Academic literature on the topic 'Virtual Power Plants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virtual Power Plants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Virtual Power Plants"

1

Kumagai, Jean. "Virtual power plants, real power." IEEE Spectrum 49, no. 3 (March 2012): 13–14. http://dx.doi.org/10.1109/mspec.2012.6156852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Newman, Guy, and Joseph Mutale. "Characterising Virtual Power Plants." International Journal of Electrical Engineering & Education 46, no. 4 (October 2009): 307–18. http://dx.doi.org/10.7227/ijeee.46.4.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dall'Anese, Emiliano, Swaroop S. Guggilam, Andrea Simonetto, Yu Christine Chen, and Sairaj V. Dhople. "Optimal Regulation of Virtual Power Plants." IEEE Transactions on Power Systems 33, no. 2 (March 2018): 1868–81. http://dx.doi.org/10.1109/tpwrs.2017.2741920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paniah, Crédo, Cédric Herpson, and Javier Gil-Quijano. "A Markov Decision Model for Cooperative Virtual Power Plants Market Participation." Journal of Clean Energy Technologies 3, no. 4 (2015): 302–11. http://dx.doi.org/10.7763/jocet.2015.v3.213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Przychodzień, Arkadiusz. "Virtual power plants - types and development opportunities." E3S Web of Conferences 137 (2019): 01044. http://dx.doi.org/10.1051/e3sconf/201913701044.

Full text
Abstract:
Modern power engineering meets new challenges. With the development of new energy production and storage technologies, creates new demands for energy services. To support this development, it is necessary to implement new teleinformatic systems that will allow for resource management. Such systems are called Virtual Power Plants (VPP). There are many definitions of this type of solutions due to the very wide range of possible applications. VPPs can be developed by many types of entities, e.g. distribution system operators, electricity generators, energy clusters. The ability to build a system based on modules allows you to customize the system to user’s needs. An opportunity for the development of VPP will be a package “Clean energy for all Europeans” (so called “Winter package”) that introduces regulations that allow for the development of renewable energy sources, including prosumers, and enables an active participation in the energy market for energy consumers. In addition, more stringent requirements for balancing production and energy consumption are introduced, requiring greater balancing accuracy.
APA, Harvard, Vancouver, ISO, and other styles
6

Sadeghian, Omid, Amin Mohammadpour Shotorbani, and Behnam Mohammadi-Ivatloo. "Generation maintenance scheduling in virtual power plants." IET Generation, Transmission & Distribution 13, no. 12 (June 18, 2019): 2584–96. http://dx.doi.org/10.1049/iet-gtd.2018.6751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Caixia, Tan, Tan Zhongfu, Wu Jianbin, Qi Huiwen, Zhang Xiangyu, and Xu Zhenbo. "Benefit analysis and evaluation of virtual power plants considering electric vehicles." E3S Web of Conferences 248 (2021): 02024. http://dx.doi.org/10.1051/e3sconf/202124802024.

Full text
Abstract:
Under the background of increasingly serious environmental pollution, virtual power plants have become an effective way to solve environmental pollution due to the characteristics of integrating a large number of clean distributed energy generation. At the same time, electric vehicles with dual attributes of power supply and load bring opportunities for the further development of virtual power plants. In this paper, the ideal matter-element comprehensive benefit evaluation model of virtual power plants is constructed by constructing the index system and weighting model of virtual power plants considering electric vehicles. The virtual power plants connected with different proportion of electric vehicles are taken as an example analysis. The results of the example analysis show that the comprehensive benefit of virtual power plants is the highest when the proportion of electric vehicles access reaches 120%.
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Zhongfu, Qingkun Tan, and Yuwei Wang. "Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power." Journal of Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/6139086.

Full text
Abstract:
For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Yungao, Jing Wu, and Gejirifu De. "Research on Trading Optimization Model of Virtual Power Plant in Medium- and Long-Term Market." Energies 15, no. 3 (January 20, 2022): 759. http://dx.doi.org/10.3390/en15030759.

