Dissertations / Theses on the topic 'Viola-Jones algorithm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Viola-Jones algorithm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cöster, Jonatan, and Michael Ohlsson. "Human Attention : The possibility of measuring human attention using OpenCV and the Viola-Jones face detection algorithm." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166584.
Full textМарченко, Ігор Олександрович, Игорь Александрович Марченко, Ihor Oleksandrovych Marchenko, Сергій Олександрович Петров, Сергей Александрович Петров, and Serhii Oleksandrovych Petrov. "Модифікація алгоритму Віоли-Джонса шляхом аналізу регіонів з визначеною текстурою." Thesis, Cумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/47008.
Full textRODRIGUES, Matheus Bezerra Estrela. "Estudo da aplicação do algoritmo Viola-Jones à detecção de pneus com vistas ao reconhecimento de automóveis." Universidade Federal de Campina Grande, 2012. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1861.
Full textMade available in DSpace on 2018-10-01T15:06:04Z (GMT). No. of bitstreams: 1 MATHEUS BEZERRA ESTRELA RODRIGUES - DISSERTAÇÃO PPGCC 2012..pdf: 7068761 bytes, checksum: 4b1283a1da5ca466fcf0357c33091a30 (MD5) Previous issue date: 2012-02-29
Impulsionado pelo crescimento no uso de vigilância eletrônica, essa pesquisa introduz o uso de uma técnica que demonstra eficiência no reconhecimento de faces em imagens, alterando o objeto de busca para pneus de veículos, visando o reconhecimento da presença do veículo na cena. A técnica aplicada para o reconhecimento é o algoritmo Viola-Jones. Essa técnica é dividida em dois momentos: o treinamento e a detecção. Na primeira etapa, vários treinamentos são executados, usando aproximadamente 7000 imagens diferentes. Para a etapa final, um detector de faces foi adaptado para reconhecer pneus, utilizando o treinamento da etapa anterior, e sua eficiência em reconhecer os pneus foi comparável à eficiência do detector de faces que usa treinamento de referência da biblioteca em software que é referência nesta área, OpenCV. O detector desenvolvido apresentou taxa de reconhecimento de 77%, quando o reconhecimento de faces obteve 80%. A taxa de falsos negativos também foi próxima, apresentando o detector de pneus 2% e o de faces 1%.
Motivated by the growing use of electronic surveillance, this research introduces the use of the Viola-Jones algorithm, which is known to be efficient in recognition of human faces in images, changing the object to be recognized to vehicle tires, aiming to detect vehicles in a scene. This approach divides the process in two steps: training and detection. Training was done using around 7000 different images of vehicles. For the detection step, work was done to adapt a face detector to detect vehicles tires. The tire detector was compared to a face detector that used a reference training for faces from OpenCV library. The tire detector showed 77% efficiency, whereas the face detector showed 80%. False negative numbers also showed similar closeness, as 2% for the tire detector and 1% for the reference face detector.
Bernátek, Pavel. "Vizualizace pulzu ve videozáznamu obličeje." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242090.
Full textKrolikowski, Martin. "Automatické detekce obličeje a jeho jednotlivých částí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217286.
Full textPathare, Sneha P. "Detection of black-backed jackal in still images." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97023.
Full textENGLISH ABSTRACT: In South Africa, black-back jackal (BBJ) predation of sheep causes heavy losses to sheep farmers. Different control measures such as shooting, gin-traps and poisoning have been used to control the jackal population; however, these techniques also kill many harmless animals, as they fail to differentiate between BBJ and harmless animals. In this project, a system is implemented to detect black-backed jackal faces in images. The system was implemented using the Viola-Jones object detection algorithm. This algorithm was originally developed to detect human faces, but can also be used to detect a variety of other objects. The three important key features of the Viola-Jones algorithm are the representation of an image as a so-called ”integral image”, the use of the Adaboost boosting algorithm for feature selection, and the use of a cascade of classifiers to reduce false alarms. In this project, Python code has been developed to extract the Haar-features from BBJ images by acting as a classifier to distinguish between a BBJ and the background. Furthermore, the feature selection is done using the Asymboost instead of the Adaboost algorithm so as to achieve a high detection rate and low false positive rate. A cascade of strong classifiers is trained using a cascade learning algorithm. The inclusion of a special fifth feature Haar feature, adapted to the relative spacing of the jackal’s eyes, improves accuracy further. The final system detects 78% of the jackal faces, while only 0.006% of other image frames are wrongly identified as faces.
AFRIKAANSE OPSOMMING: Swartrugjakkalse veroorsaak swaar vee-verliese in Suid Afrika. Teenmaatreels soos jag, slagysters en vergiftiging word algemeen gebruik, maar is nie selektief genoeg nie en dood dus ook vele nie-teiken spesies. In hierdie projek is ’n stelsel ontwikkel om swartrugjakkals gesigte te vind op statiese beelde. Die Viola-Jones deteksie algoritme, aanvanklik ontwikkel vir die deteksie van mens-gesigte, is hiervoor gebruik. Drie sleutel-aspekte van hierdie algoritme is die voorstelling van ’n beeld deur middel van ’n sogenaamde integraalbeeld, die gebruik van die ”Adaboost” algoritme om gepaste kenmerke te selekteer, en die gebruik van ’n kaskade van klassifiseerders om vals-alarm tempos te verlaag. In hierdie projek is Python kode ontwikkel om die nuttigste ”Haar”-kenmerke vir die deteksie van dié jakkalse te onttrek. Eksperimente is gedoen om die nuttigheid van die ”Asymboost” algoritme met die van die ”Adaboost” algoritme te kontrasteer. ’n Kaskade van klassifiseerders is vir beide van hierdie tegnieke afgerig en vergelyk. Die resultate toon dat die kenmerke wat die ”Asymboost” algoritme oplewer, tot laer vals-alarm tempos lei. Die byvoeging van ’n spesiale vyfde tipe Haar-kenmerk, wat aangepas is by die relatiewe spasieëring van die jakkals se oë, verhoog die akkuraatheid verder. Die uiteindelike stelsel vind 78% van die gesigte terwyl slegs 0.006% ander beeld-raampies verkeerdelik as gesigte geklassifiseer word.
Brunclík, Robert. "Automatická regulace velikosti písma podle vzdálenosti čtenáře." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-241995.
Full textТарановський, Антон Володимирович, Антон Владимирович Тарановский, Anton Volodymyrovych Taranovskyi, Сергій Олександрович Петров, Сергей Александрович Петров, and Serhii Oleksandrovych Petrov. "Визначення оптимальних параметрів вхідного зображення на характеристики розпізнавання з використанням алгоритму Віола-Джонса." Thesis, Видавництво СумДУ, 2013. http://essuir.sumdu.edu.ua/handle/123456789/42602.
Full textМарченко, Ігор Олександрович, Сергій Олександрович Петров, Сергей Александрович Петров, Serhii Oleksandrovych Petrov, Игорь Александрович Марченко, and Ihor Oleksandrovych Marchenko. "Підвищення якості розпізнавання алгоритму Віоли-Джонса шляхом попередньої обробки зображень." Thesis, Видавництво ПНПУ ім. К.Д. Ушинського, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42803.
Full textРассмотрены возможные оптимизации алгоритма Виолы-Джонса без модификации базового алгоритма. С целью повышения качества распознавания предложено выполнять предварительную обработку изображения с помощью фильтров, таких как, яркость, контраст. В результате качество распознавания повысилось на 37,39%.
The paper showed improving of the detection rate without modifying the base algorithm. Detection rate improved by decreasing defects on the image. Changing brightness and contrast is one way to modify an image. The detection rate increased by 37.39%.
Chmelíková, Lucie. "Bezkontaktní měření tepové frekvence z obličeje." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-241972.
Full textHusain, Benafsh Nadir. "Face Detection And Lip Localization." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/601.
Full textKorchakov, Sergei. "Zpracování obrazu v systému Android - detekce a rozpoznání obličeje." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220900.
Full textAssaad, Firas Souhail. "Biometric Multi-modal User Authentication System based on Ensemble Classifier." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418074931.
Full textBenda, Ondřej. "Návrh rozhodovacích stromů na základě evolučních algoritmů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219457.
Full textAl-Dahoud, A., and Hassan Ugail. "A method for location based search for enhancing facial feature design." 2016. http://hdl.handle.net/10454/9482.
Full textIn this paper we present a new method for accurate real-time facial feature detection. Our method is based on local feature detection and enhancement. Previous work in this area, such as that of Viola and Jones, require looking at the face as a whole. Consequently, such approaches have increased chances of reporting negative hits. Furthermore, such algorithms require greater processing power and hence they are especially not attractive for real-time applications. Through our recent work, we have devised a method to identify the face from real-time images and divide it into regions of interest (ROI). Firstly, based on a face detection algorithm, we identify the face and divide it into four main regions. Then, we undertake a local search within those ROI, looking for specific facial features. This enables us to locate the desired facial features more efficiently and accurately. We have tested our approach using the Cohn-Kanade’s Extended Facial Expression (CK+) database. The results show that applying the ROI has a relatively low false positive rate as well as provides a marked gain in the overall computational efficiency. In particular, we show that our method has a 4-fold increase in accuracy when compared to existing algorithms for facial feature detection.
Candra, Henry. "Emotion recognition using facial expression and electroencephalography features with support vector machine classifier." Thesis, 2017. http://hdl.handle.net/10453/116427.
Full textRecognizing emotions from facial expression and electroencephalography (EEG) emotion signals are complicated tasks that require substantial issues to be solved in order to achieve higher performance of the classifications, i.e. facial expression has to deal with features, features dimensionality, and classification processing time, while EEG emotion recognition has the concerned with features, number of channels and sub band frequency, and also non-stationary behaviour of EEG signals. This thesis addresses the aforementioned challenges. First, a feature for facial expression recognition using a combination of Viola-Jones algorithm and improved Histogram of Oriented Gradients (HOG) descriptor termed Edge-HOG or E–HOG is proposed which has the advantage of insensitivity to lighting conditions. The issue of dimensionality and classification processing time was resolved using a combination of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which has successfully reduced both the dimension and the classification processing time resulting in a new low dimension of feature called Reduced E–HOG (RED E–HOG). In the case of EEG emotion recognition, a method to recognize 4 discrete emotions from arousal-valence dimensional plane using wavelet energy and entropy features was developed. The effects of EEG channel and subband selection were also addressed, which managed to reduce the channels from 32 to 18 channels and the subband from 5 to 3 bands. To deal with the non-stationary behaviour of EEG signals, an Optimal Window Selection (OWS) method as feature-agnostic pre-processing was proposed. The main objective of OWS is window segmentation with varying window which was applied to 7 various features to improve the classification results of 4 dimensional plane emotions, namely arousal, valence, dominance, and liking, to distinguish between the high or low state of the aforementioned emotions. The improvement of accuracy makes the OWS method a potential solution to dealing with the non-stationary behaviour of EEG signals in emotion recognition. The implementation of OWS provides the information that the EEG emotions may be appropriately localized at 4–12 seconds time segments. In addition, a feature concatenating of both Wavelet Entropy and average Wavelet Approximation Coefficients was developed for EEG emotion recognition. The SVM classifier trained using this feature provides a higher classification result consistently compared to various different features such as: simple average, Fast Fourier Transform (FFT), and Wavelet Energy. In all the experiments, the classification was conducted using optimized SVM with a Radial Basis Function (RBF) kernel. The RBF kernel parameters were properly optimized using a particle swarm ensemble clustering algorithm called Ensemble Rapid Centroid Estimation (ERCE). The algorithm estimates the number of clusters directly from the data using swarm intelligence and ensemble aggregation. The SVM is then trained using the optimized RBF kernel parameters and Sequential Minimal Optimization (SMO) algorithm.
Ferreira, Sónia Maria Gomes de Amaral. "Assisted analysis of ocular movements in the parameterization of cochlear implants." Master's thesis, 2011. http://hdl.handle.net/10316/17608.
Full text