Journal articles on the topic 'Virtual power plant (VPP)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Virtual power plant (VPP).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chang, Ya Chin, Sung Ling Chen, Rung Fang Chang, and Chan Nan Lu. "Optimal Virtual Power Plant Dispatching Approach." Applied Mechanics and Materials 590 (June 2014): 511–15. http://dx.doi.org/10.4028/www.scientific.net/amm.590.511.
Full textLi, Tian Ran, Yun Hu Luo, and Lin Sun. "Risk Management of Virtual Power Plant Reserve Allocation." Applied Mechanics and Materials 448-453 (October 2013): 2695–98. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2695.
Full textSun, Zhong Wei. "Communication System Architecture for Hierarchical Virtual Power Plant Control." Applied Mechanics and Materials 631-632 (September 2014): 878–81. http://dx.doi.org/10.4028/www.scientific.net/amm.631-632.878.
Full textSu, Da Wei, Ji Nian Pang, and Hao Jiang. "Review on Functions and Control Technologies of Virtual Power Plant." Applied Mechanics and Materials 644-650 (September 2014): 3767–72. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3767.
Full textGeng, Shiping, Caixia Tan, Dongxiao Niu, and Xiaopeng Guo. "Optimal Allocation Model of Virtual Power Plant Capacity considering Electric Vehicles." Mathematical Problems in Engineering 2021 (June 12, 2021): 1–19. http://dx.doi.org/10.1155/2021/5552323.
Full textOh, Eunsung. "Risk-Based Virtual Power Plant Implementation Strategy for Smart Energy Communities." Applied Sciences 11, no. 17 (2021): 8248. http://dx.doi.org/10.3390/app11178248.
Full textDuan, Jie, Xiaodan Wang, Yajing Gao, et al. "Multi-Objective Virtual Power Plant Construction Model Based on Decision Area Division." Applied Sciences 8, no. 9 (2018): 1484. http://dx.doi.org/10.3390/app8091484.
Full textCandra, Dodiek, Kilian Hartmann, and Michael Nelles. "Economic Optimal Implementation of Virtual Power Plants in the German Power Market." Energies 11, no. 9 (2018): 2365. http://dx.doi.org/10.3390/en11092365.
Full textPodder, Amit Kumer, Sayemul Islam, Nallapaneni Manoj Kumar, et al. "Systematic Categorization of Optimization Strategies for Virtual Power Plants." Energies 13, no. 23 (2020): 6251. http://dx.doi.org/10.3390/en13236251.
Full textLin, Whei-Min, Chung-Yuen Yang, Zong-Yo Wu, and Ming-Tang Tsai. "Optimal Control of a Virtual Power Plant by Maximizing Conditional Value-at-Risk." Applied Sciences 11, no. 16 (2021): 7752. http://dx.doi.org/10.3390/app11167752.
Full textJasiński, Michał. "Combined Correlation and Cluster Analysis for Long-Term Power Quality Data from Virtual Power Plant." Electronics 10, no. 6 (2021): 641. http://dx.doi.org/10.3390/electronics10060641.
Full textJasiński, Michał, Tomasz Sikorski, Dominika Kaczorowska, et al. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements." Energies 14, no. 4 (2021): 974. http://dx.doi.org/10.3390/en14040974.
Full textYu, Jie, Qizhi Feng, Yang Li, and Jinde Cao. "Stochastic Optimal Dispatch of Virtual Power Plant considering Correlation of Distributed Generations." Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/135673.
Full textSun, Zhong Wei, and Jing Jiao. "A Survey of Vehicle-to-Grid Implementation through Virtual Power Plants." Applied Mechanics and Materials 631-632 (September 2014): 314–17. http://dx.doi.org/10.4028/www.scientific.net/amm.631-632.314.
Full textRopuszyńska-Surma, Edyta, and Magdalena Węglarz. "The Virtual Power Plant – A Review Of Business Models." E3S Web of Conferences 108 (2019): 01006. http://dx.doi.org/10.1051/e3sconf/201910801006.
Full textTan, Zhong-fu, Huan-huan Li, Li-wei Ju, and Qing-kun Tan. "Joint Scheduling Optimization of Virtual Power Plants and Equitable Profit Distribution Using Shapely Value Theory." Mathematical Problems in Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/3810492.
Full textOest, Frauke, Malin Radtke, Marita Blank-Babazadeh, Stefanie Holly, and Sebastian Lehnhoff. "Evaluation of Communication Infrastructures for Distributed Optimization of Virtual Power Plant Schedules." Energies 14, no. 5 (2021): 1226. http://dx.doi.org/10.3390/en14051226.
