Academic literature on the topic 'Virtual Organic Solar Cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virtual Organic Solar Cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Virtual Organic Solar Cell"

1

Tajima, Keisuke, and Hongzheng Chen. "Virtual Special Issue: Polymer Materials for Organic Solar Cells." ACS Applied Materials & Interfaces 12, no. 52 (December 30, 2020): 57669–70. http://dx.doi.org/10.1021/acsami.0c21233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sahu, Harikrishna, Feng Yang, Xiaobo Ye, Jing Ma, Weihai Fang, and Haibo Ma. "Designing promising molecules for organic solar cells via machine learning assisted virtual screening." Journal of Materials Chemistry A 7, no. 29 (2019): 17480–88. http://dx.doi.org/10.1039/c9ta04097h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heath-Apostolopoulos, Isabelle, Diego Vargas-Ortiz, Liam Wilbraham, Kim E. Jelfs, and Martijn A. Zwijnenburg. "Correction: Using high-throughput virtual screening to explore the optoelectronic property space of organic dyes; finding diketopyrrolopyrrole dyes for dye-sensitized water splitting and solar cells." Sustainable Energy & Fuels 5, no. 5 (2021): 1584. http://dx.doi.org/10.1039/d1se90005f.

Full text
Abstract:
Correction for ‘Using high-throughput virtual screening to explore the optoelectronic property space of organic dyes; finding diketopyrrolopyrrole dyes for dye-sensitized water splitting and solar cells’ by Isabelle Heath-Apostolopoulos et al., Sustainable Energy Fuels, 2021, DOI: 10.1039/d0se00985g.
APA, Harvard, Vancouver, ISO, and other styles
4

Wen, Yaping, Lulu Fu, Gongqiang Li, Jing Ma, and Haibo Ma. "Accelerated Discovery of Potential Organic Dyes for Dye‐Sensitized Solar Cells by Interpretable Machine Learning Models and Virtual Screening." Solar RRL 4, no. 6 (April 24, 2020): 2000110. http://dx.doi.org/10.1002/solr.202000110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feron, K., C. J. Fell, L. J. Rozanski, B. B. Gong, N. Nicolaidis, W. J. Belcher, X. Zhou, E. Sesa, B. V. King, and P. C. Dastoor. "Towards the development of a virtual organic solar cell: An experimental and dynamic Monte Carlo study of the role of charge blocking layers and active layer thickness." Applied Physics Letters 101, no. 19 (November 5, 2012): 193306. http://dx.doi.org/10.1063/1.4767291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, S., Z. Fan, Y. Wang, and J. Haliburton. "Organic solar cell optimizations." Journal of Materials Science 40, no. 6 (March 2005): 1429–43. http://dx.doi.org/10.1007/s10853-005-0579-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Izawa, Seiichiro, Armand Perrot, Ji-Hyun Lee, and Masahiro Hiramoto. "Organic pn homojunction solar cell." Organic Electronics 71 (August 2019): 45–49. http://dx.doi.org/10.1016/j.orgel.2019.04.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

YASE, Kiyoshi, Tetsuya TAIMA, Kohjiro HARA, and Kazuhiro SAITO. "Organic Thin Film Solar Cell." Kobunshi 54, no. 12 (2005): 888. http://dx.doi.org/10.1295/kobunshi.54.888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vaishnav, M. S., P. Sarang, V. R. Harikrishnan, Abhiraj Gopinadh, S. Jayaraj, and P. Predeep. "Inverting the organic solar cell." IOP Conference Series: Materials Science and Engineering 872 (June 27, 2020): 012007. http://dx.doi.org/10.1088/1757-899x/872/1/012007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shichiri, Tokushige, Minoru Suezaki, and Takeshi Inoue. "Three-Layer Organic Solar Cell." Chemistry Letters 21, no. 9 (September 1992): 1717–20. http://dx.doi.org/10.1246/cl.1992.1717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Virtual Organic Solar Cell"

1

Pendyala, Raghu Kishore. "Automated Simulation of Organic Photovoltaic Solar Cells." Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15338.

Full text
Abstract:

This project is an extension of a pre-existing simulation program (‘Simulation_2dioden’). This simulation program was first developed in Konarka Technologies. The main purpose of the project ‘Simulation_2dioden’ is to calibrate the values of different parameters like, Shunt resistance, Series resistance, Ideality factor, Diode current, epsilon, tau, contact probability, AbsCT, intensity, etc; This is one of the curve fitting procedure’s. This calibration is done by using different equations. Diode equation is one of the main equation’s used in calculating different currents and voltages, from the values generated by diode equation all the other parameters are calculated.

The reason for designing this simulation_2dioden is to calculate the values of different parameters of a device and the researcher would know which parameter effects more in the device efficiency, accordingly they change the composition of the materials used in the device to acquire a better efficiency. The platform used to design this project is ‘Microsoft Excel’, and the tool used to design the program is ‘Visual basics’. The program could be otherwise called as a ‘Virtual Solar cell’. The whole Virtual Solar cell is programmed in a single excel sheet.

An Automated working solution is suggested which could save a lot of time for the researchers, which is the main aim of this project. To calibrate the parameter values, one has to load the J-V characteristics and simulate the program by just clicking one button. And the parameters extracted by using this automated simulation are Parallel resistance, Series resistance, Diode ideality, Saturation current, Contact properties, and Charge carrier mobility.

Finally, a basic working solution has been initiated by automating the simulation program for calibrating the parameter values.

APA, Harvard, Vancouver, ISO, and other styles
2

Whyburn, Gordon Patrick. "A simple organic solar cell." Pomona College, 2007. http://ccdl.libraries.claremont.edu/u?/stc,21.

Full text
Abstract:
Finding renewable sources of energy is becoming an increasingly important component of scientific research. Greater competition for existing sources of energy has strained the world’s supply and demand balance and has increased the prices of traditional sources of energy such as oil, coal, and natural gas. The experiment discussed in this paper is designed to identify and build an inexpensive and simple method for creating an effective organic solar cell.
APA, Harvard, Vancouver, ISO, and other styles
3

Duan, Ruozhu. "Fabrication and Characterization of Organic Solar Cell Nanocomposite Materials." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1395406673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stranks, Samuel David. "Investigating carbon nanotube - polymer blends for organic solar cell applications." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3a65d509-1610-4517-b10d-c90d832134c3.

Full text
Abstract:
This thesis describes studies on nanohybrid systems consisting of single-walled carbon nanotubes (SWNTs) with monolayer coatings of semiconducting polymers. Steady-state and time-resolved optical and high-resolution microscopy experiments were used to investigate the blends. These materials show promise for use in organic photovoltaics (OPVs) owing to the high carrier mobilities and large aspect ratios of SWNTs, the controllable solubilisation of tubes with various polymers and the broad light-harvesting abilities of organic polymers. Chapters 1 and 2 introduce the theory and background behind the work and present a literature review of previous work utilising carbon nanotubes in OPV devices, revealing poor performances to date. The experimental methods used during the thesis are detailed in Chapter 3 and the solution processing techniques used to prepare the polymer–nanotube blend samples are described in Chapter 4. Chapter 5 describes a study on a nanotube blend with a thiophene polymer, a system previously unsuccessfully implemented into OPV devices. Ultrafast spectroscopic measurements showed that electrons can transfer on a 400 fs time scale from the polymer to nanotubes and the conditions to allow long-lived free charges to be produced were found. The study is extended in Chapter 6 to show that nanostructures consisting of a nanotube coated in one polymer can then be coated by a second polymer and that these nano-engineered structures could be implemented into OPV devices. The use of a competition binding process to isolate purely semiconducting nanotubes dispersed with any desired polymer is then described in Chapter 7. Finally, Chapter 8 introduces systems consisting of chains of porphyrin units, nature’s light-harvesting systems, bound to nanotubes and the blends were found to exhibit the required electronic alignment for use in OPVs. The work described in this thesis provides an explanation for the poor device behaviour of nanotube–polymer blends to date and, in particular, demonstrates several nanohybrid systems that show particular promise for improved OPV applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Timmreck, Ronny. "Characterization of tandem organic solar cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-183130.

Full text
Abstract:
The tandem solar cell concept is a promising approach to improve the efficiency of photovoltaic devices. However, characterization of tandem solar cell devices is challenging since correct efficiency determination demands special experimental infrastructure as well as suitable characterization procedures. Even though the appropriate IEC and ASTM measurement standards define all that very precisely, they cannot be applied without special care to organic photovoltaics (OPV) because they were originally developed for inorganic devices. As a consequence, nowadays almost all tandem organic solar cell publications are not using correct characterization procedures, often resulting in questionable efficiency values. The aim of this work is developing a measurement procedure for tandem organic solar cells assuring their correct characterization. Therefore, at first the existing standards and measurement procedures for tandem solar cells are reviewed and challenges when applying these standards to organic solar cells are identified. As main challenges the relatively low fill factors and distinct nonlinearities of organic solar cells are identified. As preliminary experiments, single junction organic solar cells are investigated to analyze the influence of measurement parameters like bias irradiance, bias voltage, and chopper frequency on the external quantum efficiency (EQE) of organic solar cells. This results in parameter sets assuring minimized artifacts for the subsequent EQE determination of the subcells of tandem organic solar cells. The main part of this thesis presents the detailed characterization of a tandem OPV example device. First, EQE is measured and validated by two independent institutes. The EQE results are used to calculate the illumination conditions to reach AM1.5g conditions for both subcells with a multi-source sun simulator. The resulting efficiency value under standard reporting conditions (SRC) is found to be 5% lower than the efficiency measured with a single-source sun simulator. A full spectrometric characterization shows that differing fill factors of the subcells are the reason for this behavior. To overcome the main reason for the complicated measurement procedure of tandem solar cells, the inaccessibility of the individual subcells, three different approaches for the jV-characteristics determination of the subcells are presented. The so-called Bias Voltage Approach is based on EQE-measurements under varying bias voltage and needs no additional electrical contacts. Therefore, it can be applied to existing devices. The Voltage Contact Approach as well as the Current Contact Approach require in changed stack designs. Therefore, they cannot be applied to existing devices but give more accurate results. Finally, a procedure for characterizing tandem organic solar cells is formulated. This procedures aims at giving practical advice how to characterize tandem organic solar cells to achieve results conforming to the measurement standards and being as accurate and reproducible as possible. Hence, this thesis attempts to establish standards for a correct measurement of tandem organic solar cells of which other emerging solar cell technologies can profit as well.
APA, Harvard, Vancouver, ISO, and other styles
6

