Academic literature on the topic 'Viral fusion protein'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Viral fusion protein.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Viral fusion protein"
Benhaim, Mark A., and Kelly K. Lee. "New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes." Viruses 12, no. 4 (April 8, 2020): 413. http://dx.doi.org/10.3390/v12040413.
Full textValansi, Clari, David Moi, Evgenia Leikina, Elena Matveev, Martín Graña, Leonid V. Chernomordik, Héctor Romero, Pablo S. Aguilar, and Benjamin Podbilewicz. "Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens." Journal of Cell Biology 216, no. 3 (January 30, 2017): 571–81. http://dx.doi.org/10.1083/jcb.201610093.
Full textWebb, Stacy R., Stacy E. Smith, Michael G. Fried, and Rebecca Ellis Dutch. "Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro." mSphere 3, no. 2 (April 18, 2018): e00047-18. http://dx.doi.org/10.1128/msphere.00047-18.
Full textStiasny, Karin, and Franz X. Heinz. "Flavivirus membrane fusion." Journal of General Virology 87, no. 10 (October 1, 2006): 2755–66. http://dx.doi.org/10.1099/vir.0.82210-0.
Full textWessels, Laura, and Keith Weninger. "Physical Aspects of Viral Membrane Fusion." Scientific World JOURNAL 9 (2009): 764–80. http://dx.doi.org/10.1100/tsw.2009.76.
Full textWestenberg, Marcel, Frank Veenman, Els C. Roode, Rob W. Goldbach, Just M. Vlak, and Douwe Zuidema. "Functional Analysis of the Putative Fusion Domain of the Baculovirus Envelope Fusion Protein F." Journal of Virology 78, no. 13 (July 1, 2004): 6946–54. http://dx.doi.org/10.1128/jvi.78.13.6946-6954.2004.
Full textJain, Surbhi, Lori W. McGinnes, and Trudy G. Morrison. "Thiol/Disulfide Exchange Is Required for Membrane Fusion Directed by the Newcastle Disease Virus Fusion Protein." Journal of Virology 81, no. 5 (December 6, 2006): 2328–39. http://dx.doi.org/10.1128/jvi.01940-06.
Full textZhao, Yi, Lunjian Zhu, Chris A. Benedict, Dagang Chen, W. French Anderson, and Paula M. Cannon. "Functional Domains in the Retroviral Transmembrane Protein." Journal of Virology 72, no. 7 (July 1, 1998): 5392–98. http://dx.doi.org/10.1128/jvi.72.7.5392-5398.1998.
Full textRey, Félix. "The C. Elegans fusion protein EFF-1 is homologous to viral class II proteins." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1593. http://dx.doi.org/10.1107/s205327331408406x.
Full textJackson, Julia O., and Richard Longnecker. "Reevaluating Herpes Simplex Virus Hemifusion." Journal of Virology 84, no. 22 (September 15, 2010): 11814–21. http://dx.doi.org/10.1128/jvi.01615-10.
Full textDissertations / Theses on the topic "Viral fusion protein"
Webb, Stacy. "Viral Fusion Protein TM-TM Interactions: Modulators of Protein Function and Potential Antiviral Targets." UKnowledge, 2017. http://uknowledge.uky.edu/biochem_etds/30.
Full textWallin, Michael. "Fusion activation in murine leukemia virus /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-748-0/.
Full textLounsbach, Gillian Ruth. "Expression and epitopic analysis of the respiratory syncytial virus fusion protein in Escherichia coli." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384807.
Full textChapman, Amanda Ruth. "Regulation of the human parainfluenza virus (hPIV3) fusion protein." View the abstract Download the full-text PDF version, 2008. http://etd.utmem.edu/ABSTRACTS/2008-048-Chapman-index.htm.
Full textTitle from title page screen (viewed on January 6, 2009). Research advisor: Charles J. Russell, Ph.D. Document formatted into pages (ix, 41p. : ill.). Vita. Abstract. Includes bibliographical references (p. 38-41).
Corey, Elizabeth Ann. "Characterization of the Relationship Between Measles Virus Fusion, Receptor Binding, and the Virus-Specific Interaction Between the Hemagglutinin and Fusion Glycoproteins: a Dissertation." eScholarship@UMMS, 2006. https://escholarship.umassmed.edu/gsbs_diss/221.
Full textChang, Andres. "EARLY EVENTS OF HUMAN METAPNEUMOVIRUS INFECTION." UKnowledge, 2012. http://uknowledge.uky.edu/biochem_etds/5.
Full textMelanson, Vanessa R. "Characterization of the Interaction Between the Attachment and Fusion Glycoproteins Required for Paramyxovirus Fusion: a Dissertation." eScholarship@UMMS, 2005. https://escholarship.umassmed.edu/gsbs_diss/24.
Full textAlamares, Judith G. "Newcastle Disease Virus Virulence: Mechanism of the Interferon Antagonistic Activity of the V Protein and Characterization of a Putative Virulence-Specific Antibody to the Attachment Protein: a dissertation." eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/372.
Full textCravo, Haroldo de Lima Pimentel. "Modelagem molecular da interação entre a proteína de fusão do vírus sincicial respiratório humano e inibidores da ação viral. -." São José do Rio Preto : [s.n.], 2012. http://hdl.handle.net/11449/87527.
Full textBanca: Karina Alves de Toledo
Banca: José Roberto Ruggiero
Resumo: O Vírus Sincicial Respiratório Humano (hRSV) foi identificado em 1957 e mesmo após vários anos de investigação, nenhuma vacina foi desenvolvida. Acredita-se que a chave de inibição da ação viral são suas glicoproteínas de membrana, em especial a proteína de fusão (F), que com auxílio da proteína de ligação (G), é responsável pela instalação do hRSV na célula hospedeira. Há evidências experimentais de que compostos como flavonóides e glicosaminoglicanos podem diminuir a infecção viral, sendo então a proteína F um bom alvo para a ação destes compostos. O presente estudo utilizou de ferramentas de bioinformática para verificar as possíveis regiões de interação da proteína F com a Heparina Sulfatada e Flavonóides. Os programas de bioinformática foram utilizados para: modelagem dos compostos, caracterização e previsão da estrutura secundária da proteína, modelagem da estrutura terciária e docking molecular entre o modelo da proteína F e as estruturas tridimensionais dos Flavonóides e da Heparina Sulfatada. Modelos válidos foram obtidos para as estruturas tridimensionais dos flavonóides e para o modelo completo da proteína F. As características da proteína incluem um alto nível de conservação na seqüência de aminoácidos e, especialmente, em seus sítios de ligação. O docking da proteína com a Heparina, e o virtual screening da biblioteca de Flavonóides e a estrutura da proteína, resultaram em sítios de interação com grande potencial de inibição, uma vez que concordam com evidências experimentais descritos na literatura. A Heparina liga-se ao sítio de clivagem II, importante região para obtenção da atividade de fusão da proteína. Os Flavonóides podem se ligar a região hidrofóbica que desestabiliza... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Human Respiratory Syncytial Virus (hRSV) was identified in 1957 and even after several years of research, no vaccine has been developed yet. It is believed that the key to the inhibition of viral action is its membrane glycoproteins, including the Fusion Protein (F), responsible for the installation of the hRSV in the host cell. There are evidences that compounds such as flavonoids and glycosaminoglycans can decrease the viral infection, and F protein can be a good target for the action of these compounds. The present study checked the possible sites of interaction between F protein and heparin and flavonoids, using computational tools. Bioinformatics programs were used for: modeling compounds, characterization and prediction of protein secondary structure, tertiary structure modeling and the docking between the protein model and the structures of flavonoids and sulfated heparin. Valid models were obtained for flavonoids structures and the complete model of F protein. The characteristics of the protein include a high level of conservation in amino acid sequence and especially in its binding sites. The heparin docking and virtual screening of flavonoids resulted in interaction sites with great potential for inhibition, since they agree with other studies and experimental evidence of F protein inhibition. This study shows that compounds such as sulfated heparin and flavonoids interact in important sites of F protein. Heparin binds to the cleavage site II and flavonoids can bind to the hydrophobic site that destabilizes the formation of the six-helix-bundle region. Both regions are important for conformational changes that F protein undergoes to get its fusion activity. Docking showed that molecular interactions are likely to occur and selected the best candidates for a possible inhibitor. These evidences... (Complete abstract click electronic access below)
Mestre
Cravo, Haroldo de Lima Pimentel [UNESP]. "Modelagem molecular da interação entre a proteína de fusão do vírus sincicial respiratório humano e inibidores da ação viral. -." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/87527.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O Vírus Sincicial Respiratório Humano (hRSV) foi identificado em 1957 e mesmo após vários anos de investigação, nenhuma vacina foi desenvolvida. Acredita-se que a chave de inibição da ação viral são suas glicoproteínas de membrana, em especial a proteína de fusão (F), que com auxílio da proteína de ligação (G), é responsável pela instalação do hRSV na célula hospedeira. Há evidências experimentais de que compostos como flavonóides e glicosaminoglicanos podem diminuir a infecção viral, sendo então a proteína F um bom alvo para a ação destes compostos. O presente estudo utilizou de ferramentas de bioinformática para verificar as possíveis regiões de interação da proteína F com a Heparina Sulfatada e Flavonóides. Os programas de bioinformática foram utilizados para: modelagem dos compostos, caracterização e previsão da estrutura secundária da proteína, modelagem da estrutura terciária e docking molecular entre o modelo da proteína F e as estruturas tridimensionais dos Flavonóides e da Heparina Sulfatada. Modelos válidos foram obtidos para as estruturas tridimensionais dos flavonóides e para o modelo completo da proteína F. As características da proteína incluem um alto nível de conservação na seqüência de aminoácidos e, especialmente, em seus sítios de ligação. O docking da proteína com a Heparina, e o virtual screening da biblioteca de Flavonóides e a estrutura da proteína, resultaram em sítios de interação com grande potencial de inibição, uma vez que concordam com evidências experimentais descritos na literatura. A Heparina liga-se ao sítio de clivagem II, importante região para obtenção da atividade de fusão da proteína. Os Flavonóides podem se ligar a região hidrofóbica que desestabiliza...
Human Respiratory Syncytial Virus (hRSV) was identified in 1957 and even after several years of research, no vaccine has been developed yet. It is believed that the key to the inhibition of viral action is its membrane glycoproteins, including the Fusion Protein (F), responsible for the installation of the hRSV in the host cell. There are evidences that compounds such as flavonoids and glycosaminoglycans can decrease the viral infection, and F protein can be a good target for the action of these compounds. The present study checked the possible sites of interaction between F protein and heparin and flavonoids, using computational tools. Bioinformatics programs were used for: modeling compounds, characterization and prediction of protein secondary structure, tertiary structure modeling and the docking between the protein model and the structures of flavonoids and sulfated heparin. Valid models were obtained for flavonoids structures and the complete model of F protein. The characteristics of the protein include a high level of conservation in amino acid sequence and especially in its binding sites. The heparin docking and virtual screening of flavonoids resulted in interaction sites with great potential for inhibition, since they agree with other studies and experimental evidence of F protein inhibition. This study shows that compounds such as sulfated heparin and flavonoids interact in important sites of F protein. Heparin binds to the cleavage site II and flavonoids can bind to the hydrophobic site that destabilizes the formation of the six-helix-bundle region. Both regions are important for conformational changes that F protein undergoes to get its fusion activity. Docking showed that molecular interactions are likely to occur and selected the best candidates for a possible inhibitor. These evidences... (Complete abstract click electronic access below)
Books on the topic "Viral fusion protein"
Book chapters on the topic "Viral fusion protein"
Doms, Robert W., and Ari Helenius. "Properties of a Viral Fusion Protein." In Molecular Mechanisms of Membrane Fusion, 385–98. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1659-6_28.
Full textModis, Yorgo. "Class II Fusion Proteins." In Viral Entry into Host Cells, 150–66. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7651-1_8.
Full textSchlegel, Richard. "Probing the Function of Viral Fusion Proteins with Synthetic Peptides." In Cell Fusion, 33–43. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9598-1_2.
Full textBackovic, Marija, and Theodore S. Jardetzky. "Class III Viral Membrane Fusion Proteins." In Advances in Experimental Medicine and Biology, 91–101. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0782-5_3.
Full textEarp, L. J., S. E. Delos, H. E. Park, and J. M. White. "The Many Mechanisms of Viral Membrane Fusion Proteins." In Current Topics in Microbiology and Immunology, 25–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/3-540-26764-6_2.
Full textZoltick, Philip W., Julian L. Leibowitz, James DeVries, Catherine J. Pachuk, and Susan R. Weiss. "Detection of Mouse Hepatitis Virus Nonstructural Proteins Using Antisera Directed Against Bacterial Viral Fusion Proteins." In Advances in Experimental Medicine and Biology, 291–99. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5823-7_40.
Full textHoffmann, S. R. K., L. Bisset, J. Schüpbach, and B. Gutte. "Passive Repression of HIV-1 Long Terminal Repeat Enhancer Controlled Viral Transcription in HIV-1 Infected Cells by Cationic DNA-Binding Fusion Proteins." In Peptides: The Wave of the Future, 988–89. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_461.
Full textHoffmann, Stefan R. K. "Down-Regulation of HIV-1 Long Terminal Repeat Controlled Viral Transcription by DNA-Binding, Arginine-Rich Fusion Proteins Derived from HIV-1 TAT for the Direct Delivery into the Nucleus." In Peptides: The Wave of the Future, 940–41. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_438.
Full textRay, Sujay, and Arundhati Banerjee. "In Silico Perspective into Interactions and Mutations in Human TLR4 and Ebola Glycoprotein." In Advances in Medical Technologies and Clinical Practice, 209–31. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0362-0.ch008.
Full textELLENS, HARMA, STEPHEN DOXSEY, JEFFREY S. GLENN, and JUDITH M. WHITE. "Delivery of Macromolecules into Cells Expressing a Viral Membrane Fusion Protein." In Laboratory Methods in Vesicular and Vectorial Transport, 109–30. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-12-683755-1.50013-2.
Full textReports on the topic "Viral fusion protein"
Avdjieva, Irena, Ivan Terziyski, Gergana Zahmanova, Valeria Simeonova, Ognyan Kulev, Evgeny Krustev, Milko Krachunov, Maria Nisheva, and Dimitar Vassilev. Homology Based Computational Modelling of Hepatitis-E Viral Fusion Capsid Protein. Balkan, Black sea and Caspian sea Regional Network for Space Weather Studies, March 2019. http://dx.doi.org/10.7546/crabs.2019.03.10.
Full text