Full textPal, Poushali, Parvathy Ayalur Krishnamoorthy, Devabalaji Kaliaperumal Rukmani, et al. "Optimal Dispatch Strategy of Virtual Power Plant for Day-Ahead Market Framework." Applied Sciences 11, no. 9 (2021): 3814. http://dx.doi.org/10.3390/app11093814.
Full textKaczorowska, Dominika, Jacek Rezmer, Michal Jasinski, et al. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics." Energies 13, no. 24 (2020): 6670. http://dx.doi.org/10.3390/en13246670.
Full textSikorski, Tomasz, Michal Jasiński, Edyta Ropuszyńska-Surma, et al. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects." Energies 13, no. 12 (2020): 3086. http://dx.doi.org/10.3390/en13123086.
Full textBianchi, Stefano, Allegra De Filippo, Sandro Magnani, Gabriele Mosaico, and Federico Silvestro. "VIRTUS Project: A Scalable Aggregation Platform for the Intelligent Virtual Management of Distributed Energy Resources." Energies 14, no. 12 (2021): 3663. http://dx.doi.org/10.3390/en14123663.
Full textMoreno, Guillermo, Carlos Santos, Pedro Martín, Francisco Javier Rodríguez, Rafael Peña, and Branislav Vuksanovic. "Intra-Day Solar Power Forecasting Strategy for Managing Virtual Power Plants." Sensors 21, no. 16 (2021): 5648. http://dx.doi.org/10.3390/s21165648.
Full textPrzychodzień, Arkadiusz. "Virtual power plants - types and development opportunities." E3S Web of Conferences 137 (2019): 01044. http://dx.doi.org/10.1051/e3sconf/201913701044.
Full textGao, Rui, Hongxia Guo, Ruihong Zhang, et al. "A Two-Stage Dispatch Mechanism for Virtual Power Plant Utilizing the CVaR Theory in the Electricity Spot Market." Energies 12, no. 17 (2019): 3402. http://dx.doi.org/10.3390/en12173402.
Full textKo, Rakkyung, and Sung-Kwan Joo. "Stochastic Mixed-Integer Programming (SMIP)-Based Distributed Energy Resource Allocation Method for Virtual Power Plants." Energies 13, no. 1 (2019): 67. http://dx.doi.org/10.3390/en13010067.
Full textAlhelou, Hassan Haes, Pierluigi Siano, Massimo Tipaldi, Raffaele Iervolino, and Feras Mahfoud. "Primary Frequency Response Improvement in Interconnected Power Systems Using Electric Vehicle Virtual Power Plants." World Electric Vehicle Journal 11, no. 2 (2020): 40. http://dx.doi.org/10.3390/wevj11020040.
Full textJasiński, Michal, Tomasz Sikorski, Dominika Kaczorowska, et al. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application." Energies 13, no. 24 (2020): 6578. http://dx.doi.org/10.3390/en13246578.
Full textBehi, Behnaz, Ali Baniasadi, Ali Arefi, Arian Gorjy, Philip Jennings, and Almantas Pivrikas. "Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study." Energies 13, no. 10 (2020): 2614. http://dx.doi.org/10.3390/en13102614.
Full textJasiński, Michał, Tomasz Sikorski, Dominika Kaczorowska, et al. "A Case Study on a Hierarchical Clustering Application in a Virtual Power Plant: Detection of Specific Working Conditions from Power Quality Data." Energies 14, no. 4 (2021): 907. http://dx.doi.org/10.3390/en14040907.
Full textGao, Yajing, Xiaojie Zhou, Jiafeng Ren, Xiuna Wang, and Dongwei Li. "Double Layer Dynamic Game Bidding Mechanism Based on Multi-Agent Technology for Virtual Power Plant and Internal Distributed Energy Resource." Energies 11, no. 11 (2018): 3072. http://dx.doi.org/10.3390/en11113072.
Full textSikorski, Tomasz, Michał Jasiński, Edyta Ropuszyńska-Surma, et al. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Economic Aspects." Energies 12, no. 23 (2019): 4447. http://dx.doi.org/10.3390/en12234447.
Full textDey, Partha Pratim, Dulal Chandra Das, Abdul Latif, S. M. Suhail Hussain, and Taha Selim Ustun. "Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique." Sustainability 12, no. 17 (2020): 6979. http://dx.doi.org/10.3390/su12176979.
Full textSun, Guoqiang, Weihang Qian, Wenjin Huang, et al. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach." Energies 12, no. 10 (2019): 1918. http://dx.doi.org/10.3390/en12101918.
Full textLuo, Jingjing, Yajing Gao, Wenhai Yang, Yongchun Yang, Zheng Zhao, and Shiyu Tian. "Optimal Operation Modes of Virtual Power Plants Based on Typical Scenarios Considering Output Evaluation Criteria." Energies 11, no. 10 (2018): 2634. http://dx.doi.org/10.3390/en11102634.
Full textMeng, Shao Xin, Hao Bai, and Yu Li Wang. "Optimal Energy Management for Smart Distribution Grid Based on Virtual Power Plant." Advanced Materials Research 986-987 (July 2014): 388–93. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.388.
Full textKo, Rakkyung, Daeyoung Kang, and Sung-Kwan Joo. "Mixed Integer Quadratic Programming Based Scheduling Methods for Day-Ahead Bidding and Intra-Day Operation of Virtual Power Plant." Energies 12, no. 8 (2019): 1410. http://dx.doi.org/10.3390/en12081410.
Full textLi, Xiangyu, Dongmei Zhao, and Baicang Guo. "Decentralized and Collaborative Scheduling Approach for Active Distribution Network with Multiple Virtual Power Plants." Energies 11, no. 11 (2018): 3208. http://dx.doi.org/10.3390/en11113208.
Full textZhang, Jiahui, Zhiyu Xu, Weisheng Xu, Feiyu Zhu, Xiaoyu Lyu, and Min Fu. "Bi-Objective Dispatch of Multi-Energy Virtual Power Plant: Deep-Learning-Based Prediction and Particle Swarm Optimization." Applied Sciences 9, no. 2 (2019): 292. http://dx.doi.org/10.3390/app9020292.
Full textUllah, Zahid, and Nayyar Hussain Mirjat. "Virtual power plant: state of the art providing energy flexibility to local distribution grids." E3S Web of Conferences 231 (2021): 01002. http://dx.doi.org/10.1051/e3sconf/202123101002.
Full textLyu, Xu, Wang, Fu, and Xu. "A Two-Layer Interactive Mechanism for Peer-to-Peer Energy Trading Among Virtual Power Plants." Energies 12, no. 19 (2019): 3628. http://dx.doi.org/10.3390/en12193628.
Full textKalaf, A. A., O. Sh Alyozbaky, and A. I. Alghannam. "A modern technique to manage energy profile in Iraq: virtual power plant (VPP)." Journal of Physics: Conference Series 1973, no. 1 (2021): 012078. http://dx.doi.org/10.1088/1742-6596/1973/1/012078.
Full textNguyen, Duc Huu. "An approach to balance state of charges of distributed batteries in virtual power plants." Vietnam Journal of Science and Technology 56, no. 1 (2018): 81. http://dx.doi.org/10.15625/2525-2518/56/1/8715.
Full textPudjianto, D., C. Ramsay, and G. Strbac. "Microgrids and virtual power plants: Concepts to support the integration of distributed energy resources." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 222, no. 7 (2008): 731–41. http://dx.doi.org/10.1243/09576509jpe556.
Full textZhong, Weilin, Junru Chen, Muyang Liu, Mohammed Ahsan Adib Murad, and Federico Milano. "Coordinated Control of Virtual Power Plants to Improve Power System Short-Term Dynamics." Energies 14, no. 4 (2021): 1182. http://dx.doi.org/10.3390/en14041182.
Full textBehi, Behnaz, Ali Arefi, Philip Jennings, Arian Gorjy, and Almantas Pivrikas. "Advanced Monitoring and Control System for Virtual Power Plants for Enabling Customer Engagement and Market Participation." Energies 14, no. 4 (2021): 1113. http://dx.doi.org/10.3390/en14041113.
Full textNaval, Natalia, and Jose M. Yusta. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model." Energies 13, no. 11 (2020): 2900. http://dx.doi.org/10.3390/en13112900.
Full textJu, Liwei, Peng Li, Qinliang Tan, Zhongfu Tan, and GejiriFu De. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses." Energies 11, no. 11 (2018): 2903. http://dx.doi.org/10.3390/en11112903.
Full textZhang, Ming, Mingxing Guo, Bingqing Bai, et al. "Research on the designation of business model and bi-level optimization scheduling strategy of a VPP in energy market." E3S Web of Conferences 256 (2021): 02010. http://dx.doi.org/10.1051/e3sconf/202125602010.
Full textRaab, Andreas, Enrico Lauth, Kai Strunz, and Dietmar Göhlich. "Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations." World Electric Vehicle Journal 10, no. 1 (2019): 5. http://dx.doi.org/10.3390/wevj10010005.
Full textNadeem, Furquan, Mohd Asim Aftab, S. M. Suhail Hussain, et al. "Virtual Power Plant Management in Smart Grids with XMPP Based IEC 61850 Communication." Energies 12, no. 12 (2019): 2398. http://dx.doi.org/10.3390/en12122398.
Full text