Academic literature on the topic 'Video content analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Video content analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Video content analysis"
Liang, Chao, Changsheng Xu, and Hanqing Lu. "Personalized Sports Video Customization Using Content and Context Analysis." International Journal of Digital Multimedia Broadcasting 2010 (2010): 1–20. http://dx.doi.org/10.1155/2010/836357.
Full textGad, Gad, Eyad Gad, Korhan Cengiz, Zubair Fadlullah, and Bassem Mokhtar. "Deep Learning-Based Context-Aware Video Content Analysis on IoT Devices." Electronics 11, no. 11 (June 4, 2022): 1785. http://dx.doi.org/10.3390/electronics11111785.
Full textCui, Limeng, and Lijuan Chu. "YouTube Videos Related to the Fukushima Nuclear Disaster: Content Analysis." JMIR Public Health and Surveillance 7, no. 6 (June 7, 2021): e26481. http://dx.doi.org/10.2196/26481.
Full textThinh, Bui Van, Tran Anh Tuan, Ngo Quoc Viet, and Pham The Bao. "Content based video retrieval system using principal object analysis." Tạp chí Khoa học 14, no. 9 (September 20, 2019): 24. http://dx.doi.org/10.54607/hcmue.js.14.9.291(2017).
Full textFaeruz, Ratna, Maila D. H. Rahiem, Nur Surayyah Madhubala Abdullah, Dzikri Rahmat Romadhon, Ratna Sari Dewi, Rahmatullah Rahmatullah, and Dede Rosyada. "Child Educational Content on Digital Folklore "Pak Lebai Malang": A Qualitative Content Analysis." Al-Athfal: Jurnal Pendidikan Anak 7, no. 2 (December 22, 2021): 111–22. http://dx.doi.org/10.14421/al-athfal.2021.72-02.
Full textJacob, Jaimon, M. Sudheep Elayidom, and V. P. Devassia. "Video content analysis and retrieval system using video storytelling and indexing techniques." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 6 (December 1, 2020): 6019. http://dx.doi.org/10.11591/ijece.v10i6.pp6019-6025.
Full textDuan, Yamin. "Analysis Of Competitive Strategy Of Bilibili Content Ecology." BCP Business & Management 34 (December 14, 2022): 865–72. http://dx.doi.org/10.54691/bcpbm.v34i.3106.
Full textEide, Viktor S. Wold, Ole-Christoffer Granmo, Frank Eliassen, and Jørgen Andreas Michaelsen. "Real-time video content analysis." ACM Transactions on Multimedia Computing, Communications, and Applications 2, no. 2 (May 2006): 149–72. http://dx.doi.org/10.1145/1142020.1142024.
Full textOvermeire, Luk, Lode Nachtergaele, Fabio Verdicchio, Joeri Barbarien, and Peter Schelkens. "Constant quality video coding using video content analysis." Signal Processing: Image Communication 20, no. 4 (April 2005): 343–69. http://dx.doi.org/10.1016/j.image.2005.01.001.
Full textPan, Peng, Changhua Yu, Tao Li, Xilei Zhou, Tingting Dai, Hanhan Tian, and Yaozu Xiong. "Xigua Video as a Source of Information on Breast Cancer: Content Analysis." Journal of Medical Internet Research 22, no. 9 (September 29, 2020): e19668. http://dx.doi.org/10.2196/19668.
Full textDissertations / Theses on the topic "Video content analysis"
Lidén, Jonas. "Distributed Video Content Analysis." Thesis, Umeå universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-99062.
Full textChan, Stephen Chi Yee. "Video analysis for content-based applications." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395362.
Full textFraz, Muhammad. "Video content analysis for intelligent forensics." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/18065.
Full textVON, WITTING DANIEL. "Annotation and indexing of video content basedon sentiment analysis." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156387.
Full textTack vare tekniska framsteg inom mobilitet och tillgänglighet, kan media såsom film distribueras till flertalet olika plattformar, i form avströmning eller liknande tjänster. Det enorma utbudet av TV-serier och film utgör svårigheter för hur materialet ska lagras, sorteras och katalogiseras. Ofta är det dessutom användarna som ställer krav på vad somär relevant i en sökning. Det påvisar vikten av lämplig notation och indexering.I dag används oftast text som beskrivning av videoinnehållet, i form av antingen genre eller nyckelord. Det här arbetet är ett försök till att automatiskt kunna indexera film och serier, beroende på det semantiska innehållet. Att istället beskriva videomaterialet beroende på hur det uppfattas, samt de känslor som väcks, innebär en mer karaktäristisk skildring. Ett sådant signalement skulle beskriva det faktiska innehållet på ett annat sätt, som är mer lämpligt för jämförelser mellan två videoproduktioner. Eftersom skapandet av film anpassar sig till hur människor uppfattar videomaterial, kommer denna undersökning utnyttja de regler och praxis som används, som hjälp för maskininlärningen. Hur en film uppfattas, eller de känslor som framkallas, utgör en bas för inlärningen, då de används för att beteckna de olika koncept som ska klassificeras. En video representeras som en sekvens av klipp, med avsikt att fånga de tidsmässiga egenskaperna. Metoden som används för denna övervakade inlärning är en SVM som kan hantera data i form av strängar. Förutom de teknikaliteter som krävs för att förstå inlärningen,tar rapporten upp relevanta andra områden, t.ex. hur information ska extraheras och videosegmentering. Resultaten visar att det finns mönster i video, lämpliga för inlärning. På grund av för lite data, är det inte möjligt att avgöra hur metoden presterar. Det vore därför intressant med vidare analys, med mer data samt smärre modifikationer.
Lindmark, Peter G. "A CONTENT ANALYSIS OF ADVERTISING IN POPULAR VIDEO GAMES." Cleveland State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=csu1326227481.
Full textHorn, Johanna, and Daniel Severus. "Exploring the Trust Generating Factors of Video Tutorials." Thesis, Högskolan i Gävle, Företagsekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-23651.
Full textRen, Jinchang. "Semantic content analysis for effective video segmentation, summarisation and retrieval." Thesis, University of Bradford, 2009. http://hdl.handle.net/10454/4251.
Full textSong, Yale. "Structured video content analysis : learning spatio-temporal and multimodal structures." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90003.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-154).
Video data exhibits a variety of structures: pixels exhibit spatial structure, e.g., the same class of objects share certain shapes and/or colors in image; sequences of frames exhibit temporal structure, e.g., dynamic events such as jumping and running have a certain chronological order of frame occurrence; and when combined with audio and text, there is multimodal structure, e.g., human behavioral data shows correlation between audio (speech) and visual information (gesture). Identifying, formulating, and learning these structured patterns is a fundamental task in video content analysis. This thesis tackles two challenging problems in video content analysis - human action recognition and behavior understanding - and presents novel algorithms to solve each: one algorithm performs sequence classification by learning spatio-temporal structure of human action; another performs data fusion by learning multimodal structure of human behavior. The first algorithm, hierarchical sequence summarization, is a probabilistic graphical model that learns spatio-temporal structure of human action in a fine-to-coarse manner. It constructs a hierarchical representation of video by iteratively summarizing the video sequence, and uses the representation to learn spatio-temporal structure of human action, classifying sequences into action categories. We developed an efficient learning method to train our model, and show that its complexity grows only sublinearly with the depth of the hierarchy. The second algorithm focuses on data fusion - the task of combining information from multiple modalities in an effective way. Our approach is motivated by the observation that human behavioral data is modality-wise sparse, i.e., information from just a few modalities contain most information needed at any given time. We perform data fusion using structured sparsity, representing a multimodal signal as a sparse combination of multimodal basis vectors embedded in a hierarchical tree structure, learned directly from the data. The key novelty is in a mixed-norm formulation of regularized matrix factorization via structured sparsity. We show the effectiveness of our algorithms on two real-world application scenarios: recognizing aircraft handling signals used by the US Navy, and predicting people's impression about the personality of public figures from their multimodal behavior. We describe the whole procedure of the recognition pipeline, from the signal acquisition to processing, to the interpretation of the processed signals using our algorithms. Experimental results show that our algorithms outperform state-of-the-art methods on human action recognition and behavior understanding.
by Yale Song.
Ph. D.
Humienny, Raymond Tyler. "Content Analysis of Video Game Loot Boxes in the Media." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1546434312362585.
Full textWang, Feng. "Video content analysis and its applications for multimedia authoring of presentations /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20WANG.
Full textBooks on the topic "Video content analysis"
Li, Ying, and C. C. Jay Kuo. Video Content Analysis Using Multimodal Information. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3712-7.
Full textContent-based analysis of digital video. Boston, MA: Kluwer Academic Publishers, 2004.
Find full textLi, Ying. Video content analysis using multimodal information: For movie content extraction, indexing, and representation. Boston, MA: Kluwer Academic Publishers, 2003.
Find full textLi, Ying. Video Content Analysis Using Multimodal Information: For Movie Content Extraction, Indexing and Representation. Boston, MA: Springer US, 2003.
Find full textJay, Kuo C. C., ed. Video content analysis using multimodal information: For movie content extraction, indexing, and representation. Boston, Mass: Kluwer Academic Publishers, 2003.
Find full textBernard, Merialdo, and Lian Shiguo, eds. TV content analysis: Techniques and applications / Yiannis Kompatsiaris, Bernard Merialdo, and Shiguo Lian. Boca Raton, FL: Taylor & Francis, 2012.
Find full textCoelho, Alessandra Martins. Multimedia Networking and Coding: State-of-the Art Motion Estimation in the Context of 3D TV. Cyprus: INTECH, 2013.
Find full text(Korea), Kungnip Pangjae Yŏn'guso. Chinŭnghyŏng yŏngsang chŏngbo insik kisul ŭl iyong han chaenan kwalli kodohwa kibŏp kaebal =: Advancement of disaster management techniques for intelligent video contents analysis. Sŏul T'ŭkpyŏlsi: Kungnip Pangjae Kyoyugwŏn Yŏn'guwŏn, Pangjae Yŏn'guso, 2010.
Find full textSoriano, Cheryll Ruth, and Earvin Charles Cabalquinto. Philippine Digital Cultures. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2022. http://dx.doi.org/10.5117/9789463722445.
Full textBook chapters on the topic "Video content analysis"
Otsuka, Isao, Sam Shipman, and Ajay Divakaran. "A Video Browsing enabled Personal Video Recorder." In Multimedia Content Analysis, 1–12. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76569-3_14.
Full textHua, Xian-Sheng, and Hong-Jiang Zhang. "Automatic Home Video Editing." In Multimedia Content Analysis, 1–35. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76569-3_13.
Full textHauptmann, Alexander. "Video Content Analysis." In Encyclopedia of Database Systems, 3271–76. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_1018.
Full textHauptmann, Alexander. "Video Content Analysis." In Encyclopedia of Database Systems, 1–8. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_1018-2.
Full textHauptmann, Alexander. "Video Content Analysis." In Encyclopedia of Database Systems, 4381–88. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_1018.
Full textZhu, Guangyu, Changsheng Xu, and Qingming Huang. "Sports Video Analysis: From Semantics to Tactics." In Multimedia Content Analysis, 1–44. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76569-3_11.
Full textWilson, Kevin W., and Ajay Divakaran. "Broadcast Video Content Segmentation by Supervised Learning." In Multimedia Content Analysis, 1–17. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76569-3_3.
Full textAnandathirtha, Paresh, K. R. Ramakrishnan, S. Kumar Raja, and Mohan S. Kankanhalli. "Experiential Sampling for Object Detection in Video." In Multimedia Content Analysis, 1–32. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76569-3_7.
Full textAlbanese, Massimiliano, Pavan Turaga, Rama Chellappa, Andrea Pugliese, and V. S. Subrahmanian. "Semantic Video Content Analysis." In Video Search and Mining, 147–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12900-1_6.
Full textLi, Ying, and C. C. Jay Kuo. "Video Content Pre-Processing." In Video Content Analysis Using Multimodal Information, 35–67. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3712-7_3.
Full textConference papers on the topic "Video content analysis"
Moreira, Daniel, Siome Goldenstein, and Anderson Rocha. "Sensitive-Video Analysis." In XXX Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/ctd.2017.3466.
Full textOyucu, Saadin, and Huseyin Polat. "Online Video Content Analysis System." In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2018. http://dx.doi.org/10.1109/ismsit.2018.8567320.
Full textXu, Min, Jesse S. Jin, and Suhuai Luo. "Personalized video adaptation based on video content analysis." In the 9th International Workshop. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1509212.1509216.
Full textHe, Yun, Cheng Du, and Tao Xie. "Video object analysis for content-based video coding." In Electronic Imaging '99, edited by Kiyoharu Aizawa, Robert L. Stevenson, and Ya-Qin Zhang. SPIE, 1998. http://dx.doi.org/10.1117/12.334694.
Full textAbrams, David, and Steven McDowall. "Video Content Analysis with Effective Response." In 2007 IEEE Conference on Technologies for Homeland Security. IEEE, 2007. http://dx.doi.org/10.1109/ths.2007.370020.
Full textGranmo, Ole-Christoffer. "Parallel hypothesis driven video content analysis." In the 2004 ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/967900.968035.
Full textSakarya, Ufuk, and Ziya Telatar. "Video content analysis using dominant sets." In 2009 IEEE 17th Signal Processing and Communications Applications Conference (SIU). IEEE, 2009. http://dx.doi.org/10.1109/siu.2009.5136549.
Full textAlshuth, Peter, Thorsten Hermes, Lutz Voigt, and Otthein Herzog. "Video retrieval: content analysis by ImageMiner." In Photonics West '98 Electronic Imaging, edited by Ishwar K. Sethi and Ramesh C. Jain. SPIE, 1997. http://dx.doi.org/10.1117/12.298457.
Full textDimitrova, Nevenka, Thomas McGee, Lalitha Agnihotri, Serhan Dagtas, and Radu S. Jasinschi. "Selective video content analysis and filtering." In Electronic Imaging, edited by Minerva M. Yeung, Boon-Lock Yeo, and Charles A. Bouman. SPIE, 1999. http://dx.doi.org/10.1117/12.373567.
Full textLi, Yongjie, Weiyi Li, and Houxiang Wang. "Dynamic video summarization with content analysis." In the Fifth International Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2499788.2499845.
Full textReports on the topic "Video content analysis"
Orchard, Michael, and Robert Joyce. Content Analysis of Video Sequences. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada414069.
Full textBrumby, Steven P. Video Analysis & Search Technology (VAST): Automated content-based labeling and searching for video and images. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1133765.
Full textBaluk, Nadia, Natalia Basij, Larysa Buk, and Olha Vovchanska. VR/AR-TECHNOLOGIES – NEW CONTENT OF THE NEW MEDIA. Ivan Franko National University of Lviv, February 2021. http://dx.doi.org/10.30970/vjo.2021.49.11074.
Full textVlasenko, Kateryna V., Sergei V. Volkov, Daria A. Kovalenko, Iryna V. Sitak, Olena O. Chumak, and Alexander A. Kostikov. Web-based online course training higher school mathematics teachers. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3894.
Full textChorna, Olha V., Vita A. Hamaniuk, and Aleksandr D. Uchitel. Use of YouTube on lessons of practical course of German language as the first and second language at the pedagogical university. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3253.
Full textPikilnyak, Andrey V., Nadia M. Stetsenko, Volodymyr P. Stetsenko, Tetiana V. Bondarenko, and Halyna V. Tkachuk. Comparative analysis of online dictionaries in the context of the digital transformation of education. [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4431.
Full textGuan, Haiying, Daniel Zhou, Jonathan Fiscus, John Garofolo, and James Horan. Evaluation infrastructure for the measurement of content-based video quality and video analytics performance. Gaithersburg, MD: National Institute of Standards and Technology, July 2017. http://dx.doi.org/10.6028/nist.ir.8187.
Full textFrantseva, Anastasiya. The video lectures course "Elements of Mathematical Logic" for students enrolled in the Pedagogical education direction, profile Primary education. Frantseva Anastasiya Sergeevna, April 2021. http://dx.doi.org/10.12731/frantseva.0411.14042021.
Full textRigotti, Christophe, and Mohand-Saïd Hacid. Representing and Reasoning on Conceptual Queries Over Image Databases. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.89.
Full textRigotti, Christophe, and Mohand-Saïd Hacid. Representing and Reasoning on Conceptual Queries Over Image Databases. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.89.
Full text