Academic literature on the topic 'Virtual Hand'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virtual Hand.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Virtual Hand"

1

Parusharamudu, Mr M., N. Vivek, and Ch Sanjay Vardhan. "Virtual Mouse Using Hand Gestures." International Journal of Research Publication and Reviews 6, no. 4 (April 2025): 14589–93. https://doi.org/10.55248/gengpi.6.0425.1662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

WILLIAMS, N. W. "The Virtual Hand." Journal of Hand Surgery 22, no. 5 (October 1997): 560–67. http://dx.doi.org/10.1016/s0266-7681(97)80345-2.

Full text
Abstract:
Virtual reality technologies are now at a stage in which the various disciplines can be brought together to construct a virtual human hand. Devices can be constructed to record multiple joint positions accurately in clinical environments. Joint prostheses may be tested virtually before undergoing clinical trials, albeit in a simple way at present, but may eventually be incorporated into a virtual model of the hand and driven by goniometric gloves. This will allow more detailed analyses of implant in situ behaviour. These exciting developments will provide a huge advance in our understanding of the functions of the real hand and also a potential way of assessing outcomes in a simple and repeatable fashion. We are on the edge of a new era in hand surgery when the computer scientist, biomechanic, control engineer, hand therapist and surgeon will be able to alternate between the virtual and the real world in producing better outcomes for patients.
APA, Harvard, Vancouver, ISO, and other styles
3

Thakur, Shanu. "Virtual Mouse." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (May 11, 2024): 1–5. http://dx.doi.org/10.55041/ijsrem33792.

Full text
Abstract:
Now a days the use of hand gesture recognition became popular due to the advance technology of artificial Intelligence (AI). In recent years, there has been a growing interest in developing alternative methods for human-computer interaction (HCI) that go beyond traditional input devices like keyboards and mouse. Hand gesture recognition has emerged as a promising approach, offering intuitive and natural ways for users to interact with digital interfaces. The proposed system utilizes computer vision techniques to detect and track hand gestures in real-time. By mapping specific gestures to mouse control commands, users can navigate and interact with graphical user interfaces (GUIs) without the need for physical input devices. In this paper A hand gesture- controlled virtual mouse system utilizes the AI and Machine learning algorithms to recognize the proper hand gestures and translate them into the mouse movements. The system we are designed that the people who have problems or difficulty using a traditional mouse or keyboard it will be appropriate for them. For this we are using camera that capture images of the user’s hand, which are processed by an AI and ML algorithm to recognize the gesture of hands being made. We trained the system by using a dataset of hand gestures. Keywords — Hand gesture recognition, Machine Learning, Artificial Intelligence, Virtual Mouse, Python, Media Pipe
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Xian Juan, Cheng Cheng, and Umwali Marine. "Autonomous Virtual Hand Behavior Construction in Virtual Manufacturing Environment." Applied Mechanics and Materials 743 (March 2015): 734–37. http://dx.doi.org/10.4028/www.scientific.net/amm.743.734.

Full text
Abstract:
This paper describes a method for autonomous virtual hand behavior construction in virtual manufacturing environment. The new mechanism is aimed to reduce user’s cognitive and manipulation loads. Based on a realistic and accurate virtual hand model; a strategy and an algorithm for behavior simulation, as well as continuous operation simulation; an intelligent and efficient virtual hand is generated. The experimental results demonstrate the ability of the method, to create an autonomous and reliable virtual hand in virtual manufacturing environment.
APA, Harvard, Vancouver, ISO, and other styles
5

Krishna, Golla Sai, G. S. S. M. Dileep, and Dr R. Shalini. "Virtual Actions Using Hand Gestures." IOSR Journal of Computer Engineering 26, no. 6 (December 2024): 43–48. https://doi.org/10.9790/0661-2606034348.

Full text
Abstract:
This paper introduces a groundbreaking method for enhancing human-computer interaction through virtual actions using hand gestures. The suggested system employs sophisticated computer vision and machine learning strategies, integrating MediaPipe Hands to achieve accurate detection and tracking of hand landmarks. By converting designated hand gestures into virtual mouse actions—such as moving the cursor, left-clicking, rightclicking, double-clicking, and taking screenshots—the system offers an intuitive, touch-free way to control computer systems. The gadget records live video with a webcam, analyzes hand landmarks, and determines the distance and angles to precisely recognize movements. OpenCV provides effective visualization, while the PyAutoGUI and Pynput libraries facilitate smoother mouse and keyboard interactions. This groundbreaking method addresses accessibility challenges and has significant implications in diverse areas, including gaming, healthcare, remote presentations, and contexts that necessitate contactless or hygienic interaction. The results of the study demonstrate the effectiveness of gesture-based virtual activities as an intuitive, flexible, and creative engagement approach. By improving natural user interfaces, the project opens up new possibilities for humancomputer interaction in both personal and professional contexts.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, JingRong, YuHua Xu, JianLong Ni, and QingHui Wang. "Glove-based virtual hand grasping for virtual mechanical assembly." Assembly Automation 36, no. 4 (September 5, 2016): 349–61. http://dx.doi.org/10.1108/aa-01-2016-002.

Full text
Abstract:
Purpose Hand gesture-based interaction can provide far more intuitive, natural and immersive feelings for users to manipulate 3D objects for virtual assembly (VA). A mechanical assembly consists of mostly general-purpose machine elements or mechanical parts that can be defined into four types based on their geometric features and functionalities. For different types of machine elements, engineers formulate corresponding grasping gestures based on their domain knowledge or customs for ease of assembly. Therefore, this paper aims to support a virtual hand to assemble mechanical parts. Design/methodology/approach It proposes a novel glove-based virtual hand grasping approach for virtual mechanical assembly. The kinematic model of virtual hand is set up first by analyzing the hand structure and possible movements, and then four types of grasping gestures are defined with joint angles of fingers for connectors and three types of parts, respectively. The recognition of virtual hand grasping is developed based on collision detection and gesture matching. Moreover, stable grasping conditions are discussed. Findings A prototype system is designed and developed to implement the proposed approach. The case study on VA of a two-stage gear reducer demonstrates the functionality of the system. From the users’ feedback, it is found that more natural and stable hand grasping interaction for VA of mechanical parts can be achieved. Originality/value It proposes a novel glove-based virtual hand grasping approach for virtual mechanical assembly.
APA, Harvard, Vancouver, ISO, and other styles
7

Reddy, Mr K. Vikram. "Hand Gesture based Virtual Mouse." International Journal for Research in Applied Science and Engineering Technology 9, no. 5 (May 31, 2021): 1646–49. http://dx.doi.org/10.22214/ijraset.2021.34497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mochimaru, Masaaki, Natsuki Miyata, Makiko Kouchi, Mitsunori Tada, Toru Nakata, and Tsuneya Kurihara. "Digital Hand for Virtual Prototyping." Reference Collection of Annual Meeting 2004.8 (2004): 189–90. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Indraneel, K. J. S. S., P. Narendra Reddy, G. Leela Srinivas, J. Alekh Vara Prasad, and Ananthoju Vijay Kumar. "Hand Gesture Based Virtual Mouse." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 2458–61. http://dx.doi.org/10.22214/ijraset.2023.51731.

Full text
Abstract:
Abstract: Since the invention of the PC, a method for creating a connection cycle between humans and computers is currently being developed. A truly innovative piece of HCI(Human Computer Interaction), the mouse. There are still such gadgets around even though remote control or Bluetooth mouse technology is still in development. A Bluetooth mouse requires a dongle for connectivity and battery. The difficulty of using a mouse increases when it has additional devices. The suggested mouse framework goes beyond the point. This study suggest an HCI-based virtual mouse framework that makes use of computer vision and hand signals. Signals generated with a location method and shading division and captured using a built-in camera and webcam. The customer will be able to exercise partial control over
APA, Harvard, Vancouver, ISO, and other styles
10

Kalipu, Ravi Kumar, Harish Kurmana, Divakar Allaboina, Sanjay Kumar Chilla, Bhavish Lakkavarapu, and Ravi Kumar Nubothu. "Virtual Mouse Using Hand Gestures." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (March 31, 2025): 1–9. https://doi.org/10.55041/ijsrem43518.

Full text
Abstract:
The Virtual Mouse using Hand Gesture Recognition is an innovative system that allows users to control a computer cursor through hand gestures instead of a traditional mouse. This project utilizes Python, machine learning, and OpenCV to detect and interpret hand movements in real time. A camera captures gestures, which are processed using computer vision techniques to perform mouse actions such as clicking, scrolling, and cursor movement. Additionally, a zoom-in and zoom-out feature enhances user interaction through specific gestures. This touch-free interface provides an intuitive and hygienic alternative to traditional input devices, making it particularly beneficial for accessibility, gaming, and contactless computing applications. Index Terms— Hand Gesture Recognition, Virtual Mouse, Computer Vision, OpenCV, Machine Learning, Human-Computer Interaction (HCI), Touch-Free Interface, Accessibility, Gesture Control, Real-Time Processing, Contactless Computing.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Virtual Hand"

1

Peña, Pitarch E. (Esteve). "Virtual human hand: grasping strategy and simulation." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6995.

Full text
Abstract:
La mano humana es una herramienta muy completa, capaz de adaptarse a diferentes superficies y formas, y también tocar y coger. Es una conexión directa entre el mundo exterior y el cerebro. I.Kant (filosofo alemán) definió la mano como una extensión del cerebro.

En esta tesis, nosotros hemos construido una mano virtual para simular la mano humana lo más realísticamente posible. Basado en la anatomía de la mano, hemos diseñado una mano con 25 grados de libertad (DOF), con cuatro de esos grados de libertad localizados en la unión carpometacarpal, para el dedo anular y el meñique. Estos cuatro grados de libertad permiten la simulación de la mano humana cuando esta se arquea. El dedo gordo ha sido diseñado con 5 DOF, los dedos, índice y medio tienen 4 DOF, la unión metacarpofalangeal tiene dos, y las uniones interfalangeales próxima y distal tienen uno cada una. Para los dedos anular y meñique, los 4 DOF tienen las mismas uniones más los cuatro descritos arriba.

El método de Denavit-Hartenberg (D-H) fue aplicado, debido a que cada dedo fue considerado como un rayo, esto es, una cadena cinemática abierta, con las uniones consideradas "revolutas". Las tablas D-H para cada dedo fueron mostradas y la aplicación de la cinemática directa e inversa permitió calcular todos los ángulos para cada unión [q1 . . . q25]T .

Antes de coger cualquier objeto, nuestro sistema comprueba si el objeto esta en el espacio de la mano, mediante el análisis del espacio de trabajo.

Se ha implementado un algoritmo semi-inteligente orientado a las tareas para las cuales el objeto ha sido diseñado, con el fin de tomar una decisión, una vez el usuario ha escogido el objeto y su tarea inherente. El algoritmo para coger ha sido implementado en un escenario virtual.
The human hand is the most complete tool, able to adapt to different surfaces and shapes and to touch and grasp. It is a direct connection between the exterior world and the brain. I. Kant (German philosopher) defined how the hand is an extension of the brain.

In this dissertation, we built a virtual human hand to simulate the human hand as realistically as possible. Based on the anatomy of the hand, we designed a hand with 25 degrees of freedom (DOF), with four of these degrees located in the carpometacarpal joint for the ring and small fingers. These four degrees permit the simulation of the human hand when it is arched. The thumb was designed with 5 DOF, the index and middle fingers have 4 DOF, in the metacarpophalangeal joint has two, and in the proximal interphalangeal joint and in the distal interphalangeal joint each have one. For the ring and small fingers, the 4 DOF are in similar joints plus as the four described above.

The Denavit-Hartenberg (D-H) method was applied because each finger was considered a ray, i.e., an open chain, with joints approximated to revolute joints. The D-H tables for each finger were shown, and the application of forward and inverse kinematics permit the calculation of all angles for each joint [q1 . . . q25]T .

Before grasping any object, our system checks the reachability of the object with workspace analysis.

Semi-intelligent task-oriented object grasping was implemented for making a decision once the user chooses the object and the task inherent to the object. The grasping algorithm was implemented in a virtual environment.
APA, Harvard, Vancouver, ISO, and other styles
2

Peña, Pitarch Esteban. "Virtual Human Hand: Grasping Strategy and Simulation." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6995.

Full text
Abstract:
La mano humana es una herramienta muy completa, capaz de adaptarse a diferentes superficies y formas, y también tocar y coger. Es una conexión directa entre el mundo exterior y el cerebro. I.Kant (filosofo alemán) definió la mano como una extensión del cerebro.En esta tesis, nosotros hemos construido una mano virtual para simular la mano humana lo más realísticamente posible. Basado en la anatomía de la mano, hemos diseñado una mano con 25 grados de libertad (DOF), con cuatro de esos grados de libertad localizados en la unión carpometacarpal, para el dedo anular y el meñique. Estos cuatro grados de libertad permiten la simulación de la mano humana cuando esta se arquea. El dedo gordo ha sido diseñado con 5 DOF, los dedos, índice y medio tienen 4 DOF, la unión metacarpofalangeal tiene dos, y las uniones interfalangeales próxima y distal tienen uno cada una. Para los dedos anular y meñique, los 4 DOF tienen las mismas uniones más los cuatro descritos arriba.El método de Denavit-Hartenberg (D-H) fue aplicado, debido a que cada dedo fue considerado como un rayo, esto es, una cadena cinemática abierta, con las uniones consideradas "revolutas". Las tablas D-H para cada dedo fueron mostradas y la aplicación de la cinemática directa e inversa permitió calcular todos los ángulos para cada unión [q1 . . . q25]T .Antes de coger cualquier objeto, nuestro sistema comprueba si el objeto esta en el espacio de la mano, mediante el análisis del espacio de trabajo.Se ha implementado un algoritmo semi-inteligente orientado a las tareas para las cuales el objeto ha sido diseñado, con el fin de tomar una decisión, una vez el usuario ha escogido el objeto y su tarea inherente. El algoritmo para coger ha sido implementado en un escenario virtual.
The human hand is the most complete tool, able to adapt to different surfaces and shapes and to touch and grasp. It is a direct connection between the exterior world and the brain. I. Kant (German philosopher) defined how the hand is an extension of the brain.In this dissertation, we built a virtual human hand to simulate the human hand as realistically as possible. Based on the anatomy of the hand, we designed a hand with 25 degrees of freedom (DOF), with four of these degrees located in the carpometacarpal joint for the ring and small fingers. These four degrees permit the simulation of the human hand when it is arched. The thumb was designed with 5 DOF, the index and middle fingers have 4 DOF, in the metacarpophalangeal joint has two, and in the proximal interphalangeal joint and in the distal interphalangeal joint each have one. For the ring and small fingers, the 4 DOF are in similar joints plus as the four described above.The Denavit-Hartenberg (D-H) method was applied because each finger was considered a ray, i.e., an open chain, with joints approximated to revolute joints. The D-H tables for each finger were shown, and the application of forward and inverse kinematics permit the calculation of all angles for each joint [q1 . . . q25]T .Before grasping any object, our system checks the reachability of the object with workspace analysis.Semi-intelligent task-oriented object grasping was implemented for making a decision once the user chooses the object and the task inherent to the object. The grasping algorithm was implemented in a virtual environment.
APA, Harvard, Vancouver, ISO, and other styles
3

Nasser, Bilal. "A virtual hand assessment system for efficient outcome measures of hand rehabilitation." Thesis, University of Strathclyde, 2016. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vulgari, Sofia Kiriaki. "Hand Gesture based Telemedicine enabled by Mobile VR." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-88810.

Full text
Abstract:
Virtual Reality (VR) is a highly evolving domain and is used in anincreasing number of areas in today's society. Among the technologiesassociated with VR and especially mobile VR, is hand tracking and handgesture recognition. Telemedicine is one of the elds where VR is startingto thrive, and so the concept of adding the use of hand gestures came to bein order to explore the possibilities that can come from it. This researchis conducted with the development of a prototype application that usessome of the most emerging technologies. Manomotion's hand trackingand hand gesture recognition algorithms, and Photon's servers and developerkit, which makes multi-user applications achievable, allowed theconceptual idea of the prototype to become reality. In order to test itsusability and how potential users perceive it, a user study with 24 participantswas made, 8 of which were either studying or working in themedical eld. Additional expert meetings and observations from the userstudy also contributed to ndings that helped show how hand gesturescan aect a doctor consultation in Telemedicine. Findings showed thatthe participants thought of the proposed system as a less costly and timesaving solution, and that they felt immersed in the VR. The hand gestureswere accepted and understood. The participants did not have dicultieson learning or executing them, and had control of the prototype environment.In addition, the data showed that participants considered it to beusable in the medical eld in the future.
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Hui, and 陳輝. "Building panoramas from photographs taken with a hand-held camera." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31242923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Hui. "Building panoramas from photographs taken with a hand-held camera /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23668064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Xibei, and 杨曦贝. "A hand input-based approach to intuitive human-computer interactions in virtual reality." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45160557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cruea, Mark Douglas. "The Virtual Hand: Exploring the Societal Effects of Video Game Industry Business Models." Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1320430304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Yang. "Tour Into Painting : System Design for Virtual Exhibition of Chinese Hand-Scroll Painting." Thesis, Ecole centrale de Nantes, 2022. https://tel.archives-ouvertes.fr/tel-03921024.

Full text
Abstract:
La peinture chinoise à rouleau (CHSP) est une forme de peinture chinoise typique. La manière correcte de regarder une CHSP est de la faire défiler à la main. Regarder une CHSP est considéré comme une expérience fantastique de visite dans son monde diégétique. Dans les expositions actuelles de CHSP, ces points ne sont pas bien représentées. Premièrement, la plupart des CHSP sont présentés dans des boîtes en verre. Les spectateurs ne peuvent pas les manipuler en les faisant défiler. Deuxièmement, l'expérience de la visite d'une peinture n'est interprétée que par de simples annotations. Les spectateurs ne peuvent pas acquérir une expérience complète à partir de ces annotations. Cette recherche a exploré l'utilisation de la réalité virtuelle (RV) pour combler ces lacunes. L'objectif de cette recherche est de développer un système d'exposition basé sur la RV, qui peut simuler de manière synchrone l'expérience de visualisation de l'ancien spectateur dans le monde réel et l'expérience de visite dans le monde diégétique. Le système est présenté comme une application de RV qui comprend une CHSP interactive qui peut être manipulé selon les principes originaux. De manière synchrone, l'utilisateur de la RV sera déplacé en fonction de son point de focalisation sur la CHSP virtuelle, puis un monde diégétique englobant et aléatoire sera construit
The Chinese Hand-Scroll Painting (CHSP) is a typical Chinese painting form. The proper way to view a CHSP is scrolling it by hands. Watching a CHSP is considered as a fantasy experience of touring in its diegetic world. In current exhibitions of CHSPs, these points are not well represented. First, most of CHSPs are presented in glass boxes. Viewers can not manipulate it in scrolling manner. Second, the experience of touring into painting is only interpreted by simple annotations. Viewers can not gain a full experience based on them. This research aims to implementing these shortcoings by developing a VR-based exhibition system, which can synchronously simulate the ancient viewer's viewing experience in the real world and the touring experience in the diegetic world. The system is presented as a VR application that includes an interactive CHSP that can be manipulated according to the original principles. In a synchronous way, the VR user will be moved according to his focus point on the virtual CHSP, and then, an encompassing, random diegetic world will be built
APA, Harvard, Vancouver, ISO, and other styles
10

Achibet, Merwan. "Contributions to the design of novel hand-based interaction techniques for virtual environments." Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0031/document.

Full text
Abstract:
Faire directement usage de nos mains pour explorer des environnements virtuels et interagir avec leur contenu permet une interaction à la fois naturelle et convaincante. Dans ce manuscrit de thèse, nous visons à améliorer l’interaction avec les mains dans le contexte de la Réalité Virtuelle en abordant deux défis majeurs : (1) faciliter le contrôle de modèles de mains articulées et (2) fournir des sensations haptiques au travers d’interfaces accessibles. Nous abordons tout d’abord l’interaction au travers de mains virtuelles articulées et proposons deux méthodes pour faciliter leur contrôle. Premièrement, nous réduisons leurs nombreux degrés de liberté de façon à pouvoir exploiter des interfaces tactiles courantes. Le système qui en résulte permet aux utilisateurs de contrôler une main virtuelle en réalisant des gestes sur la surface de la tablette. Ensuite, nous adoptons une autre approche et séparons les degrés de liberté des mains virtuelles entre deux interfaces haptiques contrôlées en parallèle. Par cette distribution des contrôles et des retours de force, les utilisateurs sont exposés à des effets haptiques variés, autrement réservés à des interfaces haptiques coûteuses. Nous abordons ensuite le sujet du retour haptique pour différents types d’interaction avec les mains. Pour cela, nous combinons des retours passifs à des retours pseudo-haptiques en tant qu’alternative à l’usage d’interfaces actives complexes et encombrantes. Dans un premier temps, nous considérons l’interaction avec les bras et proposons une armature élastique attachés à l’utilisateur qui fournit un retour de force égocentrique tout en conservant sa mobilité. Nous abordons ensuite le sujet de la saisie d’objets virtuels et proposons un nouveau paradigme d’interaction basé sur une interface élastique qui reproduit les mouvements de préhension et fournit un retour adapté et modulable par un effet pseudo-haptique. Finalement, nous considérons la manipulation fine avec les doigts et proposons un exosquelette passif qui les contraint séparément, associé à un retour pseudo-haptique multi-doigt simulant l’interaction avec des matériaux hétérogènes
Directly using our hands to explore virtual environments and interact with their contents produces a natural and compelling interaction. In this thesis, we propose contributions to improve hand-based interaction in the context of Virtual Reality by considering two main challenges: (1) improving the control of articulated hand models, and (2) providing haptic sensations with accessible techniques. We first address the challenge of interacting through realistic, articulated virtual hands and propose two methods for easing their control. As a first step, we reduce the degrees of freedom of complex hand models in order to make multi-finger interaction possible with common multi-touch interfaces. The resulting system allows users to control a virtual hand by performing gestures over a tactile tablet. Then, we take another approach and separate the degrees of freedom of one virtual hand between two haptic interfaces handled in parallel. Through this distribution of controls and feedback, users are exposed to a variety of haptic effects, otherwise restricted to complex haptic workstations. We then address the challenge of providing haptic sensations during hand-based interaction. To do so, we introduce different techniques that combine passive haptic feedback and pseudo-haptics as an alternative to complex and cumbersome active interfaces. We consider various types of interaction at different scales, starting with coarse interaction with the arm through an elastic armature that provides an egocentric and mobile haptic feedback. We then focus on object grasping and manipulation and propose an interaction paradigm that relies on elastic input devices for reproducing grasping gestures and perceiving modulable haptic properties through crossmodal feedback. Finally, we consider fine multi-finger manipulation and we propose a passive exoskeleton that constrains the digits individually, associated to a multi-finger pseudo-haptic feedback for simulating complex interaction with heterogeneous materials
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Virtual Hand"

1

McCullough, Malcolm. Abstracting craft: The practiced digital hand. Cambridge, Mass: MIT Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Simpson, Ted L. Hands-on virtual computing. Australia: Course Technology/Cengage Learning, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simpson, Ted L. Hands-on virtual computing. Australia: Course Technology/Cengage Learning, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Delogu, Cristina, ed. Tecnologia per il web learning. Florence: Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-571-9.

Full text
Abstract:
This book maps out a course through the methodological and technological innovations of internet-based training, setting the emphasis on the collaborative character of experiences of learning and on the interactivity of the virtual workshops. On the one hand, this underscores the possibilities offered by the net to make available educational modes centred on the social process that enables learning in an active manner, rather than on the centrality of contents to be passively transferred to the students. On the other hand, it also shows how in the virtual workshops it is possible to develop one's understanding of the phenomena that are the subject of learning as a result of the interaction with the phenomena themselves, reproduced in the computer, acting upon them and observing the consequences of one's own actions. The effect is to underline how this type of model of learning can help to overcome the technology gap between different countries and social groups (the digital divide) and also to make learning more accessible even to disabled students.
APA, Harvard, Vancouver, ISO, and other styles
5

Cadigan, Pat. Dervish is digital. New York: Tor, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anthony, Piers. Killobyte. New York, NY: Putnam, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anthony, Piers. Killobyte. New York, NY: Ace Books, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zelazny, Roger. Donnerjack. New York: Avon Eos, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zelazny, Roger. Donnerdzhek. Moskva: Ėksmo-Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zelazny, Roger. Donnerjack. New York: Avon Books, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Virtual Hand"

1

Beckerle, Philipp. "Virtual Hand Experience." In Springer Series on Touch and Haptic Systems, 41–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-38688-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pietroszek, Krzysztof. "Virtual Hand Metaphor in Virtual Reality." In Encyclopedia of Computer Graphics and Games, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-08234-9_178-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pietroszek, Krzysztof. "Virtual Hand Metaphor in Virtual Reality." In Encyclopedia of Computer Graphics and Games, 1991–93. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-23161-2_178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahmoud, Shady Abdelghaffar, Ahmed K. Emara, and Joseph Styron. "Hand and Wrist." In The Principles of Virtual Orthopedic Assessment, 41–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80402-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elsdon, Joshua, and Yiannis Demiris. "Augmented Reality Instructions for Shared Control Hand-held Robotic System." In Virtual Reality, 159–66. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003340003-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peña-Pitarch, Esteban, Inmaculada Puig de la Bellacasa, Jesus Fernando Padilla Magaña, Anas Al Omar, and Iñaki Alcelay Larrión. "Virtual Human Hand: Wrist Movements." In Advances in Simulation and Digital Human Modeling, 304–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79763-8_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spar, Ira, and Antonietta Catanzariti. "The Hearing Hand." In Antiquities Smuggling in the Real and Virtual World, 96–134. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003023043-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rey, Beatriz, José A. Lozano, Mariano Alcañiz, Luciano Gamberini, Merche Calvet, Daniel Kerrigan, and Francesco Martino. "Super-Feet: A Wireless Hand-Free Navigation System for Virtual Environments." In Virtual Reality, 348–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73335-5_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schäfer, Alexander, Gerd Reis, and Didier Stricker. "Controlling Continuous Locomotion in Virtual Reality with Bare Hands Using Hand Gestures." In Virtual Reality and Mixed Reality, 191–205. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16234-3_11.

Full text
Abstract:
AbstractMoving around in a virtual world is one of the essential interactions for Virtual Reality (VR) applications. The current standard for moving in VR is using a controller. Recently, VR Head Mounted Displays integrate new input modalities such as hand tracking which allows the investigation of different techniques to move in VR. This work explores different techniques for bare-handed locomotion since it could offer a promising alternative to existing freehand techniques. The presented techniques enable continuous movement through an immersive virtual environment. The proposed techniques are compared to each other in terms of efficiency, usability, perceived workload, and user preference.
APA, Harvard, Vancouver, ISO, and other styles
10

Ikram, Warda, Yoonji Jeong, Byeonggwon Lee, Kyhyun Um, and Kyungeun Cho. "Smart Virtual Lab Using Hand Gestures." In Lecture Notes in Electrical Engineering, 165–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47487-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Virtual Hand"

1

Patil, Manjiri, Palak Patil, Vedashree Deshpande, and Asst Prof Tanvi Patil. "Virtual White Board using Hand Gestures." In 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI), 899–905. IEEE, 2024. https://doi.org/10.1109/icdici62993.2024.10810808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sai, K. Chenchu Naga, S. Shargunam, K. Surendra Reddy, K. Bheemendra, and K. Santhosh Reddy. "Virtual Mouse using Hand Gestures-Eye Speech Recognition." In 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI), 1459–67. IEEE, 2024. https://doi.org/10.1109/icdici62993.2024.10810795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vamossy, Zoltan, Andras Toth, and Balazs Benedek. "Virtual Hand - Hand Gesture Recognition System." In 2007 5th International Symposium on Intelligent Systems and Informatics. IEEE, 2007. http://dx.doi.org/10.1109/sisy.2007.4342632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeng, Botao, Zhiquan Feng, and Xiaohui Yang. "Virtual Hand Position Correction Algorithm Based on Virtual Hand Interaction." In ICCDE 2020: 2020 The 6th International Conference on Computing and Data Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3379247.3379258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hwang, Jane, Jaehoon Jung, and Gerard Jounghyun Kim. "Hand-held virtual reality." In the ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1180495.1180568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Geylani, Sefa, Nurettin Senyer, and Recai Oktas. "Prosthesis hand design — Part I: Virtual hand simulator." In 2009 International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2009. http://dx.doi.org/10.1109/icaict.2009.5372557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Canales, Ryan, Aline Normoyle, Yu Sun, Yuting Ye, Massimiliano Di Luca, and Sophie Jörg. "Virtual Grasping Feedback and Virtual Hand Ownership." In SAP '19: ACM Symposium on Applied Perception 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3343036.3343132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clack, Lauren, Christian Hirt, Marcel Wenger, Dirk Saleschus, Andreas Kunz, and Hugo Sax. "VIRTUE - A Virtual Reality Trainer for Hand Hygiene." In 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2018. http://dx.doi.org/10.1109/iisa.2018.8633588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duver, Matt, Noah Wiederhold, Maria Kyrarini, Sean Banerjee, and Natasha Kholgade Banerjee. "VR-Hand-in-Hand: Using Virtual Reality (VR) Hand Tracking For Hand-Object Data Annotation." In 2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR). IEEE, 2024. http://dx.doi.org/10.1109/aixvr59861.2024.00055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steed, Anthony, and Vit Drga. "Tomato Presence: Virtual Hand Ownership with a Disappearing Hand." In 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, 2023. http://dx.doi.org/10.1109/vrw58643.2023.00167.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Virtual Hand"

1

Kostenko, E. V., L. V. Petrova, I. V. Pogonchenkova, and A. S. Polischuk. Technical task «Cognitive-motor training of fine hand function and subject-manipulative activity with double and triple tasks in a virtual environment». OFERNIO, July 2022. http://dx.doi.org/10.12731/ofernio.2022.25034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leeb, Helmut, Richard J. deBoer, Ian Thompson, and Paraskevi Dimitriou. Summary Report of the IAEA Consultants’ Meetings of the International Nuclear Data Evaluation Network (INDEN) on the Evaluation of Light Elements (3). IAEA Nuclear Data Section, July 2021. http://dx.doi.org/10.61092/iaea.x6kd-w5qa.

Full text
Abstract:
The INDEN for Light Elements network (INDEN-LE) held two virtual Consultants’ Meetings, one on R-matrix calculations for charged-particle reactions in the resolved resonance region, from 15 to 16 March 2201, and one on the evaluation of light systems produced by neutrons, from 17 to 19 March 2021. The purpose of the meetings was to review the status of the inter-comparisons of covariances and the full evaluation of the 7Be* system on the one hand, and the evaluation of n+9Be, n+14,15N, and n+23Na systems, on the other. A session dedicated to the emerging data needs for (α,n) reaction data was held on 18th March 2021. Summaries of the presentations and discussions can be found in this report.
APA, Harvard, Vancouver, ISO, and other styles
3

Benekohal, Rahim, and Hongjae Jeon. Results of Work Zone Queue Analysis Training Classes. Illinois Center for Transportation, November 2023. http://dx.doi.org/10.36501/0197-9191/23-024.

Full text
Abstract:
This white paper summarizes the results from three training classes on queue analysis in work zones. Accurately predicting the mobility impacts of work zones will enable designers to identify effective countermeasures to improve mobility and safety in work zones. The course provides hands-on training on basic analytical methods (queue analysis methods) to compute work zone performance measures such as capacity, speed, queue length, delay, and users’ costs. The capabilities and limitations of WorkZoneQ-Pro and the Highway Capacity Manual procedure for work zones are discussed, and basic guidance on how to use them is presented. The first and second courses were in-person and lasted 1.5 days. The third course was virtual and lasted only one day with reduced content. The evaluation results indicate that the participants very much liked the trainings and learned a lot. The in-person classes had slightly higher scores than the virtual class. The average scores were 4.4–4.9 (out of 5) for the in-person classes and 4.2–4.9 (out of 5) for the online class.
APA, Harvard, Vancouver, ISO, and other styles
4

Cilliers, Jacobus, Brahm Fleisch, Janeli Kotzé, Nompumelelo Mohohlwane, Stephen Taylor, and Tshegofatso Thulare. Can Virtual Replace In-person Coaching? Experimental Evidence on Teacher Professional Development and Student Learning in South Africa. Research on Improving Systems of Education (RISE), January 2021. http://dx.doi.org/10.35489/bsg-rise-wp_2020/050.

Full text
Abstract:
Virtual communication holds the promise of enabling low-cost professional development at scale, but the benefits of in-person interaction might be difficult to replicate. We report on an experiment in South Africa comparing on-site with virtual coaching of public primary school teachers. After three years, on-site coaching improved students' English oral language and reading proficiency (0.31 and 0.13 SD, respectively). Virtual coaching had a smaller impact on English oral language proficiency (0.12 SD), no impact on English reading proficiency, and an unintended negative effect on home language literacy. Classroom observations show that on-site coaching improved teaching practices, and virtual coaching led to larger crowding-out of home language teaching time. Implementation and survey data suggest technology itself was not a barrier to implementation, but rather that in-person contact enabled more accountability and support.
APA, Harvard, Vancouver, ISO, and other styles
5

Robayo Pinzon, Oscar, and Magda Páez Torres. La generación hiperconectada. Universidad del Rosario, September 2022. http://dx.doi.org/10.12804/dvcn_10336.35988_num6.

Full text
Abstract:
Los teléfonos inteligentes se han convertido en los reyes de un mundo permanentemente conectado en el que se volvió costumbre, y casi una necesidad, responder a los estímulos de la realidad virtual. De acuerdo con un estudio de la Universidad del Rosario, junto con otras instituciones, las aplicaciones de mensajería instantánea y las redes sociales son las que mayor impulsividad generan entre los jóvenes.
APA, Harvard, Vancouver, ISO, and other styles
6

González, María P., and Carlos Scartascini. Research Insights: How Can the Full Potential of Telemedicine Be Unlocked? Inter-American Development Bank, November 2023. http://dx.doi.org/10.18235/0005266.

Full text
Abstract:
An intervention in Argentina that sent periodic emails to households about available telemedicine services effectively increased the adoption of and demand for telemedicine. Patients who were part of the intervention were significantly more likely to use telemedicine services. The number of virtual consultations by the group that received the email intervention was six times larger than those of the control group after eight months. The study found that the intervention had lasting effects, suggesting that getting patients to try telemedicine for the first time can lead to continued use over time.
APA, Harvard, Vancouver, ISO, and other styles
7

Skelton-Macedo, Mary Caroline, and Fabio Gregori. Modelos híbridos de enseñanza y aprendizaje. Fundación Carolina, July 2022. http://dx.doi.org/10.33960/issn-e.1885-9119.dt73.

Full text
Abstract:
La pandemia de la COVID-19 ha tenido un profundo impacto sobre la educación superior. El paso hacia la formación virtual obligó al rediseño del proceso educativo en todos los países, pero sin tiempo para preparar a las instituciones educativas y al estudiantado. Uno de los aspectos más afectados fue el relativo a la evaluación que, al igual que las clases, hubo de realizarse en remoto. Asimismo, los efectos de la pandemia se vieron agravados en áreas de conocimiento que demandan actividades prácticas. Otras preocupaciones han concernido al impacto sobre la salud mental y a la vulnerabilidad financiera de muchas familias. Todo lo anterior ha influido en la reflexión sobre la calidad educativa, y ha generado debates sobre los indicadores para medir las prácticas adoptadas. Por otro lado, en términos de internacionalización, la movilidad académica virtual no ofrece la misma riqueza que la movilidad presencial. A raíz de estas experiencias, los países de América Latina pueden extraer lecciones compartidas ante la educación superior en pospandemia. Los relatos de las experiencias en el contexto brasileño se presentan como una contribución ilustrativa al objeto de estudio de este documento.
APA, Harvard, Vancouver, ISO, and other styles
8

Nkwenti, Michael N. Viable Learning Pathways Back into Schooling for Out-of-School Youths in Cameroon. Edited by Tony Mays. Commonwealth of Learning (COL), February 2023. http://dx.doi.org/10.56059/11599/5230.

Full text
Abstract:
The share of youth not in education, employment or training (NEET) is the proportion of young people who are not in education, employment or training among the population of the corresponding age group: youth aged 15–24, people aged 15–29, or both age groups. The data show an increasing proportion of Cameroonian youth NEET. Incomplete schooling is likely to be one of the causes of their status. According to the Census and Economic Information Centre (CEIC) statistics, the share of youth NEET has been steadily increasing among female youth and fluctuating among male youth. There are about three times more female than male youth NEET. This report therefore explores the challenge of out-of-school children and youths in Cameroon. Various attempts have been made in the past to address the challenge but have not had significant impact on improving the situation. This report therefore proposes the establishment of a virtual open school — Cameroon National Open School (CAMNOS) — that can provide a virtual backbone for both online and blended provision, with the latter making use of existing day schools as after-hours support centres.
APA, Harvard, Vancouver, ISO, and other styles
9

Bedford, Juliet. SSHAP Roundtable: 2021 Ebola Outbreak in Guinea. Institute of Development Studies (IDS), March 2021. http://dx.doi.org/10.19088/sshap.2021.019.

Full text
Abstract:
SSHAP convened a virtual roundtable of expert advisors on Friday 12 March 2021 to discuss the outbreak of Ebola in Guinea declared on 14 February 2021. At the time of writing (19 March 2021), there have been 18 cases (14 confirmed, 4 probable), 9 deaths (including 5 in the community; CFR 50%) and 6 recoveries. Six of the 7 first cases identified were from the family of the first case, a 51-year-old nurse from Gouecke who died in N’Zérékoré on 28 January. Vaccination was launched on 23 February, and as of 17 March, 3,492 people had been vaccinated. The last new case was reported on 4 March 2021.
APA, Harvard, Vancouver, ISO, and other styles
10

Chong, Alberto E., and Eliana La Ferrara. Television and Divorce: Evidence from Brazilian Novelas. Inter-American Development Bank, January 2009. http://dx.doi.org/10.18235/0010906.

Full text
Abstract:
This paper studies the link between television and divorce in Brazil by exploiting variation in the timing of availability of the signal of Rede Globo -the network that had a virtual monopoly on telenovelas in the countryacross municipal areas. Using three rounds of Census data (1970, 1980 and 1991) and controlling for area fixed effects and for time-varying characteristics, the paper finds that the share of women who are separated or divorced increases significantly after the Globo signal becomes available. The effect is robust to controlling for potential determinants of Globos entry strategy and is stronger for relatively smaller areas, where the signal reaches a higher fraction of the population.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography