To see the other types of publications on this topic, follow the link: Virtual Organic Solar Cell.

Journal articles on the topic 'Virtual Organic Solar Cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Virtual Organic Solar Cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tajima, Keisuke, and Hongzheng Chen. "Virtual Special Issue: Polymer Materials for Organic Solar Cells." ACS Applied Materials & Interfaces 12, no. 52 (December 30, 2020): 57669–70. http://dx.doi.org/10.1021/acsami.0c21233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sahu, Harikrishna, Feng Yang, Xiaobo Ye, Jing Ma, Weihai Fang, and Haibo Ma. "Designing promising molecules for organic solar cells via machine learning assisted virtual screening." Journal of Materials Chemistry A 7, no. 29 (2019): 17480–88. http://dx.doi.org/10.1039/c9ta04097h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heath-Apostolopoulos, Isabelle, Diego Vargas-Ortiz, Liam Wilbraham, Kim E. Jelfs, and Martijn A. Zwijnenburg. "Correction: Using high-throughput virtual screening to explore the optoelectronic property space of organic dyes; finding diketopyrrolopyrrole dyes for dye-sensitized water splitting and solar cells." Sustainable Energy & Fuels 5, no. 5 (2021): 1584. http://dx.doi.org/10.1039/d1se90005f.

Full text
Abstract:
Correction for ‘Using high-throughput virtual screening to explore the optoelectronic property space of organic dyes; finding diketopyrrolopyrrole dyes for dye-sensitized water splitting and solar cells’ by Isabelle Heath-Apostolopoulos et al., Sustainable Energy Fuels, 2021, DOI: 10.1039/d0se00985g.
APA, Harvard, Vancouver, ISO, and other styles
4

Wen, Yaping, Lulu Fu, Gongqiang Li, Jing Ma, and Haibo Ma. "Accelerated Discovery of Potential Organic Dyes for Dye‐Sensitized Solar Cells by Interpretable Machine Learning Models and Virtual Screening." Solar RRL 4, no. 6 (April 24, 2020): 2000110. http://dx.doi.org/10.1002/solr.202000110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feron, K., C. J. Fell, L. J. Rozanski, B. B. Gong, N. Nicolaidis, W. J. Belcher, X. Zhou, E. Sesa, B. V. King, and P. C. Dastoor. "Towards the development of a virtual organic solar cell: An experimental and dynamic Monte Carlo study of the role of charge blocking layers and active layer thickness." Applied Physics Letters 101, no. 19 (November 5, 2012): 193306. http://dx.doi.org/10.1063/1.4767291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, S., Z. Fan, Y. Wang, and J. Haliburton. "Organic solar cell optimizations." Journal of Materials Science 40, no. 6 (March 2005): 1429–43. http://dx.doi.org/10.1007/s10853-005-0579-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Izawa, Seiichiro, Armand Perrot, Ji-Hyun Lee, and Masahiro Hiramoto. "Organic pn homojunction solar cell." Organic Electronics 71 (August 2019): 45–49. http://dx.doi.org/10.1016/j.orgel.2019.04.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

YASE, Kiyoshi, Tetsuya TAIMA, Kohjiro HARA, and Kazuhiro SAITO. "Organic Thin Film Solar Cell." Kobunshi 54, no. 12 (2005): 888. http://dx.doi.org/10.1295/kobunshi.54.888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vaishnav, M. S., P. Sarang, V. R. Harikrishnan, Abhiraj Gopinadh, S. Jayaraj, and P. Predeep. "Inverting the organic solar cell." IOP Conference Series: Materials Science and Engineering 872 (June 27, 2020): 012007. http://dx.doi.org/10.1088/1757-899x/872/1/012007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shichiri, Tokushige, Minoru Suezaki, and Takeshi Inoue. "Three-Layer Organic Solar Cell." Chemistry Letters 21, no. 9 (September 1992): 1717–20. http://dx.doi.org/10.1246/cl.1992.1717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Cho, Young Joon, Min Ji Jeong, Ji Hye Park, Weiguang Hu, Jongchul Lim, and Hyo Sik Chang. "Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells." Energies 14, no. 4 (February 22, 2021): 1156. http://dx.doi.org/10.3390/en14041156.