Tress, Wolfgang. "Device Physics of Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89501.

Full text
Abstract:
This thesis deals with the device physics of organic solar cells. Organic photovoltaics (OPV) is a field of applied research which has been growing rapidly in the last decade leading to a current record value of power-conversion efficiency of 10 percent. One major reason for this boom is a potentially low-cost production of solar modules on flexible (polymer) substrate. Furthermore, new application are expected by flexible or semitransparent organic solar cells. That is why several OPV startup companies were launched in the last decade. Organic solar cells consist of hydrocarbon compounds, deposited as ultrathin layers (some tens of nm) on a substrate. Absorption of light leads to molecular excited states (excitons) which are strongly bound due to the weak interactions and low dielectric constant in a molecular solid. The excitons have to be split into positive and negative charges, which are subsequently collected at different electrodes. An effective dissociation of excitons is provided by a heterojunction of two molecules with different frontier orbital energies, such that the electron is transfered to the (electron) acceptor and the positive charge (hole) remains on the donor molecule. This junction can be realized by two distinct layers forming a planar heterojunction or by an intermixed film of donor and acceptor, resulting in a bulk heterojunction. Electrodes are attached to the absorber to collect the charges by providing an ohmic contact in the optimum case. This work focuses on the electrical processes in organic solar cells developing and employing a one-dimensional drift-diffusion model. The electrical model developed here is combined with an optical model and covers the diffusion of excitons, their separation, and the subsequent transport of charges. In contrast to inorganics, charge-carrier mobilities are low in the investigated materials and charge transport is strongly affected by energy barriers at the electrodes. The current-voltage characteristics (J-V curve) of a solar cell reflect the electrical processes in the device. Therefore, the J-V curve is selected as means of comparison between systematic series of simulation and experimental data. This mainly qualitative approach allows for an identification of dominating processes and provides microscopic explanations. One crucial issue, as already mentioned, is the contact between absorber layer and electrode. Energy barriers lead to a reduction of the power-conversion efficiency due to a decrease in the open-circuit voltage or the fill factor by S-shaped J-V curve (S-kink), which are often observed for organic solar cells. It is shown by a systematic study that the introduction of deliberate barriers for charge-carrier extraction and injection can cause such S-kinks. It is explained by simulated electrical-field profiles why also injection barriers lead to a reduction of the probability for charge-carrier extraction. A pile-up of charge carriers at an extraction barrier is confirmed by measurements of transient photocurrents. In flat heterojunction solar cells an additional reason for S-kinks is found in an imbalance of electron and hole mobilities. Due to the variety of reasons for S-kinks, methods and criteria for a distinction are proposed. These include J-V measurements at different temperatures and of samples with varied layer thicknesses. Most of the studies of this this work are based on experimental data of solar cells comprisiing the donor dye zinc phthalocyanine and the acceptor fullerene C60. It is observed that the open-circuit voltage of these devices depends on the mixing ratio of ZnPc:C60. A comparison of experimental and simulation data indicates that the reason is a changed donor-acceptor energy gap caused by a shift of the ionization potential of ZnPc. A spatial gradient in the mixing ratio of a bulk heterojunction is also investigated as a donor(acceptor)-rich mixture at the hole(electron)-collecting contact is supposed to assist charge extraction. This effect is not observed, but a reduction of charge-carrier losses at the “wrong” electrode which is seen at an increase in the open-circuit voltage. The most important intrinsic loss mechanism of a solar cell is bulk recombination which is treated at the example of ZnPc:C60 devices in the last part of this work. An examination of the dependence of the open-circuit voltage on illumination intensity shows that the dominating recombination mechanism shifts from trap-assisted to direct recombination for higher intensities. A variation of the absorption profile within the blend layer shows that the probability of charge-carrier extraction depends on the locus of charge-carrier generation. This results in a fill factor dependent on the absorption profile. The reason is an imbalance in charge-carrier mobilities which can be influenced by the mixing ratio. The work is completed by a simulation study of the influence of charge-carrier mobilities and different recombination processes on the J-V curve and an identification of a photoshunt dominating the experimental linear photocurrent-voltage characteristics in reverse bias
Diese Dissertation beschäftigt sich mit der Physik organischer Solarzellen. Die organische Photovoltaik ist ein Forschungsgebiet, dem in den letzten zehn Jahren enorme Aufmerksamkeit zu Teil wurde. Der Grund liegt darin, dass diese neuartigen Solarzellen, deren aktueller Rekordwirkungsgrad bei 10 Prozent liegt, ein Potential für eine kostengünstige Produktion auf flexiblem (Polymer)substrat aufweisen und aufgrund ihrer Vielfältigkeit neue Anwendungsbereiche für die Photovoltaik erschließen. Organische Solarzellen bestehen aus ultradünnen (einige 10 nm) Schichten aus Kohlenwasserstoffverbindungen. Damit der photovoltaische Effekt genutzt werden kann, müssen die durch Licht angeregten Molekülzustände zu freien Ladungsträgern führen, wobei positive und negative Ladung an unterschiedlichen Kontakten extrahiert werden. Für eine effektive Trennung dieser stark gebundenden lokalisierten angeregten Zustände (Exzitonen) ist eine Grenzfläche zwischen Molekülen mit unterschiedlichen Energieniveaus der Grenzorbitale erforderlich, sodass ein Elektron auf einem Akzeptor- und eine positive Ladung auf einem Donatormolekül entstehen. Diese Grenzschicht kann als planarer Heteroübergang durch zwei getrennte Schichten oder als Volumen-Heteroübergang in einer Mischschicht realisiert werden. Die Absorberschichten werden durch Elektroden kontaktiert, wobei es für effiziente Solarzellen erforderlich ist, dass diese einen ohmschen Kontakt ausbilden, da ansonsten Verluste zu erwarten sind. Diese Arbeit behandelt im Besonderen die elektrischen Prozesse einer organischen Solarzelle. Dafür wird ein eindimensionales Drift-Diffusionsmodell entwickelt, das den Transport von Exzitonen, deren Trennung an einer Grenzfläche und die Ladungsträgerdynamik beschreibt. Abgesehen von den Exzitonen gilt als weitere Besonderheit einer organischen Solarzelle, dass sie aus amorphen, intrinsischen und sehr schlecht leitfähigen Absorberschichten besteht. Elektrische Effekte sind an der Strom-Spannungskennlinie (I-U ) sichtbar, die in dieser Arbeit als Hauptvergleichspunkt zwischen experimentellen Solarzellendaten und den Simulationsergebnissen dient. Durch einen weitgehend qualitativen Vergleich können dominierende Prozesse bestimmt und mikroskopische Erklärungen gefunden werden. Ein wichtiger Punkt ist der schon erwähnte Kontakt zwischen Absorberschicht und Elektrode. Dort auftretende Energiebarrieren führen zu einem Einbruch im Solarzellenwirkungsgrad, der sich durch eine Verringerung der Leerlaufspanung und/oder S-förmigen Kennlinien (S-Knick) bemerkbar macht. Anhand einer systematischen Studie der Grenzfläche Lochleiter/Donator wird gezeigt, dass Energiebarrieren sowohl für die Ladungsträgerextraktion als auch für die -injektion zu S-Knicken führen können. Insbesondere die Tatsache, dass Injektionsbarrieren sich auch negativ auf den Photostrom auswirken, wird anhand von simulierten Ladungsträger- und elektrischen Feldprofilen erklärt. Das Aufstauen von Ladungsträgern an Extraktionsbarrieren wird durch Messungen transienter Photoströme bestätigt. Da S-Knicke in organischen Solarzellen im Allgemeinen häufig beobachtet werden, werden weitere Methoden vorgeschlagen, die die Identifikation der Ursachen ermöglichen. Dazu zählen I-U Messungen in Abhängigkeit von Temperatur und Schichtdicken. Als eine weitere Ursache von S-Knicken werden unausgeglichene Ladungsträgerbeweglichkeiten in einer Solarzelle mit flachem Übergang identifiziert und von den Barrierefällen unterschieden. Weiterer Forschungsgegenstand dieser Arbeit sind Mischschichtsolarzellen aus dem Donator-Farbstoff Zink-Phthalozyanin ZnPc und dem Akzeptor Fulleren C60. Dort wird beobachtet, dass die Leerlaufspannung vom Mischverhältnis abhängt. Ein Vergleich von Experiment und Simulation zeigt, dass sich das Ionisationspotenzial von ZnPc und dadurch die effektive Energielücke des Mischsystems ändern. Zusätzlich zu homogenen Mischschichten werden Solarzellen untersucht, die einen Gradienten im Mischungsverhältnis aufweisen. Die Vermutung liegt nahe, dass ein hoher Donatorgehalt am Löcherkontakt und ein hoher Akzeptorgehalt nahe des Elektronenkontakts die Ladungsträgerextraktion begünstigen. Dieser Effekt ist in dem hier untersuchten System allerdings vergleichsweise irrelevant gegenüber der Tatsache, dass der Gradient das Abfließen bzw. die Rekombination von Ladungsträgern am “falschen” Kontakt reduziert und somit die Leerlaufspannung erhöht. Der wichtigste intrinsische Verlustmechanismus einer Solarzelle ist die Rekombination von Ladungsträgern. Diese wird im letzten Teil der Arbeit anhand der ZnPc:C60 Solarzelle behandelt. Messungen der Leerlaufspannung in Abhängigkeit von der Beleuchtungsintensität zeigen, dass sich der dominierende Rekombinationsprozess mit zunehmender Intensität von Störstellenrekombination zu direkter Rekombination von freien Ladungsträgern verschiebt. Eine gezielte Variation des Absorptionsprofils in der Absorberschicht zeigt, dass die Ladungsträgerextraktionswahrscheinlickeit vom Ort der Ladungsträgergeneration abhängt. Dieser Effekt wird hervorgerufen durch unausgeglichene Elektronen- und Löcherbeweglichkeiten und äußert sich im Füllfaktor. Weitere Simulationsergebnisse bezüglich des Einflusses von Ladungsträgerbeweglichkeiten und verschiedener Rekombinationsmechanismen auf die I-U Kennlinie und die experimentelle Identifikation eines Photoshunts, der den Photostrom in Rückwärtsrichtung unter Beleuchtung dominiert, runden die Arbeit ab
APA, Harvard, Vancouver, ISO, and other styles
7

Anderberg, Elin. "LED Array Frequency Dependent Photocurrent Imaging of Organic Solar Cell Modules." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138683.

Full text
Abstract:
To mitigate the risk for devastating climate changes, there is an urgent need to change the energy production from the current fossil based to renewable sources. Solar cells will contribute to an increasing share of the future energy systems. Today silicon solar cells dominate the market but printed organic solar cells are promising alternatives in terms of cost, flexibility, possibilities for building integrations and energy payback times. Printing enables roll-to-roll processing that is quick and renders huge volumes. Thus, also characterization and quality control must be fast. Recent tests have been performed showing that a LED array with amplitude modulated LEDs can be used to provide photocurrent images of modules with series connected sub cells in-line during manufacturing. The purpose of this thesis work is to further evaluate and develop this LED array characterization technique focusing on contact methods and signal interpretation. Two modes were examined; a contact mode and a capacitive contact-less mode. Both modes gave comparable results and indicated strong variations in performance of sub cells in the measured modules. Other methods to address individual cells also showed similar behavior. However, by manually adding extra contact points, current-voltage curves could be measured on the individual sub cells in the modules. Extraction of photocurrents were similar, but the parallel resistances varied strongly between the cells in the module. Increasing the frequency of the LEDs resulted in less variations. Calculations indicated that this frequency dependence could be used to separate the photocurrent generation and parallel resistance in the sub cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Sahare, Swapnil Ashok. "Enhancing the Photovoltaic Efficiency of a Bulk Heterojunction Organic Solar Cell." TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1609.

Full text
Abstract:
Active layer morphology of polymer-based solar cells plays an important role in improving power conversion efficiency (PCE). In this thesis, the focus is to improve the device efficiency of polymer-based solar cells. In the first objective, active layer morphology of polymer-solar cells was optimized though a novel solvent annealing technique. The second objective was to explore the possibility of replacing the highly sensitive aluminum cathode layer with a low-cost and stable alternative, copper metal. Large scale manufacturing of these solar cells is also explored using roll-to-roll printing techniques. Poly (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl (PCBM) were used as the active layer blend for fabricating the solar cell devices using bulk heterojunction (BHJ), which is a blend of a donor polymer and an acceptor material. Blends of the donor polymer, P3HT and acceptor, PCBM were cast using spin coating and the resulting active layers were solvent annealed with dichlorobenzene in an inert atmosphere. Solvent annealed devices showed improved morphology with nano-phase segregation revealed by atomic force microscopy (AFM) analysis. The roughness of the active layer was found to be 6.5 nm. The nano-phase segregation was attributed to PCBM clusters and P3HT domains being arranged under the solvent annealing conditions. These test devices showed PCE up to 9.2 % with current density of 32.32 mA/cm2, which is the highest PCE reported to date for a P3HT-PCBM based system. Copper was deposited instead of the traditional aluminum for device fabrication. We were able to achieve similar PCEs with copper-based devices. Conductivity measurements were done on thermally deposited copper films using the two-probe method. Further, for these two configurations, PCE and other photovoltaic parameters were compared. Finally, we studied new techniques of large scale fabrication such as ultrasonic spray coating, screen-printing, and intense pulse light sintering, using the facilities at the Conn Center for Renewable Energy Research at the University of Louisville. In this study, prototype devices were fabricated on flexible ITO coated plastics. Sintering greatly improved the conductivity of the copper nano-ink cathode layer. We will explore this technique’s application to large-scale fabrication of solar cell devices in the future work.
APA, Harvard, Vancouver, ISO, and other styles
9

Wynands, David. "Strategies for Optimizing Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65084.

Full text
Abstract:
This work investigates organic solar cells made of small molecules. Using the material system α,ω-bis(dicyanovinylene)-sexithiophene (DCV6T) - C60 as model, the correlation between the photovoltaic active layer morphology and performance of the solar cell is studied. The chosen method for controlling the layer morphology is applying different substrate temperatures (Tsub ) during the deposition of the layer. In neat DCV6T layers, substrate heating induces higher crystallinity as is shown by X-ray diffraction and atomic force microscopy (AFM). The absorption spectrum displays a more distinct fine structure, a redshift of the absorption peaks by up to 11 nm and a significant increase of the low energy absorption band at Tsub = 120°C compared to Tsub = 30°C. Contrary to general expectations, the hole mobility as measured in field effect transistors and with the method of charge extraction by linearly increasing voltage (CELIV) does not increase in samples with higher crystallinity. In mixed layers, investigations by AFM and UV-Vis spectroscopy reveal a stronger phase separation induced by substrate heating, leading to larger domains of DCV6T. This is indicated by an increased grain size and roughness of the topography, the increase of the DCV6T luminescence signal, and the more distinct fine structure of the DCV6T related absorption. Based on the results of the morphology analysis, the effect of different substrate temperatures on the performance of solar cells with flat and mixed DCV6T - C60 heterojunctions is investigated. In flat heterojunction solar cells, a slight increase of the photocurrent by about 10% is observed upon substrate heating, attributed to the increase of DCV6T absorption. In mixed DCV6T : C60 heterojunction solar cells, much more pronounced enhancements are achieved. By varying the substrate temperature from -7°C to 120°C, it is shown that the stronger phase separation upon substrate heating facilitates the charge transport, leading to a significant increase of the internal quantum efficiency (IQE), photocurrent, and fill factor. Consequently, the power conversion efficiency (PCE) increases from 0.5% at Tsub = -7°C to about 3.0 % at Tsub ≥ 77°C. Subsequent optimization of the DCV6T : C60 mixing ratio and the stack design of the solar cell lead to devices with PCE of 4.9±0.2 %. Using optical simulations, the IQE of these devices is studied in more detail to identify major remaining loss mechanisms. The evaluation of the absorption pattern in the wavelength range from 300 to 750 nm shows that only 77 % of the absorbed photons contribute to the exciton generation in photovoltaic active layers, while the rest is lost in passive layers. Furthermore, the IQE of the photovoltaic active layers, consisting of an intrinsic C60 layer and a mixed DCV6T : C60 layer, exhibits a lower exciton diffusion efficiency for C60 excitons compared to DCV6T excitons, attributed to exciton migration into the adjacent electron transport layer
Diese Arbeit befasst sich mit organischen Solarzellen aus kleinen Molekülen. Anhand des Materialsystems α,ω-bis(Dicyanovinylen)-Sexithiophen (DCV6T) - C60 wird der Zusammenhang zwischen Morphologie der photovoltaisch aktiven Schicht und dem Leistungverhalten der Solarzellen untersucht. Zur Beeinflussung der Morphologie werden verschiedene Substrattemperaturen (Tsub ) während des Schichtwachstums der aktiven Schicht eingestellt. Beim Heizen des Substrates weisen DCV6T Einzelschichten eine erhöhte Kristallinität auf, die mittels Röntgenbeugung und Rasterkraftmikroskopie (AFM) erkennbar ist. Zudem bewirkt die Erhöhung der Substrattemperatur von 30°C auf 120°C eine ausgeprägtere Feinstrukturierung des Absorptionsspektrums, eine Rotverschiebung um bis zu 11 nm und eine Verstärkung der niederenergetischen Absorptionsbande. Entgegen den Erwartungen wird weder in Feldeffekttransistoren noch mit der Methode der Ladungsextraktion bei linear steigenden Spannungspulsen (CELIV) eine Verbesserung der Löcherbeweglichkeit in Zusammenhang mit der erhöhten Kristallinität gemessen. Mischschichten mit C60 weisen bei erhöhten Substrattemperaturen eine stärkere Phasentrennung auf, die zu größeren DCV6T Domänen innerhalb der Schicht führt. Dieser Effekt wird zum Einen durch größere Körnung und Rauigkeit der Topographie, zum Anderen durch die Erhöhung des Lumineszenzsignals von DCV6T sowie der Ausprägung der Feinstruktur im Absorptionsspektrum nachgewiesen. Ausgehend von den Ergebnissen der Morphologieuntersuchung werden die Auswirkungen von verschiedenen Substrattemperaturen auf das Leistungsverhalten von DCV6T - C60 Solarzellen mit planarem und Volumen-Heteroübergang analysiert. Solarzellen mit planarem Heteroübergang weisen eine geringe Verbesserung des Photostromes von etwa 10 % beim Heizen des Substrates auf. Diese wird durch die Erhöhung der DCV6T Absorption verursacht. In Volumen-Heteroübergängen führt die stärkere Phasentrennung bei steigender Substrattemperatur im untersuchten Temperaturbereich von -7°C bis 120°C zu einer Verbesserung des Ladungsträgertransports. Dadurch verbessern sich die interne Quanteneffizienz (IQE), der Photostrom und der Füllfaktor. Der Wirkungsgrad der Solarzellen erhöht sich von 0.5 % bei Tsub = -7°C auf 3.0 % bei Tsub ≥ 77°C. Eine weitere Optimierung des DCV6T : C60 Mischverhältnisses und des Schichtaufbaus ermöglicht Solarzellen mit Wirkungsgraden von 4.9±0.2 %. Mittels optischer Simulationen wird die IQE dieser Solarzellen näher untersucht, um verbleibende Verlustmechanismen zu identifizieren. Es ergibt sich, dass innerhalb des Wellenlängenbereichs von 300 bis 750 nm nur 77 % der absorbierten Photonen tatsächlich in den photovoltaisch aktiven Schichten absorbiert werden, während der Rest in nicht aktiven Schichten verloren geht. Des Weiteren kann nachgewiesen werden, dass C60 Exzitonen aus der aktiven Schicht, bestehend as einer intrinsischen C60 Schicht und einer DCV6T : C60 Mischschicht, durch Diffusion in die angrenzende Elektronentransportschicht verloren gehen
APA, Harvard, Vancouver, ISO, and other styles
10

Benson, Jessica J. "Spectroscopic studies of organic donor-acceptor blend films for solar cell applications." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/11386.

Full text
Abstract:
Using several organic electron donor and electron acceptor materials, solution cast blend films were studied to better understand charge separation and excited state formation in thin films for organic solar cell applications.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Virtual Organic Solar Cell"

1

Jinkō kōgōsei to yūkikei taiyō denchi: Saishin no gijutsu to sono kenkyū kaihatsu = Artificial photosynthesis and organic solar cell. Kyōto-shi: Kagaku Dōjin, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Materials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.

Full text
Abstract:
The book reviews recent research and new trends in the area of solar cell materials. Topics include fabrication methods, solar cell design, energy efficiency and commercialization of next-generation materials. Special focus is placed on graphene and carbon nanomaterials, graphene in dye-sensitized solar cells, perovskite solar cells and organic photovoltaic cells, as well as on transparent conducting electrode (TCE) materials, hollow nanostructured photoelectrodes, monocrystalline silicon solar cells (MSSC) and BHJ organic solar cells. Also discussed is the use of graphene, sulfides, and metal nanoparticle-based absorber materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Gaurav, Amit Kumar, and Pooja Dhiman, eds. Ferrite. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901595.

Full text
Abstract:
Ferrites are highly interesting high-tech materials. The book covers their classification, structure, synthesis, properties and applications. Emphasis is placed an biomedical applications, degradation of organic pollutants, high frequency applications, photocatalytic applications for wastewater remediation, solar cell applications, removal of organic dyes and drugs from aquatic systems, and the synthesis of hexagonal ferrites.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Virtual Organic Solar Cell"

1

Głowacki, Eric Daniel, Niyazi Serdar Sariciftci, and Ching W. Tang. "Organic Solar Cells organic solar cell." In Encyclopedia of Sustainability Science and Technology, 7553–84. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Głowacki, Eric Daniel, Niyazi Serdar Sariciftci, and Ching W. Tang. "Organic Solar Cells organic solar cell." In Solar Energy, 97–128. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Navothna, B., T. Saritha Kumar, B. Chandana, V. Manasa, and G. Pranathi. "Organic Solar Cell." In Lecture Notes in Electrical Engineering, 581–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5089-8_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hoth, Claudia, Andrea Seemann, Roland Steim, Tayebeh Ameri, Hamed Azimi, and Christoph J. Brabec. "Printed Organic Solar Cells." In Solar Cell Materials, 217–82. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118695784.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Beverina, Luca, and Alessandro Sanguineti. "Organic Fluorophores for Luminescent Solar Concentrators." In Solar Cell Nanotechnology, 317–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rai, Sandeep, and Atul Tiwari. "Efficient Organic Photovoltaic Cells: Current Global Scenario." In Solar Cell Nanotechnology, 447–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Byeong Jo, and Hyun Suk Jung. "Flexible Perovskite Solar Cell." In Organic-Inorganic Halide Perovskite Photovoltaics, 325–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Hsiang-Yu, Zheng Xu, Gang Li, and Yang Yang. "Improving Polymer Solar Cell Through Efficient Solar Energy Harvesting." In WOLEDs and Organic Photovoltaics, 199–236. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14935-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Jinsheng, and Zhishan Bo. "Donor Materials for Organic Solar Cell (OSC)." In Organic and Hybrid Solar Cells, 53–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10855-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mazher, Javed, Asefa A. Desta, and Shabina Khan. "PAn-Graphene-Nanoribbon Composite Materials for Organic Photovoltaics: A DFT Study of Their Electronic and Charge Transport Properties." In Solar Cell Nanotechnology, 357–407. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Virtual Organic Solar Cell"

1

Williams, Graeme, and Hany Aziz. "Imaging organic solar cell morphology with organic light emitting diode-organic solar cell devices." In SPIE Organic Photonics + Electronics, edited by Zakya H. Kafafi, Christoph J. Brabec, and Paul A. Lane. SPIE, 2012. http://dx.doi.org/10.1117/12.929173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sumaiya, Sharaf, Adel El-Shahat, and Kamran Kardel. "Multidimensional Modelling of Organic Solar Cell." In 2018 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2018. http://dx.doi.org/10.1109/ghtc.2018.8601716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mime, Farha Islam, Md Sakib Hasan Khan, S. M. Asaduzzaman, Nusrat Karim, and Md Rafiqul Islam. "Efficient Triple Junction Organic Solar Cell." In 2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020. http://dx.doi.org/10.1109/tensymp50017.2020.9230594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Gang, Vishal Shrotriya, Jinsong Huang, and Yang Yang. "Measurement issues of organic solar cell." In Photonic Devices + Applications, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2008. http://dx.doi.org/10.1117/12.799607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Hongwei. "Printable Mesoscopic Perovskite Solar Cell: From Cell to Module." In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ren, Liqiang, and Shiren Wang. "Organic Solar Cell With Carbon Nanotube Anode." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90060.

Full text
Abstract:
In last decade, organic solar cell (OSC) has attracted many attentions due to its special advantages such as low cost, easy large scale fabrication and high flexibility. However, the stylish OSC anode Indium Tin Oxide (ITO) is not flexible and would undergo breakdown on bending of flexible substrates. What’s more, ITO is costly since the limited indium in the nature. Recently, carbon nanotubes (CNTs) film shows potential to alternate ITO as high performance flexible anode since its ability to surmount these constrains and similar work function with ITO. Nevertheless the conductivity and transparence of CNTs film are still far below its counterpart. Additionally, a dependable model of OSC with CNTs film anode is not well established. In this paper, transparent conductive CNTs film is prepared on glass and plastic substrates at first. A facile filtration and pressing fabrication method is introduced. Our empirical model shows that dimension of CNTs bundles has significant effect on CNT network performance. FTIR shows the post-treatment effect on CNTs film. The OSC with high performance CNTs film anode shows similar efficiency compared with regular OSC with ITO anode.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaulachs, I., I. Muzikante, L. Gerca, G. Shlihta, P. Shipkovs, G. Kashkarova, M. Roze, J. Kalnachs, A. Murashov, and G. Rozite. "Bi-Layer GaOHPc:PCBM/P3HT:PCBM Organic Solar Cell." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp110572846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Emery, K., and T. Moriarty. "Accurate measurement of organic solar cell efficiency." In Photonic Devices + Applications, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2008. http://dx.doi.org/10.1117/12.799606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cros, Stéphane, Stéphane Guillerez, Rémi de Bettignies, Noëlla Lemaître, Severine Bailly, and Pascal Maisse. "Relationship between encapsulation barrier performance and organic solar cell lifetime." In Solar Energy + Applications, edited by Neelkanth G. Dhere. SPIE, 2008. http://dx.doi.org/10.1117/12.794986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anctil, Annick, Callie Babbitt, Brian Landi, and Ryne P. Raffaelle. "Life-cycle assessment of organic solar cell technologies." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5617085.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Virtual Organic Solar Cell"

1

Pan, Shanlin. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1163882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferguson, Andrew J. Materials and Device Architectures for Organic Solar Cell Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-355. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1479638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography