Academic literature on the topic 'Virtual and augmented reality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virtual and augmented reality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Virtual and augmented reality"

1

Jha, Pratibha, and Sapna Yadav. "Virtual and Augmented Reality: An Overview." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (2019): 1393–97. http://dx.doi.org/10.31142/ijtsrd23351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mujumdar, Omkar. "Augmented Reality." International Journal for Research in Applied Science and Engineering Technology 10, no. 12 (2022): 487–95. http://dx.doi.org/10.22214/ijraset.2022.47902.

Full text
Abstract:
Abstract: Imagine a world with a technology that creates the 3 dimensional images of a virtual object around you with which you can interact, see, hear, smell, and even touch it. Technologies such as computer graphics, virtual reality, and augmented reality together can be used to implement this in real world. Augmented reality actually superimposes virtual objects into the real environment with the real objects for enriching the viewer’s experience Augmented reality with virtual reality in virtual space, also enhances the audience perception by displaying additional information. In this survey we present the different technologies that are involved in the implementation of augmented reality. These technologies are displays which are used for displaying or combining the virtual object by the real environment, tracking or gesture recognition helps in real time interaction part while the modelling is used to register the objects into 3D for enhancing the quality and perception of the viewer.
APA, Harvard, Vancouver, ISO, and other styles
3

Knoll, Matthias, and Stefan Stieglitz. "Augmented Reality und Virtual Reality." HMD Praxis der Wirtschaftsinformatik 59, no. 1 (2022): 1–5. http://dx.doi.org/10.1365/s40702-022-00841-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raajan, N. R., S. Suganya, M. V. Priya, et al. "Augmented Reality Based Virtual Reality." Procedia Engineering 38 (2012): 1559–65. http://dx.doi.org/10.1016/j.proeng.2012.06.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Järvelä, Simo, Benjamin Cowley, Mikko Salminen, Giulio Jacucci, Juho Hamari, and Niklas Ravaja. "Augmented Virtual Reality Meditation." ACM Transactions on Social Computing 4, no. 2 (2021): 1–19. http://dx.doi.org/10.1145/3449358.

Full text
Abstract:
In a novel experimental setting, we augmented a variation of traditional compassion meditation with our custom-built VR environment for multiple concurrent users. The presence of another user’s avatar in shared virtual space supports social interactions and provides an active target for evoked compassion. The system incorporates respiration and brainwave-based biofeedback to enable closed-loop interaction of users based on their shared physiological state. Specifically, we enhanced interoception and the deep empathetic processes involved in compassion meditation with real-time visualizations of: breathing rate, level of approach motivation assessed from EEG frontal asymmetry, and dyadic synchrony of those signals between two users. We manipulated these interventions across eight separate conditions (dyadic or solo meditation; brainwave, breathing, both or no biofeedback) in an experiment with 39 dyads (N=8), observing the effect of conditions on self-reported experience and physiological synchrony. We found that each different shared biofeedback type increased users’ self-reported empathy and social presence, compared to no-biofeedback or solo conditions. Our study illustrates how dyadic synchrony biofeedback can expand the possibilities of biofeedback in affective computing and VR solutions for health and wellness.
APA, Harvard, Vancouver, ISO, and other styles
6

Interrante, Victoria, Tobias Hollerer, and Anatole Lecuyer. "Virtual and Augmented Reality." IEEE Computer Graphics and Applications 38, no. 2 (2018): 28–30. http://dx.doi.org/10.1109/mcg.2018.021951630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hong, Jaesung. "Medical Augmented Reality and Virtual Reality." Journal of the Korean Society of Radiology 80, no. 2 (2019): 226. http://dx.doi.org/10.3348/jksr.2019.80.2.226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mortensen, Neil. "Virtual reality, augmented reality, and perception." Bulletin of the Royal College of Surgeons of England 97, no. 10 (2015): 413. http://dx.doi.org/10.1308/rcsbull.2015.413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hughes, Ian. "Virtual worlds, augmented reality, blended reality." Computer Networks 56, no. 18 (2012): 3879–85. http://dx.doi.org/10.1016/j.comnet.2012.09.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paliling, Alders. "Katalog Penjualan Rumah Berbasis Android Menggunakan Teknologi Augmented Reality dan Virtual Reality." Techno.Com 16, no. 1 (2017): 35–46. http://dx.doi.org/10.33633/tc.v16i1.1300.

Full text
Abstract:
Penerapan teknologi augmented reality kian diminati oleh pihak produsen untuk memasarkan produk yang dihasilkan. Teknologi augmented reality mampu meproyeksikan objek dua dimensi ataupun tiga dimensi kedalam lingkungan nyata. Teknologi virtual reality mampu membawa pengguna masuk kedalam lingkungan virtual sehingga pengguna merasa berada dalam lingkungan virtual. Penelitian ini menggunakan teknologi augmented reality yang mampu memproyeksikan objek tiga dimensi rumah sehingga katalog menjadi lebih nyata, dan teknologi virtual reality yang membuat pengguna berinteraksi langsung dengan objek tiga dimensi rumah dan merasa berada di dalam rumah. Aplikasi yang dibangun memanfaatkan sensor accelerometer yang tertanam dalam perangkat mobile android yang memungkinkan pengguna melihat seisi ruangan dengan memiringkan perangkat mobile android kekiri dan kekanan. Jumlah kamera virtual yang digunakan berjumlah lima yang diletakkan di ruang tamu, ruang keluarga, ruang kamar utama, ruang kamar anak, dan ruang dapur. Aplikasi ini berjalan pada platform android dan menggunakan personal komputer sebagai server yang menyimpan data informasi rumah. Dengan adanya aplikasi ini pengguna dapat merasakan suasana berbeda dalam melihat sebuah katalog. . Kata kunci—Augmentd Reality, Virtual Reality, Katalog, Android
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Virtual and augmented reality"

1

Zabara, M., Інна Олексіївна Зайцева, Инна Алексеевна Зайцева, and Inna Oleksiivna Zaitseva. "Virtual and augmented reality." Thesis, Sumy State University, 2020. https://essuir.sumdu.edu.ua/handle/123456789/77882.

Full text
Abstract:
What is virtual and augmented reality? First of all, for a better understating what these two terms mean let me give you a definition. Virtual reality – is a simulated experience that can even be out of this world. When augmented reality is some addons to your life. Examples of virtual reality would be you with the help of technology to go out of this world (basically it has no effect on your real life). Examples of augmented reality can be some devices that would give you the opportunity to effect things in the real world.
APA, Harvard, Vancouver, ISO, and other styles
2

Seichter, Hartmut. "Augmented reality aided design." Thesis, View the Table of Contents & Abstract, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38289052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gharibjanian, Varag I. "Characterizing the augmented & virtual reality industry." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113535.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2017.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 77-81).<br>The information age has included several computing platforms and interfaces to enable humanity. Each computing platform has had its capabilities and limitations. From mainframe computers to personal computers, and now to smartphones, we have seen a revolution in computing that has had several advantages for society, in spaces from education to healthcare. However, these devices have their limitations and their innovation is becoming incremental. The growth of data and content, along with the insatiable demand to view and analyze it and content - calls for a new platform that can enable such experiences. There have been several candidates for such interfaces, but none of them have the promise of Augmented Reality (AR) or Virtual Reality (VR) today. These technology candidates, although in the spotlight now, have had several waves before, unfortunately with very limited success. This time, however, the outcome seems poised to be different. Smartphone technology, particularly displays, processors, and other microchips, along with wireless technology have increased capabilities and driven costs down dramatically, enabling some of the core components of Augmented and Virtual Reality (ARNR). Industry players, including venture capitalists, engineers, sales and marketing, consultants, and others have begun gathering data on this emerging industry. However, there has been little synthesis thus far, nor a comprehensive view that seeks to harmonize these data points to clearly describe the state of the industry as a whole and its likely future. Furthermore, little analysis has been done to analyze the industry with management related academic studies of the past. Using several different types of data, analysis, and projections, the paper shows that although Augmented Reality and Virtual Reality have begun to show genuine benefits over traditional computing platforms, the behavioral change required for its evolution in to a mainstream general purpose computing platform is still significant. This makes AR/VR great for enterprise use cases, such as construction, field work and training, but limited in day to day consumer computing. With this analysis we can also identify high and low value market segments and use cases within the industries, prognosticate the evolution of different platform architectures or types of AR/VR, and begin to outline the implications for various stakeholders within the industry, such as Venture Capitalists.<br>by Varag I. Gharibjanian.<br>S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
4

Sadovska. "VIRTUAL AND AUGMENTED REALITY: CHALLENGES AND PERSPECTIVES." Thesis, Київ 2018, 2018. http://er.nau.edu.ua/handle/NAU/33895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mögel, Jens. "Virtual Reality und Augmented Reality als Werkzeug in der Aufstellplanung." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215197.

Full text
Abstract:
Aus Einleitung und Motivation "Die gegenwärtigen Entwicklungen von Head-Mounted Displays (HMD, hier synonym auch als Brille bezeichnet) für Virtual Reality (VR) und Augmented Reality (AR) schaffen ein nie da gewesenes Potential dieser Technologien als Werkzeuge in der Produktentwicklung. Wenngleich VR- und ARAnwendungen keineswegs neu in der Industrie sind, bringt der Fortschritt der Verbraucher-HMDs völlig neue Möglichkeiten. Immersive VR-Systeme bedeuten künftig keine hunderttausend Euro Anschaffung mehr – AR-Brillen dienen zukünftig nicht nur der Erweiterung der Realität mit zweidimensionalen Informationen. Cave Automatic Virtual Environments (CAVE), 360-Grad-Projektoren und interaktive Planungstische sind in der Fabrikplanung teilweise etabliert (Runde et al. 2015). Im Unterschied zu diesen Techniken können HMDs jedoch eine deutlich höhere Immersion ermöglichen, was auch für die Interaktion mit der virtuellen Umgebung von Vorteil sein kann. Das Gefühl der Immersion ist wichtig, um in bestimmten Entwicklungsphasen entsprechende Kriterien besser beurteilen zu können. Primär ist der VR-Einsatz für Bewertungsmerkmale sinnvoll, welche nur qualitativ und nicht quantitativ bewertbar sind (Pawellek 2014). Des Weiteren spielt auch die Eingabetechnologie eine essenzielle Rolle. Um mit virtuellen Elementen interagieren zu können, sollte das Eingabegerät echtzeitfähig und intuitiv sein. ..."
APA, Harvard, Vancouver, ISO, and other styles
6

Titoff, Anton. "Augmented reality & virtual reality som studiehjälpmedel inom naturvetenskapliga ämnen." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kandikonda, Keerthi. "Using Virtual Reality and Augmented Reality to Teach Human Anatomy." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302096342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lundqvist, Oscar. "Virtuell ljussättning inom Augmented Reality : Semi-automatisk ljushantering för ökad upplevd realism." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71523.

Full text
Abstract:
Denna studie avser att undersöka hur ökad upplevd realism kan uppnås i Augmented Reality (AR) applikationer, genom ökad användarinteraktion med utvalda, virtuella ljusparametrar. Den teoretiska referensramen omfattas av övergripande teorier kopplade till AR men även mer djupgående forskning kring virtuell ljussättning och ljusparametrar. I en domän där automatiserade lösningar för virtuell ljussättning dominerar, ämnar denna studie påvisa bristerna med automatisk hantering av virtuellt ljus och istället motivera en lösning av semi-automatisk karaktär. Studien avser även att söka svaret på vilken utav utvalda ljusparametrar som haft störst inverkan i åtagandet att öka upplevd realism. Med Action Design Research (ADR) som huvudsaklig forskningsmetod, utvecklas ett grundläggande tillägg till en befintlig AR applikation i nära samarbete med företaget Neava. Applikationstillägget möjliggör manuell justering av det virtuella ljusets riktning, intensitet och färgtemperatur. Applikationstillägget testas sedan av befintliga användare under observation, därefter besvarar användaren en enkät grundad i testet, där jämförelse mellan befintlig applikation och applikationstillägg är temat. Insamlade observations- och enkätdata sätts i centrum för analys med avsikt att förklara relevanta fenomen och mönster, kopplade till upplevd realism. Studien finner att det utvecklade applikationstillägget i 90% av fallen genererar en ökad upplevd realism. Vidare finner studien att den virtuella ljusparameter som bidragit mest till ökad realism är ljusriktning, efterföljt av ljusintensitet och den minst bidragande visar sig vara färgtemperatur. De slutsatser som dras i studien formuleras och presenteras avslutningsvis i form av en oberoende lista designprinciper.<br>The purpose of this study is to examine how an improved level of experienced realism could be achieved in Augmented Reality (AR) applications, by allowing increased user interaction with a chosen set of virtual lighting parameters. The theoretical foundation of this thesis is both concerned with surveys and literature reviews of AR in general but also virtual lighting and lighting parameters to a significant extent. In contrast to the majority of previous research, where estimating and managing virtual lighting is done automatically, this study suggests that a semi-automatic approach might be better suited in delivering improved levels of experienced realism. Through the course of this thesis it is also intended to evaluate which of the chosen lighting parameters that has had the greatest impact in achieving improved experienced realism. Action Design Research (ADR) is applied as the core research methodology and in collaboration with the company Neava, an addon for an existing AR application is developed. This addon enables manual adjustments of virtual light direction, intensity and color temperature. The addon is tested by users of the existing application under observation, afterwards the testers answer a brief survey concerning the test, where a comparison between existing application and addon is made. Data gathered from both the observations and the surveys are then subjects of an analysis, where different phenomena and findings regarding improved experienced realism is the focus. The study finds that roughly 90% of the testers did indeed experience an improved level of realism, using the semi-automatic addon. Furthermore the study finds that the virtual lighting parameter most effective in achieving this is light direction, followed by light intensity and least effective in the effort is color temperature. The conclusions made of this study are finally presented in the form of a list of design principles.
APA, Harvard, Vancouver, ISO, and other styles
9

Stelzer, Ralph, Bernhard Saske, and Erik Steindecker. "Kombinierter Einsatz von Augmented Reality in virtuellen Umgebungen." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-228825.

Full text
Abstract:
Virtual Reality (VR) und Augmented Reality (AR) sind innovative Technologien, die in der modernen Entwicklung, Herstellung und Nutzung von Produkten zum Einsatz kommen. Bisher werden beide Technologien nicht gemeinsam genutzt, obwohl eine Kombination in bestimmten Fällen erhebliches Potenzial zur Kosteneinsparung besitzt. Die VR-Technologie wird vorrangig In der Produktentwicklung eingesetzt um Kosten für physische Prototypen einzusparen. Bei der Montage oder der Wartung komplexer Produkte hingegen kommt die AR-Technologie zum Einsatz. Dabei wird der Servicetechniker durch Arbeitsunterlagen, die über ein Display in sein Sichtfeld projiziert werden, bei seiner Tätigkeit unterstützt. Um die Qualität der Arbeitsunterlagen für AR-Systeme schon während der Produktentwicklung zu sichern und einen Schulungsvorlauf beim Servicepersonal zu erreichen, ist die Evaluierung dieser Arbeitsunterlagen bereits am virtuellen Prototyp eines künftigen Produktes sinnvoll. Mit der Kombination von AR und VR Technologie in einem integrierten System sollen für diesen Ansatz die Voraussetzung geschaffen werden. Der Beitrag beschreibt die notwendigen Grundlagen und stellt die Entwicklung eines Systems vor, welches die Wahrnehmung von AR-Informationen am virtuellen Prototyp ermöglicht. Anhand eines gewählten Wartungsszenarios wird das notwendige Vorgehen zum Erstellen von virtuellen Prototyp und AR-Arbeitsunterlagen erläutert und Gestaltungsparameter beschrieben. Basierend auf diesem Szenario wird das entwickelte System in einer Benutzerstudie getestet und Vorschläge für die weitere Entwicklung abgeleitet.
APA, Harvard, Vancouver, ISO, and other styles
10

Stafford-Fraser, James Quentin. "Video-augmented environments." Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/272415.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Virtual and augmented reality"

1

tom Dieck, M. Claudia, Timothy H. Jung, and Sandra M. C. Loureiro, eds. Augmented Reality and Virtual Reality. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68086-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

tom Dieck, M. Claudia, and Timothy Jung, eds. Augmented Reality and Virtual Reality. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06246-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bourdot, Patrick, Victoria Interrante, Regis Kopper, Anne-Hélène Olivier, Hideo Saito, and Gabriel Zachmann, eds. Virtual Reality and Augmented Reality. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62655-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jung, Timothy, and M. Claudia tom Dieck, eds. Augmented Reality and Virtual Reality. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64027-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jung, Timothy, M. Claudia tom Dieck, and Philipp A. Rauschnabel, eds. Augmented Reality and Virtual Reality. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37869-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barbic, Jernej, Mirabelle D'Cruz, Marc Erich Latoschik, Mel Slater, and Patrick Bourdot, eds. Virtual Reality and Augmented Reality. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72323-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bourdot, Patrick, Victoria Interrante, Luciana Nedel, Nadia Magnenat-Thalmann, and Gabriel Zachmann, eds. Virtual Reality and Augmented Reality. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31908-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bourdot, Patrick, Sue Cobb, Victoria Interrante, Hirokazu kato, and Didier Stricker, eds. Virtual Reality and Augmented Reality. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01790-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arnaldi, Bruno, Pascal Guitton, and Guillaume Moreau, eds. Virtual Reality and Augmented Reality. John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119341031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Paolis, Lucio Tommaso, and Antonio Mongelli, eds. Augmented and Virtual Reality. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13969-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Virtual and augmented reality"

1

Schmalstieg, Dieter, Tobias Langlotz, and Mark Billinghurst. "Augmented Reality 2.0." In Virtual Realities. Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99178-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mihelj, Matjaž, Domen Novak, and Samo Begus. "Augmented Reality." In Virtual Reality Technology and Applications. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6910-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Broll, Wolfgang. "Augmented Reality." In Virtual and Augmented Reality (VR/AR). Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79062-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McDonnell, Martin. "The Augmented Worker." In Augmented Reality and Virtual Reality. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64027-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lofaro, Daniel M., Frank Lee, Edgar Endress, and Chung Hyuk Park. "Augmented Musical Reality via Smart Connected Pianos." In Virtual Reality. River Publishers, 2022. http://dx.doi.org/10.1201/9781003340003-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wolf, Eduard, Thomas Schüler, and Karsten Morisse. "Impact of Virtual Embodiment on the Perception of Virtual Heights." In Augmented Reality and Virtual Reality. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37869-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simonetti, Aline, Enrique Bigné, and Shobhit Kakaria. "Shopping with Virtual Hands." In Virtual Reality and Augmented Reality. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62655-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Minaskan, Narek, Jason Rambach, Alain Pagani, and Didier Stricker. "Augmented Reality in Physics Education: Motion Understanding Using an Augmented Airtable." In Virtual Reality and Augmented Reality. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31908-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

El Miedany, Yasser. "Virtual Reality and Augmented Reality." In Rheumatology Teaching. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98213-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Ze-Nian, Mark S. Drew, and Jiangchuan Liu. "Augmented Reality and Virtual Reality." In Texts in Computer Science. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62124-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Virtual and augmented reality"

1

Ghouaiel, Nehla, Jean-Marc Cieutat, and Jean-Pierre Jessel. "Adaptive augmented reality." In VRIC '14: Virtual Reality International Conference - Laval Virtual 2014. ACM, 2014. http://dx.doi.org/10.1145/2617841.2620695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pallot, Marc, Remy Eynard, Benjamin Poussard, Olivier Christmann, and Simon Richir. "Augmented sport." In VRIC 2013: Virtual Reality International Conference - Laval Virtual. ACM, 2013. http://dx.doi.org/10.1145/2466816.2466821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ables, Austun. "Augmented and Virtual Reality." In SIGUCCS '17: ACM SIGUCCS Annual Conference. ACM, 2017. http://dx.doi.org/10.1145/3123458.3123464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wafaa, Abou Moussa, Nelly De Bonnefoy, Emmanuel Dubois, Patrice Torguet, and Jean-Pierre Jessel. "Virtual Reality Simulation for Prototyping Augmented Reality." In International Symposium on Ubiquitous Virtual Reality ISUVR. IEEE, 2008. http://dx.doi.org/10.1109/isuvr.2008.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olsson, Thomas. "Session details: Virtual reality and augmented reality." In AcademicMindtrek'17: Annual Academic Mindtrek Conference. ACM, 2017. http://dx.doi.org/10.1145/3247882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bazavan, Lidia-Cristina, Horatiu Roibu, Florina Besnea Petcu, Stefan Irinel Cismaru, and Bizdoaca Nicu George. "Virtual Reality and Augmented Reality in Education." In 2021 30th Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE). IEEE, 2021. http://dx.doi.org/10.1109/eaeeie50507.2021.9531005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Kening. "Virtual reality and augmented reality for education." In SA '16: SIGGRAPH Asia 2016. ACM, 2016. http://dx.doi.org/10.1145/2993363.3006041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kalkofen, D., M. Tatzgern, and D. Schmalstieg. "Explosion Diagrams in Augmented Reality." In 2009 IEEE Virtual Reality Conference. IEEE, 2009. http://dx.doi.org/10.1109/vr.2009.4811001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmalstieg, Dieter, and Tobias Hollerer. "Trends in mobile Augmented Reality." In 2012 IEEE Virtual Reality (VR). IEEE, 2012. http://dx.doi.org/10.1109/vr.2012.6180946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dong Li, Jinghui Xie, Dongdong Weng, and Yuqian Li. "Touch experience in augmented reality." In 2013 IEEE Virtual Reality (VR). IEEE, 2013. http://dx.doi.org/10.1109/vr.2013.6549376.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Virtual and augmented reality"

1

Wang, Shenlong, and David Forsyth. Safely Test Autonomous Vehicles with Augmented Reality. Illinois Center for Transportation, 2022. http://dx.doi.org/10.36501/0197-9191/22-015.

Full text
Abstract:
This work exploits augmented reality to safely train and validate autonomous vehicles’ performance in the real world under safety-critical scenarios. Toward this goal, we first develop algorithms that create virtual traffic participants with risky behaviors and seamlessly insert the virtual events into real images perceived from the physical world. The resulting composed images are photorealistic and physically grounded. The manipulated images are fed into the autonomous vehicle during testing, allowing the self-driving vehicle to react to such virtual events within either a photorealistic simulator or a real-world test track and real hardware systems. Our presented technique allows us to develop safe, hardware-in-the-loop, and cost-effective tests for self-driving cars to respond to immersive safety-critical traffic scenarios.
APA, Harvard, Vancouver, ISO, and other styles
2

Syrovatskyi, Oleksandr V., Serhiy O. Semerikov, Yevhenii O. Modlo, Yuliia V. Yechkalo, and Snizhana O. Zelinska. Augmented reality software design for educational purposes. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2895.

Full text
Abstract:
In the process of researching the problem of training future informatics teachers to use augmented reality technologies in education, the tasks were solved: 1) a historical and technological analysis of the experience of using augmented reality tools for developing interactive teaching materials was performed; 2) the software for the design of augmented reality tools for educational purposes is characterized and the technological requirements for the optional course “Development of virtual and augmented reality software” are defined; 3) separate components of an educational and methodical complex for designing virtual and augmented reality systems for future informatics teachers have been developed. У процесі дослідження проблеми професійної підготовки майбутніх учителів інформатики до використання технологій доповненої реальності в освіті розв’язані завдання: 1) виконано історико-технологічний аналіз досвіду застосування засобів доповненої реальності для розробки інтерактивних навчальних матеріалів; 2) схарактеризовано програмне забезпечення для проектування засобів доповненої реальності навчального призначення та визначено технологічні вимоги для факультативу «Розробка програмних засобів віртуальної та доповненої реальності»; 3) розроблено окремі складові навчально-методичного комплексу із проектування систем віртуальної та доповненої реальності для майбутніх учителів інформатики.
APA, Harvard, Vancouver, ISO, and other styles
3

Ou, Shichao, Deepak R. Karuppiah, Andrew H. Fagg, and Edward Riseman. An Augmented Virtual Reality Interface for Assistive Monitoring of Smart Spaces. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada439229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kanivets, Oleksandr V., Irina М. Kanivets, Natalia V. Kononets, Tetyana М. Gorda, and Ekaterina O. Shmeltser. Development of mobile applications of augmented reality for projects with projection drawings. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3745.

Full text
Abstract:
We conducted an analysis of the learning aids used in the study of general technical disciplines. This allowed us to draw an analogy between physical and virtual models and justify the development of a mobile application to perform tasks on a projection drawing. They showed a technique for creating mobile applications for augmented reality. The main stages of the development of an augmented reality application are shown: the development of virtual models, the establishment of the Unity3D game engine, the development of a mobile application, testing and demonstration of work. Particular attention is paid to the use of scripts to rotate and move virtual models. The in-house development of the augmented reality mobile application for accomplishing tasks on a projection drawing is presented. The created mobile application reads, recognizes marker drawings and displays the virtual model of the product on the screen of the mobile device. It has been established that the augmented reality program developed by the team of authors as a mobile pedagogical software can be used to perform tasks both with independent work of students and with the organization of classroom activities in higher education institutions.
APA, Harvard, Vancouver, ISO, and other styles
5

Iatsyshyn, Anna V., Valeriia O. Kovach, Volodymyr O. Lyubchak, et al. Application of augmented reality technologies for education projects preparation. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3856.

Full text
Abstract:
After analysis of scientific literature, we defined that concept of “augmented reality” has following synonyms: “advanced reality”, “improved reality”, “enriched reality”, “mixed reality” and “hybrid reality”. Analysis of scientific literature and own practical experience of the use of augmented reality technologies application in educational practices allowed to state next: augmented reality technologies have a great potential for application in education; there are some cases of augmented reality use for school education; positive aspects of augmented reality technologies application in higher education institutions are confirmed by experiments (isolated cases); only few universities in Ukraine apply augmented reality technologies to educate students; only few universities in Ukraine have special subjects or modules in schedule to teach students to develop augmented reality technologies; various scientific events, mass events, competitions are held in Ukraine, and specialized training on the augmentation of augmented reality technologies is carried out, but this is non-systematic and does not have special state orientation and support. Features of introduction of virtual and augmented reality technologies at Sumy State University (Ukraine) are identified: “e-learning ecosystems” was created; in 2019, augmented and virtual reality research laboratory was established. Advantages and disadvantages of project activity in education are described: project activity is one of the most important components of educational process; it promotes creative self-development and self-realization of project implementers and forms various life competencies. It is determined that augmented reality application for implementation of educational projects will help: to increase students’ interest for educational material; formation of new competences; increase of students’ motivation for independent educational and cognitive activity; activation of educational activities; formation of positive motivation for personal and professional growth; conditions creation for development of personal qualities (creativity, teamwork, etc.). Current trends in implementation of educational projects were identified: most of the winner projects were implemented using augmented reality technology; augmented reality technologies were used in projects to teach different disciplines in higher education institutions. Augmented reality technology application for project activity has positive impact on learning outcomes and competitiveness of the national workforce; it will enhance the country’s position in the global economic space.
APA, Harvard, Vancouver, ISO, and other styles
6

Mintii, Iryna S., and Vladimir N. Soloviev. Augmented Reality: Ukrainian Present Business and Future Education. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2673.

Full text
Abstract:
The aim of the study: analysis of the current state and prospects for the development of augmented reality in Ukraine in business and education. The objectives of the study: to analyze the experience of using the augmented reality in advertising, marketing, education of Ukraine; to investigate the problems existing in this direction. The object of the study: the process of using augmented reality in advertising, marketing, education. The subject of the study: specific projects using the augmented reality in advertising, marketing, education. The used method of study was theoretical that included analysis of articles and materials of conferences on the research problem. The results of the study: nowadays, the augmented reality is used primarily in the field of advertising and marketing of Ukraine. As an example is the advertisement of Kyivstar (virtual tour around Ukraine, augmented reality quest), some of the Ukrainian companies have certain results in in this direction, for example, Augmented Pixels, Simo AR (in the development of a browser with augmented reality, the Kontramarka ticket service is implemented), Live Animations (such projects as Wonderland AR, My Yeti, Live Coloring, Gapchinska, Live Photo are already implemented). Among the problems that exist with the introduction of these technologies in education, first of all, we should note the shortage of specialists in the preparation of such educational projects and the uncoordinated actions of business and education in this direction. Main conclusions and recommendations: in order to disseminate research results it is necessary to hold thematic events of the all-Ukrainian level.
APA, Harvard, Vancouver, ISO, and other styles
7

Ervin, Kelly, Karl Smink, Bryan Vu, and Jonathan Boone. Ship Simulator of the Future in virtual reality. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/45502.

Full text
Abstract:
The Army’s modernization priorities include the development of augmented reality and virtual reality (AR/VR) simulations for enabling the regiment and increasing soldier readiness. The use of AR/VR technology at the U.S. Army Engineer Research and Development Center (ERDC) is also growing in the realm of military and civil works program missions. The ERDC Coastal and Hydraulics Laboratory (CHL) has developed a ship simulator to evaluate bay channels across the world; however, the current simulator has little to no physical realism in nearshore coastal regions (Figure 1). Thus, the ERDC team is researching opportunities to advance ship simulation to deliver the Ship Simulator of the Future (SSoF). The SSoF will be equipped with a VR mode and will more accurately resolve nearshore wave phenomena by ingesting precalculated output from a Boussinesq-type wave model. This initial prototype of the SSoF application is intended for research and development purposes; however, the technologies employed will be applicable to other disciplines and project scopes, including the Synthetic Training Environment (STE) and ship and coastal structure design in future versions.
APA, Harvard, Vancouver, ISO, and other styles
8

Shyshkina, Mariya P., and Maiia V. Marienko. Augmented reality as a tool for open science platform by research collaboration in virtual teams. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3755.

Full text
Abstract:
The provision of open science is defined as a general policy aimed at overcoming the barriers that hinder the implementation of the European Research Area (ERA). An open science foundation seeks to capture all the elements needed for the functioning of ERA: research data, scientific instruments, ICT services (connections, calculations, platforms, and specific studies such as portals). Managing shared resources for the community of scholars maximizes the benefits to society. In the field of digital infrastructure, this has already demonstrated great benefits. It is expected that applying this principle to an open science process will improve management by funding organizations in collaboration with stakeholders through mechanisms such as public consultation. This will increase the perception of joint ownership of the infrastructure. It will also create clear and non-discriminatory access rules, along with a sense of joint ownership that stimulates a higher level of participation, collaboration and social reciprocity. The article deals with the concept of open science. The concept of the European cloud of open science and its structure are presented. According to the study, it has been shown that the structure of the cloud of open science includes an augmented reality as an open-science platform. An example of the practical application of this tool is the general description of MaxWhere, developed by Hungarian scientists, and is a platform of aggregates of individual 3D spaces.
APA, Harvard, Vancouver, ISO, and other styles
9

Merzlykin, Olexandr V., Iryna Yu Topolova, and Vitaliy V. Tron. Developing of Key Competencies by Means of Augmented Reality at CLIL Lessons. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2661.

Full text
Abstract:
Using of new learning and IC technologies is necessary for effective learning of modern students. Their specific educational needs are: using of mobile ICTs, collaboration, challenging tasks and entertainment. Appropriate learning environment should be created to satisfy all these demands. It ought to deal with cloud-based technologies (for 24/7 access, individual and group work according to a personal schedule), augmented reality (for creating of firm links between real and virtual objects), content and language integrated learning (for immersion in an additional language and creation challenging groups and personal tasks in language and non-language subjects). Using these technologies in complex provides social and ICT mobility and creates positive conditions for developing 9 of 10 key competencies. The paper deals with the features, problems and benefits of technologies’ implementation in secondary schools. To sum up, in spite of all difficulties, this environment helps students to get some practical experience in using foreign languages and understanding abstract nature concepts; to develop language and research competencies and to remain motivated (and self-motivated) in learning Science and English.
APA, Harvard, Vancouver, ISO, and other styles
10

Shamonia, Volodymyr H., Olena V. Semenikhina, Volodymyr V. Proshkin, Olha V. Lebid, Serhii Ya Kharchenko, and Oksana S. Lytvyn. Using the Proteus virtual environment to train future IT professionals. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3760.

Full text
Abstract:
Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!