Full text
Abstract:
Charge transporting materials (CTMs) in perovskite solar cells (PSCs) have played an important role in improving the stability by replacing the liquid electrolyte with solid state electron or hole conductors and enhancing the photovoltaic efficiency by the efficient electron collection. Many organic and inorganic materials for charge transporting in PSCs have been studied and applied to increase the charge extraction, transport and collection, such as Spiro-OMeTAD for hole transporting material (HTM), TiO2 for electron transporting material (ETM) and MoOX for HTM etc. However, recently inorganic CTMs are used to replace the disadvantages of organic materials in PSCs such as, the long-term operational instability, low charge mobility. Especially, atomic layer deposition (ALD) has many advantages in obtaining the conformal, dense and virtually pinhole-free layers. Here, we review ALD inorganic CTMs and their function in PSCs in view of the stability and contribution to enhancing the efficiency of photovoltaics.
APA, Harvard, Vancouver, ISO, and other styles
12

Bhuktare, Swapnil, Bahniman Ghosh, and Bhupesh Bishnoi. "Modelling Degradation in Organic Solar Cell." Journal of Computational and Theoretical Nanoscience 11, no. 9 (September 1, 2014): 1999–2004. http://dx.doi.org/10.1166/jctn.2014.3599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Xue, Rongming, Jingwen Zhang, Yaowen Li, and Yongfang Li. "Organic Solar Cell Materials toward Commercialization." Small 14, no. 41 (August 14, 2018): 1801793. http://dx.doi.org/10.1002/smll.201801793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ebrahim, Shaker, Moataz Soliman, and Tarek M. Abdel-Fattah. "Hybrid Inorganic–Organic Heterojunction Solar Cell." Journal of Electronic Materials 40, no. 9 (June 7, 2011): 2033–41. http://dx.doi.org/10.1007/s11664-011-1671-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Deepak, K. "Solar Cell Characteristic Studies On Metal Organic Framework/TiO2 Hybrid Solar Cell." Advanced Materials Letters 11, no. 9 (September 1, 2020): 20091555. http://dx.doi.org/10.5185/amlett.2020.091555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kim, T. W., B. R. Albert, L. C. Kimerling, and J. Michel. "InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion." Journal of Applied Physics 123, no. 8 (February 28, 2018): 085111. http://dx.doi.org/10.1063/1.5018082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Somani, Prakash R., Savita P. Somani, M. Umeno, and A. Sato. "Concept and demonstration of all organic Gratzel solar cell (dye sensitized solar cell)." Applied Physics Letters 89, no. 8 (August 21, 2006): 083501. http://dx.doi.org/10.1063/1.2337563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mazhari, B. "An improved solar cell circuit model for organic solar cells." Solar Energy Materials and Solar Cells 90, no. 7-8 (May 2006): 1021–33. http://dx.doi.org/10.1016/j.solmat.2005.05.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nair, Gomesh, Syafinar Ramli, Muhammad Irwanto, Mohd Irwan Yusoff, Muhammad Fitra, Uda Hashim, and Norman Mariun. "Fabrication of Organic Dye Sensitized Solar Cell." Applied Mechanics and Materials 699 (November 2014): 516–21. http://dx.doi.org/10.4028/www.scientific.net/amm.699.516.

Full text
Abstract:
Renewable energy is rapidly gaining importance as an energy resource to help aid the national energy depletion crisis of fossil fuel and coal. One of the most potential renewable energy sources in Malaysia is hydropower followed by solar energy. This paper presents the fabrication of Dye Sensitized Solar Cell (DSSC) using organic dyes from dragon fruit and chlorophyll which is extracted from spinach. The fabrication of DSSC uses the Dr.blade method. Result shows that the efficiency by using dragon fruit as sensitizer at 40µm TiO2 Thickness is 6.45%, better than the usage of chlorophyll dye which is 4.23% at the same thickness. Result also shows that at 80µm by using the dyes from chlorophyll extract has higher solar cell efficiency compare to dragon fruit. This shows that both the chlorophyll extract and dragon fruit shows potential in the development of a feasible working organic dye.
APA, Harvard, Vancouver, ISO, and other styles
20

Srivastava, Gaurav. "Expansion of Next Generation Organic Solar Cell." International Journal for Research in Applied Science and Engineering Technology 6, no. 4 (April 30, 2018): 2234–37. http://dx.doi.org/10.22214/ijraset.2018.4381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jin, Jong W., Sungyeop Jung, Yvan Bonnassieux, Gilles Horowitz, Alexandra Stamateri, Christos Kapnopoulos, Argiris Laskarakis, and Stergios Logothetidis. "Universal Compact Model for Organic Solar Cell." IEEE Transactions on Electron Devices 63, no. 10 (October 2016): 4053–59. http://dx.doi.org/10.1109/ted.2016.2598793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Ying-Xuan, Shin-Rong Tseng, Hsin-Fei Meng, Kuan-Chen Lee, Chiou-Hua Liu, and Sheng-Fu Horng. "Dark carrier recombination in organic solar cell." Applied Physics Letters 93, no. 13 (September 29, 2008): 133501. http://dx.doi.org/10.1063/1.2972115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hassan, A. S., M. A. Aboode, and I. H. Shallal. "Heterojunction Solar cell(NiPcTs/CdS)organic/inorganic." IOP Conference Series: Materials Science and Engineering 757 (April 2, 2020): 012034. http://dx.doi.org/10.1088/1757-899x/757/1/012034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, D. W., S. T. Tan, L. Ke, P. Liu, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, and D. L. Kwong. "Optimization of an inverted organic solar cell." Solar Energy Materials and Solar Cells 94, no. 6 (June 2010): 985–91. http://dx.doi.org/10.1016/j.solmat.2010.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

SHICHIRI, T., M. SUEZAKI, and T. INOUE. "ChemInform Abstract: Three-Layer Organic Solar Cell." ChemInform 24, no. 16 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199316301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kaake, Loren G. "Towards the Organic Double Heterojunction Solar Cell." Chemical Record 19, no. 6 (April 4, 2019): 1131–41. http://dx.doi.org/10.1002/tcr.201800180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Guechi, Abla, Mohamed Chegaar, and Abdelali Merabet. "Influence of solar radiation on the performance of organic solar cell." physica status solidi (c) 11, no. 9-10 (April 29, 2014): 1408–11. http://dx.doi.org/10.1002/pssc.201300594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhong Jian, 钟建, 俞江涛 Yu Jiangtao, and 刘峰 Liu Feng. "Heterojunction organic solar cell based on flexible substrate." High Power Laser and Particle Beams 24, no. 7 (2012): 1645–47. http://dx.doi.org/10.3788/hplpb20122407.1645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sumaiya, Sharaf, Kamran Kardel, and Adel El-Shahat. "Organic Solar Cell by Inkjet Printing—An Overview." Technologies 5, no. 3 (August 24, 2017): 53. http://dx.doi.org/10.3390/technologies5030053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zeeshan, Muhammad. "Improving Efficiency and Stability of Organic Solar Cell." International journal of Engineering Works 7, no. 10 (October 17, 2020): 375–78. http://dx.doi.org/10.34259/ijew.20.710375378.

Full text
Abstract:
Efficiency and stability are the main challenges of organic solar cells. In this research novel structure is investigated for organic solar cell which has improved efficiency and improved stability. Blend of PTB7 and PCBM elements was used for the active layer of cell. Thickness of this layer was varied from 80nm to 200nm and selected the optimized thickness of 90nm. On which the cell has maximum efficiency of 12.24 %. The influence of window layer material such as Zinc oxide (ZnO) and titanium dioxide (TiO2) with various electrode materials including Indium tin oxide (ITO), Fluorine tin oxide (FTO), aluminum (Al) Silver (Ag) and Gold (Au) with different combinations have been investigated with the objective to enhance the absorption and PCE of the cell. Also varied the thicknesses of these different layers and selected the optimized thickness on which the cell had maximum efficiency. The structure of the proposed scheme was observed with ITO/Al as top and bottom electrode with thicknesses of 125nm and 100nm respectively and found that this holds the highest performance parameters including Jsc=0.130(mA/m2), Voc= 1 (V), FF=94.1% and ƞ=12.24% respectively as compared to different electrode combination and window layers with the same photoactive absorber material PTB7: PCBM. This indicates that the proposed structure can be a good choice for replacing less efficient in-organic cell.
APA, Harvard, Vancouver, ISO, and other styles
31

叶, 明富. "Review of Organic Solar Cell Active Layer Materials." Material Sciences 08, no. 04 (2018): 286–300. http://dx.doi.org/10.12677/ms.2018.84032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Deschler, Felix, Daniel Riedel, Bernhard Ecker, Elizabeth von Hauff, Enrico Da Como, and Roderick C. I. MacKenzie. "Increasing organic solar cell efficiency with polymer interlayers." Phys. Chem. Chem. Phys. 15, no. 3 (2013): 764–69. http://dx.doi.org/10.1039/c2cp43876c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Sung Jin, Won Jin Kim, Alexander N. Cartwright, and Paras N. Prasad. "Self-Passivating hybrid (organic/inorganic) tandem solar cell." Solar Energy Materials and Solar Cells 93, no. 5 (May 2009): 657–61. http://dx.doi.org/10.1016/j.solmat.2008.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aernouts, Tom, Peter Vanlaeke, Wim Geens, Jef Poortmans, Paul Heremans, Staf Borghs, Robert Mertens, Ronn Andriessen, and Luc Leenders. "Printable anodes for flexible organic solar cell modules." Thin Solid Films 451-452 (March 2004): 22–25. http://dx.doi.org/10.1016/j.tsf.2003.11.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Arbab, Elhadi A. A., Bidini A. Taleatu, and Genene Tessema Mola. "Ternary molecules blend organic bulk heterojunction solar cell." Materials Science in Semiconductor Processing 40 (December 2015): 158–61. http://dx.doi.org/10.1016/j.mssp.2015.06.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yakuphanoglu, F., and R. S. Anand. "Charge transport properties of an organic solar cell." Synthetic Metals 160, no. 21-22 (November 2010): 2250–54. http://dx.doi.org/10.1016/j.synthmet.2010.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lee, Hyunho, Jiho Sohn, Priyanka Tyagi, and Changhee Lee. "Crystallinity dependent thermal degradation in organic solar cell." Applied Physics Letters 110, no. 5 (January 30, 2017): 053301. http://dx.doi.org/10.1063/1.4975140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Jiun-Tai, and Chain-Shu Hsu. "Conjugated polymer nanostructures for organic solar cell applications." Polymer Chemistry 2, no. 12 (2011): 2707. http://dx.doi.org/10.1039/c1py00275a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Levitsky, Artem, Giovanni Maria Matrone, Aditi Khirbat, Ilaria Bargigia, Xiaolei Chu, Oded Nahor, Tamar Segal‐Peretz, et al. "Toward Fast Screening of Organic Solar Cell Blends." Advanced Science 7, no. 15 (June 18, 2020): 2000960. http://dx.doi.org/10.1002/advs.202000960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Franquet, A., C. Fleischmann, T. Conard, E. Voroshazi, C. Poleunis, R. Havelund, A. Delcorte, and W. Vandervorst. "G-SIMS analysis of organic solar cell materials." Surface and Interface Analysis 46, S1 (September 12, 2014): 96–99. http://dx.doi.org/10.1002/sia.5650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

LI Jia-qi, 李嘉琪, 刘彩霞 LIU Cai-xia, and 郭文滨 GUO Wen-bin. "Role of Solution-processed V2O5in Organic Solar Cell." Chinese Journal of Luminescence 34, no. 9 (2013): 1245–49. http://dx.doi.org/10.3788/fgxb20133409.1245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mandel, Savannah. "Stacked organic solar cell increased to 15.9% efficiency." Scilight 2020, no. 16 (April 17, 2020): 161103. http://dx.doi.org/10.1063/10.0001162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Andersson, Viktor, Kristofer Tvingstedt, and Olle Inganäs. "Optical modeling of a folded organic solar cell." Journal of Applied Physics 103, no. 9 (May 2008): 094520. http://dx.doi.org/10.1063/1.2917062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pattnaik, Sambit, Teng Xiao, R. Shinar, J. Shinar, and V. L. Dalal. "Novel Hybrid Amorphous/Organic Tandem Junction Solar Cell." IEEE Journal of Photovoltaics 3, no. 1 (January 2013): 295–99. http://dx.doi.org/10.1109/jphotov.2012.2212700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mai, Jiangquan, Tsz-Ki Lau, Ting Xiao, Chun-Jen Su, U.-ser Jeng, Ni Zhao, Xudong Xiao, and Xinhui Lu. "Ternary morphology facilitated thick-film organic solar cell." RSC Advances 5, no. 107 (2015): 88500–88507. http://dx.doi.org/10.1039/c5ra17268c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zimmermann, Eugen, Philipp Ehrenreich, Thomas Pfadler, James A. Dorman, Jonas Weickert, and Lukas Schmidt-Mende. "Erroneous efficiency reports harm organic solar cell research." Nature Photonics 8, no. 9 (September 2014): 669–72. http://dx.doi.org/10.1038/nphoton.2014.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fitra, M., I. Daut, N. Gomesh, M. Irwanto, and Y. M. Irwan. "Dye Solar Cell Using Syzigium Oleina Organic Dye." Energy Procedia 36 (2013): 341–48. http://dx.doi.org/10.1016/j.egypro.2013.07.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Majumder, Chandrachur, Akansha Rai, and Chayanika Bose. "Performance optimization of bulk heterojunction organic solar cell." Optik 157 (March 2018): 924–29. http://dx.doi.org/10.1016/j.ijleo.2017.11.114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cha, Hyojung, and Jiaying Wu. "Understanding what determines the organic solar cell stability." Joule 5, no. 6 (June 2021): 1322–25. http://dx.doi.org/10.1016/j.joule.2021.05.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Qian Kun, Wei Wei Zuo, and Shi Pan. "Integrated Design and Evaluation of Solar Energy and Building Based on Virtual Simulation Technology." Applied Mechanics and Materials 368-370 (August 2013): 1237–41. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.1237.

Full text
Abstract:
Based on analysis of the application status of the virtual reality technology and energy simulation technology in energy-efficient building, authors put organic combination with the virtual reality technology and energy simulation technology. Application methods of virtual simulation are discussed in integrated design of solar energy and building. And the evaluation process of solar energy and building integrated design is put forward. At the same time, according to the software of 3D Studio MAX and ECOTECT, the paper studies the case of solar energy and building integrated design virtual simulation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography