractures can be tracked down. The knowledge of the path of the transient signal through the thorax lead to a better understanding of the injury mechanism of the rib. Detection and localization of the fracture rib is then improved and further instrumentation for similar biomechanical test could be tremendously reduced in the future. In the case of the lower limb, the transient criterion was used to localize in time any injury occurrence. Moreover the criterion enabled to discriminate ligament failure from bone fracture. This differentiation gives access to the chronology of injury occurrence during sub system impact test or full scale car crash reconstruction. The knowledge of such an internal chronology can lead to car improvement and further validation tool for finite element modes. In conclusion this work introduces a new application of time scale representation to impact biomechanics. Transient signals coming from injury can be localized in time and the origin of the injury can be determined. This preliminary study can be further completed to build an actual tool for the post processing and exploitation of impact biomechanical experiments
Paknejad, Seyedahmadian Ahmad. "Passive and Active Strategies for Vibration Control of Lightly Damped Structures." Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/325768.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Xin, Ge. "Sparse representations in vibration-based rolling element bearing diagnostics." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI051/document.
Full textAlthough vibration-based rolling element bearing diagnostics is a very well-developed field, the research on sparse representations of vibration signals is yet new and challenging for machine diagnosis. In this thesis, several novel methods have been developed, by means of different stochastic models, associated with their effective algorithms so as to serve the industry in rolling element bearing diagnostics. First, the sparsity-based model (sparse code, in natural image processing) is investigated based on the current literature. The historical background of sparse representations has been inquired in the field of natural scenes. Along three aspects, its mathematical model with corresponding algorithms has been categorized and presented as a fundamental premise; the main publications are therefore surveyed in the literature on machinery fault diagnosis; finally, an interpretation of sparse structure in the Bayesian viewpoint is proposed which then gives rise to two novel models for machinery fault diagnosis. Second, a new stochastic model is introduced to address this issue: it introduces a hidden variable to indicate the occurrence of the impacts and estimates the spectral content of the corresponding transients together with the spectrum of background noise. This gives rise to an automatic detection algorithm – with no need of manual prefiltering as is the case with the envelope spectrum – from which fault frequencies can be revealed. The same algorithm also makes possible to filter out the fault signal in a very efficient way as compared to other approaches based on the stationary assumption. The performance is investigated on synthetic signals with a high noise-to-signal ratio and also in the case of a mixture of two independent transients. The effectiveness and robustness of the method are also verified on vibration signals measured on a test-bench (gears and bearings). Results are found superior or at least equivalent to those of conventional envelope analysis and fast kurtogram. Third, a novel scheme for extracting cyclostationary (CS) signals is proposed. By regularizing the periodic variance as hidden variables, a time-varying filter is designed so as to achieve the full-band reconstruction of CS signals characterized by some pre-set characteristic frequency. Of particular interest is the robustness on experimental data sets and superior extraction capability over the conventional Wiener filter. It not only deals with the bearing fault at an incipient stage, but it even works for the installation problem and the case of two sources, i.e. bearing and gear faults together. Eventually, these experimental examples evidence its versatile usage on diagnostic analysis of compound signals. Fourth, a benchmark analysis by using the fast computation of the spectral correlation is provided. One crucial point is to move forward the benchmark study of the CWRU data set by uncovering its own unique characteristics
De, Marneffe Bruno. "Active and passive vibration isolation and damping via shunted transducers." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210613.
Full textMany different active control techniques can be used to control the vibrations of a mechanical structure: they however require at least a sensitive signal amplifier (for the sensor), a power amplifier (for the actuator) and an analog or digital filter (for the controller). The use of all these electronic devices may be impractical in many applications and has motivated the use of the so-called shunt circuits, in which an electrical circuit is directly connected to a transducer embedded in the structure. The transducer acts as an energy converter: it transforms mechanical (vibrational) energy into electrical energy, which is in turn dissipated in the shunt circuit. No separate sensor is required, and only one, generally simple electronic circuit is used. The stability of the shunted structure is guaranteed if the electric circuit is passive, i.e. if it is made of passive components such as resistors and inductors.
This thesis compares the performances of the electric shunt circuits with those of classical active control systems. It successively considers the use of piezoelectric transducers and that of electromagnetic (moving-coil) transducers.
In a first part, the different damping techniques are applied on a benchmark truss structure equipped with a piezoelectric stack transducer. A unified formulation is found and experimentally verified for an active control law, the Integral Force Feedback (IFF), and for various passive shunt circuits (resistive and resistive-inductive). The use of an active shunt, namely the negative capacitance, is also investigated in detail. Two different implementations are discussed: they are shown to have very different stability limits and performances.
In a second part, vibration isolation with electromagnetic (moving-coil) transducers is introduced. The effects of an inductive-resistive shunt circuit are studied in detail; an equivalent mechanical representation is found. The performances are compared with that of resonant shunts and with that of active isolation with IFF. Next, the construction of a six-axis isolator based on a Stewart Platform is presented: the key parameters and the main limitations of the system are highlighted.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Daoud, Hajer. "Contribution à l'étude du comportement mécanique et vibratoire des composites biosourcés incorporant des matériaux fonctionnels." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1017/document.
Full textThis thesis focuses on the study of the mechanical and vibration behaviour of a flax fibre reinforced composites with and without an interleaved natural viscoelastic layer. The composite materials have been characterized experimentally using different mechanical and vibrational tests. First, both types of composites were studied using uni-axial tensile and three-points bending tests. Acoustic emission (AE) has been often used for the identification and characterization of micro failure mechanisms in composites. The results showed that these composites have very high specific characteristics. It can be used for applications currently using composites reinforced with synthetic fibres such glass, carbon…. Next, experimental and finite element vibration analyses were carried out on the composites with and without an interleaved natural viscoelastic layer. A good agreement between the two methods was obtained. It has been shown that the viscoelastic layer plays a major role in damping because it has a high level of energy dissipation. Therefore, it improves with a significant way the modal properties of the composite. Finally, nonlinear resonance tests were performed on the composites. It has been shown that the viscoelastic layer generates a nonlinear behaviour in the material. The linear and nonlinear, elastic and dissipative parameters have been calculated to deduce finally that nonlinear parameters are more sensitive to heterogeneities than those derived from linear vibration tests
Collette, Christophe. "Usure ondulatoire en transport ferroviaire: mécanismes et réduction." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210701.
Full textLes trois premiers chapitres de cette thèse sont dédiés à la description des différents types d'usure ondulatoire et à la présentation des méthodes de prédiction. La méthode de dimensionnement des absorbeurs dynamiques est présentée au chapitre 4, ainsi que quelques perspectives de leur efficacité à réduire l'usure ondulatoire. Dans le chapitre 5, un tronçon réel du RER parisien a été étudié. D'une part les prédictions obtenues par différentes méthodes ont été comparées aux mesures sur site. D'autre part, le bénéfice résultant de l'utilisation d'un absorbeur dynamique a été étudié numériquement. Dans le chapitre 6, le cas de l'usure ondulatoire liée aux vibrations de torsion a été étudié spécifiquement. Un absorbeur dynamique a été développé pour réduire ce type d'usure ondulatoire. Son efficacité a été évaluée théoriquement et numériquement, avec un modèle multi-corps flexible du véhicule et de la voie. Dans le chapitre 7, un absorbeur dynamique visant à réduire les vibrations de torsion d'un essieu de métro à échelle réduite a été construit au laboratoire. Son efficacité a été validée expérimentalement en reproduisant les conditions d'apparition des vibrations de torsion de l'essieu sur le banc d'essais du Laboratoire des Technologies Nouvelles de l'INRETS. La correspondance entre les prédictions d'usure à échelle réduite et à échelle réelle a été établie. Une demande de brevet a été déposée par le Laboratoire des Structures Actives pour ce système (N° 06120344.4).
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Le, Breton Ronan. "Stabilisation et positionnement actifs précis de modules mécaniques." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00918333.
Full textPicou, Anthony. "Robust analysis under uncertainties of bladed disk vibration with geometrical nonlinearities and detuning." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2038.
Full textThe intentional mistuning, also called detuning has been identified as an efficient technological way for reducing the sensitivity of the forced response of bladed disks to unintentional mistuning (simply called mistuning), caused by the manufacturing tolerances and the small variations in the mechanical properties from blade to blade. The intentional mistuning consists in detuning the bladed disk structure by using partial or alternating patterns of different sector types. However, the recent technological improvements that include the use of more flexible and lighter blades can lead to large strains/displacements, which requires the use of nonlinear dynamic equations involving geometric nonlinearities. This work is devoted to the robust analysis of the effects of geometric nonlinearities on the nonlinear dynamic behavior of rotating detuned bladed disks in presence of mistuning. The detuning corresponds to uncertainties in the computational model, and are taken into account by a probabilistic approach. This thesis presents a series of novel results in dynamics of rotating bladed disks with mistuning and detuning in presence of nonlinear geometrical effects. The structural responses are computed in the time domain and are analyzed in the frequency domain. The frequency analysis exhibits responses outside the frequency band of excitation. The confidence region of the stochastic responses allows the robustness to be analyzed with respect to uncertainties, that is to say with respect to the level of mistuning. The bladed disk structure, which is used for the numerical simulations, is made up of 24 blades for which several different detuned patterns are investigated with and without mistuning
Ly, Rith. "Modélisation multi-physique d'actionneurs piézoélectriques et essais d'assistance au forgeage." Thesis, Metz, 2010. http://www.theses.fr/2010METZ015S/document.
Full textThe work presented concerns the modelling of piezoelectric actuators used as a generator of mechanical vibrations for assistance in shaping bulk materials. The multilayer actuator is set in clamped-free mode and only the direction of longitudinal displacement is considered in the context of this research. The modelling is based on the application of Hamilton principle to establish the equations of motion of the global system. The analytic approach uses a modal composition to solve the equations of operation of the piezoelectric actuator. A transfer function of Multiple-Input Multi-Output (MIMO) systems permits the analysis of the responses in time and frequency domains. The difficulty of the analytical model is to recalculate all the modal data when the boundary conditions are changed. A finite element approach placed along the longitudinal direction of the actuator is also developed. Compared to the analytical model, a study of the accuracy of finite element model function of the number of elements is performed. The two models developed are then coupled to a simplified analytical model of the forging process based on viscoplastic laws in order to model the entire process subject to mechanical vibrations. The main advantage of this model lies in the ability to analyze and optimize the entire process actuator. A comparison between the finite element simulations under Forge2008®, the coupling model and experimental tests is presented. During testing, the piezoelectric actuator fed by Pulse Width Modulated voltage inverter vibrates the lower die at amplitudes ranging from 0 to 80 um and frequencies between 10 and 130Hz. The comparison of experimental results and simulations in the case of upsetting process is encouraging. The modelling of the behaviours of the experimental device constitutes a basic element of a future design tool of vibrating mechanical devices
Cariés, Laurence. "Quelques considérations à propos de la pathologie ostéo-articulaire, vasculaire et nerveuse d'origine mécanique et liée au travail." Bordeaux 2, 1989. http://www.theses.fr/1989BOR25293.
Full textThierry, Olivier. "Réduction des vibrations de structures composites complexes par dispositifs piézoélectriques shuntés : application aux aubes de turbomachines." Thesis, Paris, CNAM, 2016. http://www.theses.fr/2016CNAM1111/document.
Full textThis thesis concerns the vibration reduction in the low frequency range of a composite fan blade of a turbojet engine with piezoelectric devices. The interest is to increase lifespan and avoid flutter phenomena by reducing the vibration amplitude. The purpose of this thesis is to study several shunted piezoelectric devices, in the low frequency range, that can be applied to a woven composite turbojet fan blade. The targeted applications are the LEAP fan blades or the “open-rotor” fan blade, both of them required to manage a complex geometry. The solutions investigated used piezoelectric elements coupled to a passive or semi-passive circuit. The core of this thesis, still a scientific obstacle at present, is to propose efficient solutions that integrate the piezoelectric elements to the fan blades in order to meet aerodynamic constraints for this type of structure, while increasing damping level on one of the first modes of vibration. The performances of such devices are directly related to a coefficient: the electromechanical coupling factor that requires to be maximized. This coefficient depends on all the features of the structure: materials used (host composite structure, piezoelectric material), but especially the placement and geometry of the piezoelectric elements. The use of piezoelectric material connected to active, semi-passive or passive circuits has been extensively studied but the experiences almost always deal with academic cases such as beams or plates. The aim is for the developed piezoelectric device, to evaluate the damping performance of a weakly damped massive structure.A part of the work is thus to develop a predictive finite element model of the structure coupled to the piezoelectric material to quantify the performance of the device. Several solutions are tested on a simple structure to evaluate the influence on the device performance of, (1) the choice of the piezoelectric material, (2) the placement and geometry of the piezoelectric elements, and (3) of the dissipative circuit. Various integration solutions in the blade are proposed and a method for characterizing the properties of woven materials is developed in the perspective of integrating the active materials in the composite preform.This study is both numerical and experimental: a demonstrator using a composite fan blade is designed and tested in the laboratory to validate the proposed concepts
Zhang, Bin. "Model for coupled ferroelectric hysteresis using time fractional operators : Application to innovative energy harvesting." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0065/document.
Full textEnergy harvesting based on mechanical vibration has been a long time research topic for the last few decades. In addition to enhancing the energy conversion amount, another objective is to master and give a precise model with consideration of the disciplines of piezoelectric material behavior. A precise model for the ferroelectric material is mighty needed in the energy harvesting process, so as to give an instruction to the prototype designing and modelling optimizing. In this thesis, a model working on wide bandwidth considering the nonlinearity of the piezoceramic has been developed. The employment of the fractional derivative has broadened the usage of this model on expanded bandwidth. The model permit to predict the evolution of the dielectric polarization as well as the mechanical displacement, which has been tested on different samples under different kinds of stimulation (pure mechanical, pure electrical and hybrid of electrical and mechanical excitations). This fractional derivative factor has been first developed under electrical excitations to describe the dynamic behavior. In the development of this model to mechanical field, the fractional derivative factor was found available as well under the mechanical excitation in the same value. In the following study, an inverse of mechanical model has been developed as well. In the end, we stimulate the piezoceramic using both electrical and mechanical excitation to augment the energy harvesting amount which could become a promising method in energy harvesting field. Every model has been exhaustively demonstrated and specific measuring benches have been established to validate these models. Experiments results and simulations in different kinds of excitations (amplitudes, frequencies) for every kind of the above models have been compared. Good approximation has been acquired indicating the model has a good accuracy in describing the material property and dynamic behavior
Zhou, Shaoyi. "Advances in passive and active damping techniques." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI066.
Full textMechanical systems (e.g. flexible structures) are usually lightly damped so that they vibrate severally in response to dynamic loads. Therefore, vibration control strategies should be adopted in order to reduce the undesired vibration of mechanical systems. The objective of this thesis is to develop multiple vibration control techniques, which are either passive or active. The first part focuses on the application of inerter to enhance the vibration control performance of two existing control devices, the tuned mass damper (TMD) and the series double TMD (SDTMD). The inerter is employed to relate the tuned mass to the ground. In the case of TMD, a mechanical system under stiffness uncertainty is considered and the worst-case H-infinity optimization is addressed by means of an entirely algebraic approach. In the case of SDTMD, the vibration of a deterministic mechanical system is to be controlled and the H-infinity optimal design is carried out via an extended version of fixed points theory (FPT). Instead of using the inerter, the second part consists in improving the control effect by incorporating a linear negative stiffness between the ground and the tuned mass. Two case studies are conducted based on the non-traditional TMD and inerter-based dynamic vibration absorber (IDVA), whose tuned mass is related to the ground by a viscous damper or an inerter-based mechanical network, respectively. Later, the exact electrical realization of non-traditional configurations with or without negative stiffness is proposed, which is based on the piezoelectric transducer enclosed by a particular shunt circuit. This electromechanical analogy enables to extend the applicability of mechanical control devices and to facilitate the precise tuning. In the last part, active and semi-active vibration control techniques are developed. The first strategy consists in enhancing the control capability of passive TMD and IDVA by feeding back the displacement signal of mechanical system to the electromagnetic actuator. The proposed controller can be regarded as one or multiple basic units arranged in series, which is featured by one pole at the origin and two coalesced zeros on the real axis. Distinguished from the previous strategy, the semi-active control technique is based on electromagnetic shunt damping (EMSD), therefore, no additional sensor is required to measure the information of mechanical system. In order to artificially increase the shunt damping performance, the employment of negative inductance (NI) in the shunt circuit is considered. Three possible layouts of NI in the EMSD are assessed in terms of the electromechanical coupling factor, which quantifies the energy conversion efficiency between mechanical and electrical domains. Finally, six types of shunt circuits are optimally tuned according to the FPT and the beneficial effect of NI and the influence of its layout can be underlined
Wang, Zhen. "Enhanced self-powered vibration damping of smart structures by modal energy transfer." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0067/document.
Full textIn a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy
David, Claire. "Modélisation de coques composites multicouches." Cachan, Ecole normale supérieure, 1996. http://www.theses.fr/1996DENS0027.
Full textRenzi, Cédric. "Identification expérimentale de sources vibratoires par résolution du problème inverse modélisé par un opérateur éléments finis local." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0146/document.
Full textThe object of this thesis is the extension to complex structures of the RIFF method (Résolution Inverse Fenêtrée Filtrée). Considering a subpart of a structure, the main idea is to build a local Finite Element model using free boundary conditions. First, the general method was developed on beams. Vibration measurements are injected in the Finite Element model of the analysed part of the beam. Rotations are estimated using extra-displacement measurements and elementary shape functions. The method is highly sensitive towards errors present in measurements, so a regularisation had to be used. This one consists in a double inversion of the operator where a Tikhonov regularisation is applied when performing the second inversion. The regularisation parameter is tuned by the L-curve principle. Because of the smoothing effect of the Tikhonov procedure, moments cannot be reconstructed anymore at this stage, but they do still appear as sets of opposite forces. This setback led us to solve the problem by restricting it to forces only equations. At last, the study of the truncature of the domain was conducted in the aim to suppress coupling forces appearing at the limits of the studied area. Then, the case of plates was considered in order to increase progressively the models’ complexities. The Finite Element approach permitted us to implement dynamical condensation as well as Craig-Bampton reduction techniques. This allowed us to reduce the total number of degrees of freedom to be taken into account both from a numerical and an experimental standpoint. For example, dynamical condensation allows to eliminate rotations in the model. Besides, regularisation induces a lack of spatial resolution because of its smoothing effect. A spatial deconvolution technique was therefore developed; it is based on the Richardson-Lucy algorithm which is applied at a post-processing stage. At last, it was successfully proposed to extend the method to the application of detecting defaults present in the structure. The method was also validated on an industrial test bench in order to identify the forces applied by an oil pump taken from a truck’s engine. This phD thesis relied on numerical developments and the method was validated experimentally both in laboratory and industrial context. Main results provide a predictive tool to evaluate injected forces by vibration sources linked to a structure. It necessitates to inject vibratory displacements measurements into a Finite Element model
Tonazzi, Davide. "Macroscopic frictional contact scenarios and local contact dynamics : At the origins of “macroscopic stick-slip”, mode coupling instabilities and stable continuous sliding." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0110/document.
Full textLocal contact behavior and its interaction with the global dynamics of the system are at the origin of innumerable contact issues concerning several different disciplines like tribology, geophysics, vibration mechanics or fracture mechanics. When two elastic media are in relative motion with a frictional interface, friction induced vibrations arise into the system. By a macroscopic point of view, the “macroscopic stick-slip” scenario occurring during relative motion is characterized by sudden friction force drops (sliding state) along the time, separated by periods of elastic energy accumulation (stick state). Instead, the mode dynamic instability occurs when a vibration mode of the mechanical system becomes unstable, due to frictional contact forces. This kind of instabilities, generated by frictional forces, have been mainly object of papers dealing with specific issues in different domains. In this context, experimental and numerical analyses have been focused here on understanding how the local interface behavior affects the macroscopic frictional response of the system, and, conversely, during instability scenarios. The macroscopic frictional scenarios (macroscopic stick-slip instability, mode coupling instability, stable continuous sliding) arising between two simple elastic media in relative motion have been investigated numerically and experimentally. A newer experimental setup (TRIBOWAVE) has been developed and it allowed to reproduce and to investigate the different scenarios under well-controlled boundary conditions. The same frictional scenarios have been reproduced by transient numerical simulations. A dedicated friction law as a function of adherence (sticking) time has been recovered by means of experimental tests. The obtained friction law has been implemented in the numerical model, leading to a quantitative validation of the simulated scenarios by the experiments. Nonlinear transient simulations, complex eigenvalue analyses and experimental tests allowed for drawing instability maps as a function of system key parameters. The numerical model, validated by the comparison with the experimental global measurements (forces, accelerations/velocity), allowed for investigating the coupling between the local contact behavior (contact status distribution, wave and rupture propagation, precursors) and the system dynamic response during macroscopic stick-slip instability, mode coupling instability and stable continuous sliding. The understanding of the coupling between contact and system dynamics will bring to further improvements on the control of contact instabilities and related wear issues
Menexiadis, Dimitri. "Conception d'un système expert d'aide au diagnostic pour les machines tournantes." Valenciennes, 1988. https://ged.uphf.fr/nuxeo/site/esupversions/04ba5d72-dc25-461d-8efd-ab79aeeefb8f.
Full textLavazec, Déborah. "Experimental evaluation and modeling of a nonlinear absorber for vibration attenuation : design, identification, and analysis." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1217/document.
Full textDue to their long wavelengths, mechanical vibrations at low frequencies cannot easily be reduced in structures by using dissipative materials. Despite these difficulties, the attenuation of vibration at low frequencies remains an important concern. To solve this problem, several ways of research have been explored and have been applied to vibration energy pumping such as linear oscillators, composed of a mass, a spring, and a damper. Their resonance frequency must coincide with the resonant frequency of the structure that has to be attenuated. The absorbers that are oscillators with a nonlinear behavior constitute an interesting alternative. The response of the nonlinear oscillator allows for obtaining an attenuation of vibration over a broader frequency band than the response of linear oscillator, without splitting the resonance that has to be attenuated into two resonances. The work presented here is in the frame of the vibratory reduction, on a macro-scale, at low frequencies, for which the first structural modes are excited. A nonlinear absorber has been designed, experimentally realized and analyzed, modeled and experimentally identified to highlight the phenomenon of broadening the frequency band of the response. The effects of this absorber on the dynamic behavior of a cantilever beam have been numerically studied, using a model of the beam coupled to nonlinear absorbers. A reduced-model and its stochastic solver have also been developed. The results obtained show that the nonlinear absorber allows for obtaining an attenuation on the beam response, without splitting of the resonance that has to be attenuated
Santin, Jean-Jacques. "Conception mécanique d'un accouplement à roue-libre pour le moteur thermique d'un véhicule hybride parallèle thermique et électrique." Valenciennes, 2001. https://ged.uphf.fr/nuxeo/site/esupversions/5c97a50f-ddaa-4980-958f-ff84e3b9148e.
Full textThis thesis deals with the design of a free-wheel clutch. This unit is intended to replace the automated dry single-plate clutch of a parallel hybrid car with thermal and electric powertrain. Furthermore, the car is a single shaft zero emission vehicle fitted with a controlled gearbox. Chapter one focuses on the type of hybrid vehicle studied. It shows the need to isolate the engine from the rest of the drive train, depending on the driving conditions. Chapter two presents and compares the two alternatives : automated clutch and free-wheel. In order to develop the free-wheel option, the torsional vibrations in the automotive drive line had to be closely studied. It required the design of a specific modular tool, as presented in chapter three, with the help of MATLAB SIMULINK. Lastly, chapter four shows how this tool was used during the design stage and specifies the way to build it. The free-wheel is then to be fitted to a prototype hybrid vehicle, constructed by both the LAMIH and PSA