Full text
Abstract:
In the medium- and long-term market, the power generation side and the power purchase side ensure to avoid the fluctuation of delivery prices through the medium- and long-term power contract, to avoid some market risks. This paper combines virtual power plants to aggregate distributed renewable energy to participate in market transactions. Firstly, this paper analyzes the two operation modes of power markets and combs the transaction varieties and modes in the medium- and long-term market. Secondly, the common contract power decomposition methods in the medium- and long-term market are analyzed, and the revenue model of virtual power plants is established. Then, combined with the renewable energy quota system and the green certificate trading mechanism, this paper constructs an optimization model of medium- and long-term contract trading of virtual power plants considering renewable energy derivatives. Finally, different renewable energy output scenarios are designed to analyze the benefits of virtual power plants in centralized and decentralized power markets. The example analysis shows the effectiveness of price difference contract for virtual power plants to ensure the renewable power revenue, which provides a certain reference for virtual power plants to participate in the power market.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhong, Weilin, Georgios Tzounas, Muyang Liu, and Federico Milano. "On-line inertia estimation of Virtual Power Plants." Electric Power Systems Research 212 (November 2022): 108336. http://dx.doi.org/10.1016/j.epsr.2022.108336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Virtual Power Plants"

1

Newman, Guy. "Characterisation of virtual power plants." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-of-virtual-power-plants(5e647750-5a44-40f0-8a33-763361d3a50b).html.

Full text
Abstract:
The growing number of micro generation devices in the electrical network is leading many to consider that these devices can no longer be considered as fit and forget, but should instead be considered as having a demonstrable network impact which should be predicted and utilised. One of the techniques for considering the impacts of these devices is the Virtual Power Plant (VPP). The VPP is the aggregation of all the Distributed Generation (DG) connected into the network up to and including the connection voltage of the VPP, such that the cumulative power up the voltage levels can be seen in the single VPP unit, rather than across a broad spread of devices. One of the crucial tasks in characterising the VPP, developed in this work, is the ability to correctly predict and then aggregate the behaviour of several technology types which are weather driven, as a large proportion of DG is weather driven. Of this weather driven DG, some can only typically be dispatched with modification and the rest cannot be dispatched at all. The aggregation of the VPP as part of the electrical network is also developed, as the constraints of the network and the reliability of the network cannot be overlooked when considering the aggregation of the VPP. From a distribution network operator's (DNO) perspective, these characterisation models can be used to highlight problems in the network introduced by the addition of DG, but are also generally utilitarian in their role of predicting the power output (or negative load) found throughout the network due to DG. For a commercial agent interested in selling energy, these models allow for accurate predictions of energy to be determined for the trading period. A VPP agent would also be adversely affected by line failure in the network, leading to the development of an N-1 analysis based upon reliability rates of the network, which is used as the basis for a discussion on the impacts of single line failure and the mitigation available through feedback from the DNO.
APA, Harvard, Vancouver, ISO, and other styles
2

Squillaci, Carmen. "Gestione dell’energia in Virtual Power Plants." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
I confini delle risorse di energia distribuita sono in continua espansione negli ultimi anni con conseguenti cambiamenti nella gestione ottimizzata di energia nelle Smart Grid per soddisfare la domanda di energia, apportare miglioramenti alle condizioni ambientali e minimizzare i prezzi. Per raggiungere questo obiettivo si utilizza un Virtual Power Plant con al suo interno un gestore di energia che coordina le unit`a distribuite relative al sistema di energia elettrico. Questo lavoro di tesi sviluppa un modello per la gestione energetica all’interno di un Virtual Power Plant per decidere come e con quali fonti energetiche soddisfare la domanda di energia elettrica. Le decisioni riguardanti le quantita` ed il tipo di risorse energetiche utilizzate ad intervalli orari nell’arco di una giornata avvengono dinamicamente e dipendono da fattori variabili provenienti dalla disponibilit`a delle risorse di energia rinnovabili, dal costo dell’energia elettrica acquistata dalla rete esterna, dal costo del diesel, dai carichi associati ad utenze domestiche e dalla possibilit`a di immagazzinare o rilasciare energia all’interno dell’unit`a di storage. La soluzione `e calcolata mediante l’utilizzo di una funzione costo minimizzata la quale prende in considerazione solo i costi diretti relativi all’impianto VPP. Le conclusioni teoriche e le aspettative sono verificate mediante una simulazione di uno scenario reale.
APA, Harvard, Vancouver, ISO, and other styles
3

Ren, Zizheng. "Multi-Period Dynamic Reward Structures For Prosumers Participating In Virtual Power Plants." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29336.

Full text
Abstract:
At present, conventional fossil fuels such as coal, petroleum and natural gas still remain dominant in electricity generation. Therefore, distributed energy resources (DERs) attract people's attention for being renewable and environmentally friendly and hence promotes the utilisation of DERs in electric power systems. This offers an opportunity to aggregate prosumers into virtual power plants (VPPs) operated as a single dispatchable resource. Yet that raises the question of how to financially reward prosumers for participating in VPPs. Against this backdrop, this thesis explores dynamic export tariffs based on the dual variables of the optimisation problem used for aggregation. In contrast to the existing approaches, we use a multi-period optimisation model to account for inter-temporal coupling introduced by battery storage systems, which can reflect prosumers' energy consumption behaviours and hence, have better performance to reward prosumers for exporting energy surplus back to the grid. The work begins with an introductory chapter, aiming to demonstrate the motivation, outline, and contribution of the research. Then, a literature review follows to demonstrate the necessity of the research. The thesis continues by presenting mathematical formulations for the VPP models and the proposed multi-period dynamic export tariff. Then, we use AMPL-MATLAB platform to simulate a VPP test system under the given operating parameters, aiming to investigate the efficacy of dynamic export tariffs on prosumers' electricity cost-saving participating in those VPPs from both financial and electrical aspects. Furthermore, the sensitivity analysis for the dynamic export tariff is implemented. The results demonstrate that the proposed multi-period dynamic export tariff can effectively reduce the current electricity cost of prosumers participating in VPPs.
APA, Harvard, Vancouver, ISO, and other styles
4

Irigoyen, Tineo Aralar. "A study on the profitability of Virtual Power Plants and their potential for compensation of imbalances." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-270724.

Full text
Abstract:
In the current climate crisis, there is an increasing need for the integration of renewableenergy in higher penetration indexes, which is boosting innovation not only in the technology but also in new business models.  Virtual Power Plants (VPPs) are an aggregation model for generation that is said to be able to decrease imbalances from renewable generation while improving economic performance.  While the regulation in some countries still does not allow this type of activity there are also many others in which aggregation of demand and even VPPs are growing in numbers. This study aims to prove the previous statement and quantify the amount of imbalances that can be offset and the consequent penalties avoided for a VPP located  in  the  north  of  Portugal  composed  of  a  pumped-storage  hydro  plant  and  onshore wind generation.  In order to do so, two case studies have been compared:  a baseline case in which each unit is operated independently and another in which all the units are aggregated under the VPP model.  With this aim, a simplified bidding strategy has been simulated for both cases and three different error levels, to finally compare the results through four key performance indicators (KPIs):  increase in profit, increase revenues, decrease in imbalance and decrease in penalty cost.  The optimization problem was formulated as a mixed-integer linear programming (MILP) problem and it was carried out in two steps:  one for the day ahead session and a second for the intraday market.  It aims to diversify the generation port- folio of the hydro power plant and divide it among the available products:  energy sold in the day ahead market, capacity reserves for the secondary reserves, and energy sold as tertiary reserves.  It was decided to follow a deterministic approach, considering in the strategy a tree of scenarios and their associated probabilities.  In order to formulate this scenarios historical data was used, due to the high dependence between the market variables.  The results show that an average annual 16% decrease in energy deviations could be achieved which implies a 16.3% decrease in the penalty costs.  Moreover, it was also found that the combined oper- ation of the assets in the intraday market, together with the penalty reduction, would lead to a 1% increase in profit with a 0.1% decrease in revenues, concluding that a more detailed and data intensive model would be required to analyse the full advantage of the VPP modelwhen operating the assets together also during the day ahead session.
I den nuvarande klimatkrisen finns det ett ökande behov av integration av en högre andel förnybar energi, vilket ökar behovet av innovationer inte bara inom tekniken utan också i nya affärsmodeller. Virtuella kraftverk (Virtual Power Plants VPP) är en aggregeringsmodell för produktion som sägs kunna minska obalansen från förnybar produktion samtidigt somden förbättrar det ekonomiska utfallet. Ä ven om förordningen i vissa länder fortfarande intetillåter denna typ av verksamhet finns det också många andra där aggregering av efterfrågan och till och med VPP växer i antal. Denna studie syftar till att visa på nyttan av VPP och kvantifiera mängden obalanser som kan kompenseras och de orsakade obalans-kostnader som undviks för en VPP som ligger i norra Portugal som består av ett vattenkraftverk med pumplagring och vindkraft på land. För att göra det har två fallstudier jämförts: ett basfall där varje enhet drivs oberoende och en annan där alla enheterna är aggregerade enligt VPPmodellen. Med detta syfte har en förenklad budstrategi simulerats för båda fallen och tre olika nivåer på fel i prognoser för att slutligen kunna jämföra resultaten genom fyra olika indikatorer (KPI:er): vinstökning, ökning av intäkter, minskning av obalans och minskning av obalanskostnader. Optimeringsproblemet formulerades som ett mixed-linear-integer programmeringsproblem (MILP) och det genomfördes i två steg: ett för dagenföremarknaden och ett andra för intradagsmarknaden. Detta syftar till att diversifiera produktionsportföljen för vattenkraftverket och dela den mellan de tillgängliga produkterna: energi som säljs i den kommande marknaden, kapacitetsreserver för sekundära reserver och energi som säljs som tertiära reserver. I studien har vi valt en deterministisk strategi med beaktande av ett scenarioträd med respektive sannolikheter. För att formulera dessa scenarier användes historiska data på grund av den stora korrelationen mellan marknadsvariablerna. Resultaten visar att en genomsnittlig årlig minskning av energiavvikelserna med 16% skulle kunna uppnås vilket innebär en minskning av obalanskostnaderna med 16,3%. Dessutom konstaterades det att den kombinerade driften av tillgångarna på intradagsmarknaden, tillsammans med minskningen av obalanser, skulle leda till en vinstökning på 1% med en minskning av intäkterna på 0,1%, från vilket vi drar slutsatsen att en mer detaljerad och datakrävande modell skulle krävas för att analysera VPP-modellens fulla potential när mananvänder tillgångarna tillsammans även under dagenföremarknaden.
APA, Harvard, Vancouver, ISO, and other styles
5

Ryan, Tim. "In Harmony : Virtual Power Plants: Predicting, Optimising and Leveraging Residential Electrical Flexibility for Local and Global Benefit." Thesis, KTH, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285482.

Full text
Abstract:
Electrical demand flexibility is a key component to enabling a low cost, low carbon grid. In this study, residential electricity demand and flexibility is explored from the lens of a virtual power plant operator. Individual and aggregate asset consumption is analysed using a pool of >10,000 household assets over 6 years. Key safety, comfort and availability limitations are identified per asset type. Pool flexibility is analysed using a combination of past data and principled calculations, with flexibility quantified for different products and methods of control. A machine learning model is built for a small pool of 200 assets, predicting consumption 24 hours in advance. Calculated flexibility and asset limitations are then used within an optimisation model, leveraging flexibility and combining the value of self consumption and day ahead price optimisation for a residential home.
Flexibilitet i efterfrågan av elektricitet är essentiellt för att möjliggöra ett elnät med låga kostnader och utsläpp. I denna studie undersöks elanvändning av en bostad samt flexibilitet i perspektiv från en virtuell kraftverksoperatör. Individuell och sammanlagd konsumtion analyseras genom tillgång av data från >10 000 bostäder över 6 år. Begränsningar av säkerhet, komfort och tillgänglighet identifieras per tillgångstyp. Sammanlagda flexibiliteten analyseras genom en kombination av tidigare data och principiella beräkningar, med flexibilitet kvantifierad för diverse produkter och kontrollmetoder. En modell för maskininlärning utvecklades för 200 bostäder och förutser konsumtion 24 timmar i förväg. Den beräknade flexibiliteten och tillgångsbegränsningar används sedan i en optimeringsmodell som utnyttjar flexibilitet och kombinerar värdet av självkonsumtion och optimerat pris för nästkommande dag för ett bostadshus.
APA, Harvard, Vancouver, ISO, and other styles
6

Edwall, Bill. "Virtual Power Plant Optimization Utilizing the FCR-N Market : A revenue maximization modelling study based on building components and a Battery Energy Storage System. Based on values from Sweden's first virtual power plant, Väla." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279520.

Full text
Abstract:
Renewable energy resources are projected to claim a larger part of the Swedish power mix in coming years. This could potentially increase frequency fluctuations in the power grid due to the intermittency of renewable power generating resources. These fluctuations can in turn cause issues in the power grid if left unchecked. In order to resolve these issues, countermeasures are employed. One such countermeasure is for private actors to regulate power; in exchange they are financially compensated through reserve markets. The reserve market studied in this thesis is called Frequency Containment Reserve – Normal (FCR-N). Currently hydroelectric power provides almost all regulated power within this market. As the need for power regulation is expected to increase in the coming years, there exists a need to study other technologies capable of power regulation. This thesis focuses on one such technology called, virtual power plants. While virtual power plants are operating in other parts of the world, there were no virtual power plants operating in Sweden. As a result, the nature of an optimized virtual power plant and the economic benefits of optimization had not been previously investigated. To answer such questions, this thesis modelled and optimized the revenue of a virtual power plant. The examined virtual power plant consisted of cooling chillers, lighting, ventilation fans and a battery energy storage system. Where varying their total power demand allowed for them to provide power regulation. With the virtual power plant market in Sweden being in its infancy, this thesis serves as a first look into how an optimized virtual power plant using these components could function. To put the economic results of the optimization into context, a comparative model was constructed. The comparative model was based on a semi-static linear model. This is what the thesis’s industry partner Siemens currently uses. For the simulated scenarios, the optimized model generated at least 85% higher net revenues than the semi-static linear model. The increase in revenue holds potential to increase the uptake of virtual power plants on the Swedish market, thus increasing stability in the power grid and easing the transition to renewable energy.
Då förnyelsebara energiresurser antas omfatta en större roll av den svenska elproduktionen inom kommande år, så kan detta leda till att frekvensfluktueringar i elnätet ökar. Detta sker på grund av att den oregelbundna elproduktionen från förnyelsebara energiresurser inte matchas med konsumtion. Om dessa fluktueringar inte hanteras kan det i sin tur leda till skadliga störningar inom elnätet. För att motverka detta och således stabilisera elnätet används diverse lösningar. Ett sätt att åstadkomma ökad stabilisering i elnätet är att låta privata aktörer kraftreglera. De privata aktörerna som står för kraftregleringen gör detta i utbyte mot ekonomisk kompensation, genom att delta i reservmarknader. Den reservmarknad som studerades inom detta examensarbete kallas Frequency Containment Reserve – Normal (FCR-N). I nuläget står vattenkraft för nästan all reglerad kraft inom den här marknaden. Men då behovet av kraftreglering antas öka inom kommande år så behövs nya teknologier studeras som kan bistå med kraftregleringen. Den studerade teknologin inom detta examensarbete var ett virtuellt kraftverk. Då inga virtuella kraftverk var i bruk i Sverige då denna uppsats skrevs fanns det osäkerheter kring hur man optimalt styr ett virtuellt kraftverk och de ekonomiska fördelarna som detta skulle kunna leda till. Detta examensarbete modellerade och optimerade ett virtuellt kraftverk ur ett vinstperspektiv. Det virtuella kraftverket var uppbyggt utav kylmaskiner, ljus, ventilationsfläktar och ett batterisystem. Deras kraftkonsumtion styrdes på ett sådant sätt som lätt de bidra till kraftreglering på reservmarknaden. För att kunna analysera de ekonomiska resultaten från det optimerade virtuella kraftverket, så byggdes en jämförelsemodell. Denna jämförelsemodell är baserad på en semistatisk linjär modell, vilket är det som examensarbetets industripartner Siemens använder. Den ekonomiska jämförelsens resultat påvisade att inkomsten från den optimerade modellen var minst 85% högre än den semistatiskt linjära modellen, inom de studerade scenarierna. Denna inkomstökning skulle potentiellt kunna öka användningen av virtuella kraftverk på den svenska reservmarknaden vilket i sin tur skulle medföra högre stabilitet på elnätet. Genom att öka stabiliteten på elnätet kan således förnyelsebara energiresurser i sin tur lättare implementeras.
APA, Harvard, Vancouver, ISO, and other styles
7

Ogden, Lillie. "Exploring Opportunities for Novel Electricity Trading Strategies within a Virtual Power Plant in the European Power Market : New Possibilities in Power Trading Due to the Increased Share of Variable Renewable Energy." Thesis, KTH, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277841.

Full text
Abstract:
This report explores the impacts of variable renewable energy (VRE) on power trading in the European wholesale electricity market. The intricate operation of a typical power exchange in Europe is accompanied by an equally complex balancing system. The increasing amount of VRE in the power system, such as wind and solar power, has far-reaching impacts for power traders in both this electricity market and the corresponding balancing system. As a result, the electricity market is evolving in unprecedented ways and new participants are entering the playing field to capitalize on the changing dynamics caused by VRE generators. One novel participant, the virtual power plant (VPP), possesses an advantage over other market participants by aggregating VRE generators with controllable renewable energy generators, like biogas and hydro plants, into one entity. This allows the VPP to both gain access to live VRE production data that larger plants don’t have, which it then utilizes to remotely dispatch various subpools of assets, and to provide balancing services to the grid. Subsequently, VPPs are able to trade VRE and other renewable electricity superiorly on the same spot markets and balancing systems as large central power plants and industrial consumers. The report asserts that VPP traders can earn profits through means of innovative trading strategies that exploit predictable market impacts caused by VRE power through a robust understanding of the electricity market and their unique access to data.
Denna rapport undersöker effekterna av variabel förnybar energi (VRE) på krafthandeln på den europeiska elhandelsmarknaden för stora aktörer. Den komplicerade driften av ett typiskt kraftutbyte i Europa åtföljs av ett lika komplicerat balanseringssystem. Den ökande mängden VRE i kraftsystemet, såsom vind- och solkraft, har långtgående effekter för krafthandlare på både denna elmarknad och motsvarande balanseringssystem. Som ett resultat utvecklas elmarknaden på enastående sätt och nya deltagare kommer in på spelplanen för att dra nytta av den förändrade dynamiken som orsakas av VRE-generatorer. En ny spelare, det virtuella kraftverket (VPP), har en fördel jämfört med andra marknadsaktörer genom att samla VRE-generatorer med styrbara förnybara energiproducenter, som biogas och vattenkraftverk, till en enhet. Detta gör att VPP både kan få tillgång till live VRE-produktionsdata som större anläggningar inte har, som den sedan använder för att distribuera olika underpooler av tillgångar och för att tillhandahålla balanstjänster till nätet. Därefter kan VPP: er handla med VRE och annan förnybar el på ett överlägset sätt på samma spotmarknader och balanseringssystem som stora centrala kraftverk och industrikonsumenter. Rapporten visar att VPP-handlare kan göra vinster genom innovativa handelsstrategier som utnyttjar förutsägbara marknadseffekter orsakade av VRE-kraft genom en detaljerad förståelse för elmarknaden och unik tillgång till data för produktionen av förnybar energi

QC 20201118

APA, Harvard, Vancouver, ISO, and other styles
8

Raab, Andreas Franz Alois [Verfasser], Kai [Akademischer Betreuer] Strunz, Antonello [Gutachter] Monti, and Olav B. [Gutachter] Fosso. "Operational planning, modeling and control of virtual power plants with electric vehicles / Andreas Franz Alois Raab ; Gutachter: Antonello Monti, Olav B. Fosso ; Betreuer: Kai Strunz." Berlin : Technische Universität Berlin, 2018. http://d-nb.info/115618522X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Setiawan, Eko Adhi. "Concept and controllability of virtual power plant." Kassel : Kassel Univ. Press, 2007. http://www.uni-kassel.de/hrz/db4/extern/dbupress/publik/abstract.php?978-3-89958-309-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tarrasó, Martínez Jaime. "Virtually synchronous power plant control." Doctoral thesis, Universitat Politècnica de Catalunya, 2022. http://hdl.handle.net/10803/674036.

Full text
Abstract:
During the last century, the electrical energy infrastructures have been governed by synchronous generators, producing electrical energy to the vast majority of the population worldwide. However, power systems are no longer what they used to be. During the last two decades of this new millennium the classical, centralized and hierarchical networks have experienced an intense integration of renewable energy sources, mainly wind and solar, thanks also to the evolution and development of power conversion and power electronics industry. Although the current electrical system was designed to have a core of generation power plants, responsible of producing the necessary energy to supply end users and a clear power flow, divided mainly into transmission and distribution networks, as well as scalable consumers connected at different levels, this scenario has dramatically changed with the addition of renewable generation units. The massive installation of wind and solar farms, connected at medium voltage networks, as well as the proliferation of small distributed generators interfaced by power converters in low voltage systems is changing the paradigm of energy generation, distribution and consumption. Despite the feasibility of this integration in the existing electrical network, the addition of these distributed generators made grid operators face new challenges, especially considering the stochastic profile of such energy producers. Furthermore, the replacement of traditional generation units for renewable energy sources has harmed the stability and the reliable response during grid contingencies. In order to cope with the difficult task of operating the electrical network, transmission system operators have increased the requirements and modified the grid codes for the newly integrated devices. In an effort to enable a more natural behavior of the renewable systems into the electrical grid, advanced control strategies were presented in the literature to emulate the behavior of traditional synchronous generators. These approaches focused mainly on the power converter relying on their local measurement points to resemble the operation of a traditional generating unit. However, the integration of those units into bigger systems, such as power plants, is still not clear as the effect of accumulating hundreds or thousands of units has not been properly addressed. In this regard, the work of this thesis deals with the study of the so-called virtual synchronous machine (VSM) in three control layers. Furthermore, an in-depth analysis of the general structure used for the different virtual synchronous machine approaches is presented, which constitutes the base implementation tree for all existent strategies of virtual synchronous generation. In a first stage, the most inner control loop is studied and analyzed regarding the current control on the power converter. This internal regulator is in charge of the current injection and the tracking of all external power reference. Afterward, the synchronous control is oriented to the device, where the generating unit relies on its local measurements to emulate a synchronous machine in the power converter. In this regard, a sensorless approach to the virtual synchronous machine is introduced, increasing the stability of the power converter and reducing the voltage measurements used. Finally, the model of the synchronous control is extrapolated into a power plant control layer to be able to regulate multiple units in a coordinated manner, thus emulating the behavior of a unique synchronous machine. In this regard, the local measurements are not used for the emulation of the virtual machine, but they are switched to PCC measurements, allowing to set the desired dynamic response at the power plant level.
Sistemes d'energia elèctrica
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Virtual Power Plants"

1

Baringo, Luis, and Morteza Rahimiyan. Virtual Power Plants and Electricity Markets. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jia, Heping, Xuanyuan Wang, Xian Zhang, and Dunnan Liu. Business Models and Reliable Operation of Virtual Power Plants. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7846-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ninagawa, Chuzo. Virtual Power Plant System Integration Technology. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6148-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heydarian-Forushani, Ehsan, Hassan Haes Alhelou, and Seifeddine Ben Elghali. Virtual Power Plant Solution for Future Smart Energy Communities. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003257202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lombardi, Pio. Multi criteria optimization of an autonomous virtual power plant: (Multikriterielle Optimierung eines autonomen virtuellen Kraftwerks). Magdeburg: Otto-von-Guericke-Universität Magdeburg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scheduling and Operation of Virtual Power Plants. Elsevier, 2022. http://dx.doi.org/10.1016/c2020-0-01022-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jia, Heping, Xuanyuan Wang, Dunnan Liu, and Xian Zhang. Business Model and Reliable Operation of Virtual Power Plants. Springer, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baringo, Luis, and Morteza Rahimiyan. Virtual Power Plants and Electricity Markets: Decision Making Under Uncertainty. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baringo, Luis, and Morteza Rahimiyan. Virtual Power Plants and Electricity Markets: Decision Making under Uncertainty. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zangeneh, Ali, and Moein Moeini-Aghtaie. Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets. Elsevier, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Virtual Power Plants"

1

Morales, Juan M., Antonio J. Conejo, Henrik Madsen, Pierre Pinson, and Marco Zugno. "Virtual Power Plants Virtual power plant." In International Series in Operations Research & Management Science, 243–87. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-9411-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baringo, Luis, and Morteza Rahimiyan. "Virtual Power Plants." In Virtual Power Plants and Electricity Markets, 1–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bilbao, Javier, Eugenio Bravo, Carolina Rebollar, Concepcion Varela, and Olatz Garcia. "Virtual Power Plants and Virtual Inertia." In Power Systems, 87–113. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23723-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baringo, Luis, and Morteza Rahimiyan. "Virtual Power Plant Model." In Virtual Power Plants and Electricity Markets, 9–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adu-Kankam, Kankam O., and Luis M. Camarinha-Matos. "Towards Collaborative Virtual Power Plants." In IFIP Advances in Information and Communication Technology, 28–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78574-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baringo, Luis, and Morteza Rahimiyan. "Price-Maker Virtual Power Plants." In Virtual Power Plants and Electricity Markets, 255–312. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sami, Saif S., Yue Zhou, Meysam Qadrdan, and Jianzhong Wu. "Virtual Energy Storage Systems for Virtual Power Plants." In Virtual Power Plant Solution for Future Smart Energy Communities, 119–44. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003257202-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baringo, Luis, and Morteza Rahimiyan. "Expansion Planning of Virtual Power Plants." In Virtual Power Plants and Electricity Markets, 313–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

De Filippo, Allegra, Michele Lombardi, Michela Milano, and Alberto Borghetti. "Robust Optimization for Virtual Power Plants." In AI*IA 2017 Advances in Artificial Intelligence, 17–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70169-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Heping, Xuanyuan Wang, Xian Zhang, and Dunnan Liu. "Climate Change and Virtual Power Plants." In Business Models and Reliable Operation of Virtual Power Plants, 1–7. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7846-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Virtual Power Plants"

1

Palensky, Peter, and Dietmar Bruckner. "Anticipative virtual storage power plants." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramos, Lucas Feksa, and Luciane Neves Canha. "Uncertainties in Virtual Power Plants." In 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). IEEE, 2019. http://dx.doi.org/10.1109/isgt-la.2019.8895401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stepanescu, S., C. Rehtanz, S. Arad, I. Fotau, M. Marcu, and F. Popescu. "Implementation of small water power plants regarding future virtual power plants." In 2011 10th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2011. http://dx.doi.org/10.1109/eeeic.2011.5874649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dulau, Lucian Ioan, Mihail Abrudean, and Dorin Bica. "Applications of Virtual Power Plants approaches." In 2014 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE, 2014. http://dx.doi.org/10.1109/icepe.2014.6970071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, Ahmad, Mohsen Hosseinzadehtaher, Mohammad B. Shadmand, and Sudip K. Mazumder. "Cybersecurity Analytics for Virtual Power Plants." In 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2021. http://dx.doi.org/10.1109/pedg51384.2021.9494255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dulau, Lucian Ioan, Mihail Abrudean, and Dorin Bica. "Distributed generation and virtual power plants." In 2014 49th International Universities Power Engineering Conference (UPEC). IEEE, 2014. http://dx.doi.org/10.1109/upec.2014.6934630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Petersen, M. K., L. H. Hansen, J. Bendtsen, K. Edlund, and J. Stoustrup. "Market integration of Virtual Power Plants." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pazouki, Samaneh, Mahmoud-Reza Haghifam, and Samira Pazouki. "Transition from fossil fuels power plants toward Virtual Power Plants of distribution networks." In 2016 21st Conference on Electrical Power Distribution Networks Conference (EPDC). IEEE, 2016. http://dx.doi.org/10.1109/epdc.2016.7514787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Graupner, Soren, Marika Behnert, David-Georg Reichelt, Stefan Kuhne, and Thomas Bruckner. "Transmission grid stabilization using virtual power plants." In 2017 14th International Conference on the European Energy Market (EEM). IEEE, 2017. http://dx.doi.org/10.1109/eem.2017.7981911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dimeas, A. L., and N. D. Hatziargyriou. "Agent based control of Virtual Power Plants." In 2007 International Conference on Intelligent Systems Applications to Power Systems. IEEE, 2007. http://dx.doi.org/10.1109/isap.2007.4441671.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Virtual Power Plants"

1

Johnson, Jay Tillay. Full State Feedback Control for Virtual Power Plants. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popov, Oleksandr O., Anna V. Iatsyshyn, Andrii V. Iatsyshyn, Valeriia O. Kovach, Volodymyr O. Artemchuk, Viktor O. Gurieiev, Yulii G. Kutsan, et al. Immersive technology for training and professional development of nuclear power plants personnel. CEUR Workshop Proceedings, July 2021. http://dx.doi.org/10.31812/123456789/4631.

Full text
Abstract:
Training and professional development of nuclear power plant personnel are essential components of the atomic energy industry’s successful performance. The rapid growth of virtual reality (VR) and augmented reality (AR) technologies allowed to expand their scope and caused the need for various studies and experiments in terms of their application and effectiveness. Therefore, this publication studies the peculiarities of the application of VR and AR technologies for the training and professional development of personnel of nuclear power plants. The research and experiments on various aspects of VR and AR applications for specialists’ training in multiple fields have recently started. The analysis of international experience regarding the technologies application has shown that powerful companies and large companies have long used VR and AR in the industries they function. The paper analyzes the examples and trends of the application of VR technologies for nuclear power plants. It is determined that VR and AR’s economic efficiency for atomic power plants is achieved by eliminating design errors before starting the construction phase; reducing the cost and time expenditures for staff travel and staff training; increasing industrial safety, and increasing management efficiency. VR and AR technologies for nuclear power plants are successfully used in the following areas: modeling various atomic energy processes; construction of nuclear power plants; staff training and development; operation, repair, and maintenance of nuclear power plant equipment; presentation of activities and equipment. Peculiarities of application of VR and AR technologies for training of future specialists and advanced training of nuclear power plant personnel are analyzed. Staff training and professional development using VR and AR technologies take place in close to real-world conditions that are safe for participants and equipment. Applying VR and AR at nuclear power plants can increase efficiency: to work out the order of actions in the emergency mode; to optimize the temporary cost of urgent repairs; to test of dismantling/installation of elements of the equipment; to identify weaknesses in the work of individual pieces of equipment and the working complex as a whole. The trends in the application of VR and AR technologies for the popularization of professions in nuclear energy among children and youth are outlined. Due to VR and AR technologies, the issues of “nuclear energy safety” have gained new importance both for the personnel of nuclear power plants and for the training of future specialists in the energy sector. Using VR and AR to acquaint children and young people with atomic energy in a playful way, it becomes possible to inform about the peculiarities of the nuclear industry’s functioning and increase industry professions’ prestige.
APA, Harvard, Vancouver, ISO, and other styles
3

Bockelie, Mike, Dave Swensen, and Martin Denison. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/786011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bockelie, Mike, Dave Swensen, and Martin Denison. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/791707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bockelie, Mike, Dave Swensen, and Martin Denison. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/807228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bockelie, Mike, Dave Swensen, Martin Denison, Connie Senior, Adel Sarofim, and Bene Risio. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/807229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johnson, Jay Tillay. Design and Evaluation of a Secure Virtual Power Plant. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mike Bockelie, Dave Swensen, Martin Denison, Adel Sarofim, and Connie Senior. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/837892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mike Bockelie, Dave Swensen, Martin Denison, Zumao Chen, Mike Maguire, Adel Sarofim, Changguan Yang, and Hong-Shig Shim. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/822914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mike Bockelie, Dave Swensen, Martin Denison, Zumao Chen, Temi Linjewile, Mike Maguire, Adel Sarofim, Connie Senior, Changguan Yang, and Hong-Shig Shim. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/825385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography