Academic literature on the topic 'Virus-based particles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virus-based particles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Virus-based particles"
Kang, Sang-Moo, Jae-Min Song, Fu-Shi Quan, and Richard W. Compans. "Influenza vaccines based on virus-like particles." Virus Research 143, no. 2 (August 2009): 140–46. http://dx.doi.org/10.1016/j.virusres.2009.04.005.
Full textWichgers Schreur, Paul J., Nadia Oreshkova, Frank Harders, Alex Bossers, Rob J. M. Moormann, and Jeroen Kortekaas. "Paramyxovirus-based production of Rift Valley fever virus replicon particles." Journal of General Virology 95, no. 12 (December 1, 2014): 2638–48. http://dx.doi.org/10.1099/vir.0.067660-0.
Full textEskelin, Katri, Minna M. Poranen, and Hanna M. Oksanen. "Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications." Microorganisms 7, no. 11 (November 12, 2019): 555. http://dx.doi.org/10.3390/microorganisms7110555.
Full textNeumann, Gabriele, Tokiko Watanabe, and Yoshihiro Kawaoka. "Plasmid-Driven Formation of Influenza Virus-Like Particles." Journal of Virology 74, no. 1 (January 1, 2000): 547–51. http://dx.doi.org/10.1128/jvi.74.1.547-551.2000.
Full textHare, David N., Susan E. Collins, Subhendu Mukherjee, Yueh-Ming Loo, Michael Gale, Luke J. Janssen, and Karen L. Mossman. "Membrane Perturbation-Associated Ca2+Signaling and Incoming Genome Sensing Are Required for the Host Response to Low-Level Enveloped Virus Particle Entry." Journal of Virology 90, no. 6 (December 30, 2015): 3018–27. http://dx.doi.org/10.1128/jvi.02642-15.
Full textSzakács, Zoltán, Tamás Mészáros, Marien I. de Jonge, and Róbert E. Gyurcsányi. "Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis." Nanoscale 10, no. 29 (2018): 13942–48. http://dx.doi.org/10.1039/c8nr01310a.
Full textSykora, Sabine, Alessandro Cumbo, Gaël Belliot, Pierre Pothier, Charlotte Arnal, Yves Dudal, Philippe F. X. Corvini, and Patrick Shahgaldian. "Virus-like particles as virus substitutes to design artificial virus-recognition nanomaterials." Chemical Communications 51, no. 12 (2015): 2256–58. http://dx.doi.org/10.1039/c4cc08843c.
Full textZhou, Jie, Jianjian Wei, Ka-Tim Choy, Sin Fun Sia, Dewi K. Rowlands, Dan Yu, Chung-Yi Wu, et al. "Defining the sizes of airborne particles that mediate influenza transmission in ferrets." Proceedings of the National Academy of Sciences 115, no. 10 (February 20, 2018): E2386—E2392. http://dx.doi.org/10.1073/pnas.1716771115.
Full textUematsu, Yasushi, Michael Vajdy, Ying Lian, Silvia Perri, Catherine E. Greer, Harold S. Legg, Grazia Galli, et al. "Lack of Interference with Immunogenicity of a Chimeric Alphavirus Replicon Particle-Based Influenza Vaccine by Preexisting Antivector Immunity." Clinical and Vaccine Immunology 19, no. 7 (May 23, 2012): 991–98. http://dx.doi.org/10.1128/cvi.00031-12.
Full textDevignot, Stephanie, Eric Bergeron, Stuart Nichol, Ali Mirazimi, and Friedemann Weber. "A Virus-Like Particle System Identifies the Endonuclease Domain of Crimean-Congo Hemorrhagic Fever Virus." Journal of Virology 89, no. 11 (March 25, 2015): 5957–67. http://dx.doi.org/10.1128/jvi.03691-14.
Full textDissertations / Theses on the topic "Virus-based particles"
Mažeikė, Eglė. "Generation of anticancer vaccine based on virus-like particles." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110621_164205-79199.
Full textDisertacijoje yra aprašomas perspektyvų panaudoti žiurkėno poliomos viruso (HaPyV) pagrindinio struktūrinio baltymo VP1 formuojamas į virusus panašias daleles priešvėžinių vakcinų kūrimui tyrimas. Pagrindinis disertacijos darbo tikslas buvo modelinėse sistemose parodyti rekombinantinių HaPyV VP1 baltymų formuojamų į virusus panašių dalelių panaudojimo priešvėžinių vakcinų kūrimui galimybes, įvertinant svetimų CTL epitopų įterpimo į VP1 baltymą toleravimą, VPD formavimosi efektyvumą bei sukeltą įterptam antigenui specifinį imuninį atsaką. Disertacijoje atlikta tyrimo srities literatūros apžvalga, smulkiai aprašomi darbe naudoti metodai, atlikti eksperimentai, pateikiami bei analizuojami gauti rezultatai. Darbe pirmą kartą buvo nuodugniai ištirtos HaPyV viruso VP1 baltymo formuojamų VPD savybės, parodytas jų tinkamumas būti CTL epitopų nešikliais, ištirtos įterpimui palankiausios VP1 baltymo vietos, išbandyti nauji VPD gavimo ir gryninimo būdai, pagerinantys chimerinių VPD formavimąsi bei išeigas. Panaudojant modelines chimerines VPD in vivo buvo ištirtas chimerinių HaPyV VP1 pagrindu sukonstruotų VPD sukeliamas humoralinis ir ląstelinis imuninis atsakas. Gauti rezultatai parodė, kad HaPyV VP1 baltymas yra vienas iš nedaugelio virusų struktūrinių baltymų, kurie ne tik formuoja VPD, bet pasižymi ir universaliomis baltymo – nešiklio savybėmis, o in vivo sukelia efektyvų, ilgalaikį, įterptam epitopui specifinį imuninį atsaką.
González, Domínguez Irene. "Characterization and purification of HIV-1 based virus-like particles." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670546.
Full textLas virus-like particles (VLPs) derivadas del VIH han surgido como una potente alternativa para el desarrollo de nuevos candidatos vacunales, pero también para el diseño de terapias avanzadas en el campo de la nanomedicina. En los últimos años, se han optimizado diferentes estrategias para la producción de estas VLPs en cultivos de células animales. No obstante, el desconocimiento acerca de los diferentes pasos que acontecen a su producción a nivel intracelular, y que afectan al rendimiento de producción, la falta de métodos analíticos para su correcta caracterización y cuantificación, así como de su diferenciación de otras estructuras vesiculares, conocidas como extracelular vesicles (EVs), y la carencia de métodos de purificación adecuados, dificultan su aplicación en la clínica. Por todo ello, el objetivo de la presente tesis es investigar el proceso de producción de VLPs de VIH, así como desarrollar nuevos métodos analíticos y de purificación con el objetivo de establecer una plataforma de producción de estas nanopartículas para su uso en aplicaciones biotecnológicas.
HIV-1 virus-like particles (VLPs) have emerged as an interesting alternative for the development of novel vaccine candidates and delivery strategies of different cargos into different cells and tissues. Great efforts have been undertaken to optimize the generation of these nanoparticles in animal cell cultures. However, the limited understanding of its production at intracellular level, the need for analytical tools allowing its specific quantification over extracellular vesicles (EVs), and the few purification processes available hamper their clinical application. The aim of this thesis is to gain insight into the process parameters affecting HIV-1 Gag VLP production, and the development of analytical and purification methods to establish a complete platform for its clinical-grade production.
Lu, Yi. "Development of Virus-like particles (VLPs) Based Vaccines Against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Epidemic Diarrhea Virus (PEDV)." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104945.
Full textDoctor of Philosophy
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are two pathogens that infect pigs, resulting in immense economic losses to the global pork production industry every year. Both viruses have large diversity with various strains due to mutations that have occurred over the years. This makes vaccine development that aims at combating the pathogens even more challenging. One common vaccine strategy has been immunizing animals with modified live viruses with decreased pathogenicity. Naturally, long term safety of this option has been a concern. A much safer vaccine approach that is purely protein based has attracted renewed interest around the world. Protein based vaccines lack genetic materials from the viruses and are not able to replicate inside the host. Our lab has developed a platform that uses protein-based particles (VLPs) originated from the hepatitis B virus (HBV), and incorporates short pieces of proteins from either PRRSV or PEDV to train host's immune system to recognize these pathogens, and hopefully to prevent future infection. For the first animal study, we tested 4 VLP vaccine candidates against PRRSV in mice and discovered that mouse serum from one candidate GP3-4 was able to prevent infection of 2 distinct PRRSV strains in petri dishes, paving the way for further development. For the second animal study, we took an optimized VLP vaccine candidate against PEDV from previous mouse studies, and evaluated its performance in pigs. We immunized pregnant mother pigs with the vaccine before they gave birth, then experimentally infected newborn piglets with the virus. Piglets from the vaccinated mothers showed improved clinical signs and faster recovery from the infection.
Lohneis, Taylor Paige. "Consistent Fabrication of Ultrasmall PLGA Nanoparticles and their Potential Biomedical Applications." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/95943.
Full textMaster of Science
Nanotechnology, the manipulation of materials on an atomic or molecular scale, and its potential for biomedical applications has become an area of increasing interest over the last few decades. Nanoparticles, spherical or non-spherical entities of sizes approximately one-billionth of a meter, have been used to solve a wide variety of biomedical problems. For reference, a human hair is about 80,000 to 100,000 nm in size and the nanoscale typically ranges in size from 1 to 1000 nm. This size range is not visible to the naked eye, so methods of analysis via scientific equipment becomes paramount. Specifically, this study aims to fabricate ultrasmall nanoparticles, ranging in size from 5 to 50 nm, which are highly sought after for their physical and chemical properties and their ability to easily travel though the bloodstream. By adjusting the material properties, size, shape, surface charge, surface modifications, and more, of nanoparticles, it is possible to tailor them to a specific use in biomedical areas such as drug delivery, detection of viruses, and tissue engineering. The specific aim of this study was to fabricate ultrasmall poly-(lactic-co-glycolic acid) nanoparticles (PLGA NPs), a type of polymer, using a quick and easy nanoprecipitation method1, with some modifications. Nanoprecipitation occurs by combining two liquid solutions – PLGA and aqueous poly(vinyl alcohol) (PVA) – which interact chemically to form a solid component – a polymer nanoparticle. These two solutions, at varying concentrations, produced ultrasmall nanoparticles that range in size, on average, from 10 to 30 nm. Data collected from this study can be used to select a desired nanoparticle size given a potential application. The desired nanoparticle can be fabricated using specific concentrations of the two nanoprecipitation solutions. By generalizing the ultrasmall PLGA NP fabrication process, the idea is that these NPs can be used for a variety of biomedical applications depending on the goal of the furthered study. Two PLGA NP example applications are tested for in this work – in DNA loading and in encapsulation of virus-like particles (VLPs), which are synthetically produced proteins that can be neatly folded to resemble a virus. These VLPs can be used to as an alternative to live vaccines and they can be designed to stimulate the immune system. Positive initial results from this study confirm the potential of these nanoparticles to have a wide impact on the biomedical field depending on specific tailoring to a given application.
Chun, Elizabeth M. "Developing a Recombinant Plant Virus Nanoparticle Vaccine for Rift Valley Fever Virus." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/scripps_theses/1345.
Full textSmith, Mark T. "Engineering Cell-Free Systems for Vaccine Development, Self-Assembling Nanoparticles and Codon Reassignment Applications." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4449.
Full textNemani, Satish Kumar [Verfasser]. "Design and development of Pichia pastoris based dengue specific virus-like particles concerted with insights into stress responses during expression using a proteomic approach / Nemani Satish Kumar." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1072059975/34.
Full textLang, Rainer. "Virus-Like particle based vaccines." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-150810.
Full textCallaghan, Maximilian W. "Chimeric orthohepadnavirus core particles for oral delivery of vaccines: Part I. Transformation of tobacco plants with a gene encoding a c-terminus truncated hepatitis B virus core protein. Part II. Construction of a woodchuck hepatitis virus core protein-based universal epitope carrier and test expression in Escherichia coli." Thesis, University of Ottawa (Canada), 2001. http://hdl.handle.net/10393/9404.
Full textHamdi, Anis. "Novel Chromatographic methodology for virus particles purification." Master's thesis, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, 2016. http://hdl.handle.net/10362/64186.
Full textN/A
Book chapters on the topic "Virus-based particles"
Rosales-Mendoza, Sergio, and Omar González-Ortega. "Virus-Like Particles-Based Mucosal Nanovaccines." In Nanovaccines, 267–318. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31668-6_10.
Full textMuratori, Claudia, Roberta Bona, and Maurizio Federico. "Lentivirus-Based Virus-Like Particles as a New Protein Delivery Tool." In Lentivirus Gene Engineering Protocols, 111–24. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-533-0_7.
Full textBárcena, Juan, and Esther Blanco. "Design of Novel Vaccines Based on Virus-Like Particles or Chimeric Virions." In Subcellular Biochemistry, 631–65. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6552-8_21.
Full textThuenemann, Eva C., and George P. Lomonossoff. "Delivering Cargo: Plant-Based Production of Bluetongue Virus Core-Like and Virus-Like Particles Containing Fluorescent Proteins." In Methods in Molecular Biology, 319–34. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7808-3_22.
Full textRoy, P., and G. Sutton. "New generation of African horse sickness virus vaccines based on structural and molecular studies of the virus particles." In African Horse Sickness, 177–202. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6823-3_17.
Full textHuong, Tra Nguyen, Boon Huan Tan, and Richard J. Sugrue. "A Proteomic-Based Workflow Using Purified Respiratory Syncytial Virus Particles to Identify Cellular Factors as Drug Targets." In Human Respiratory Syncytial Virus, 175–94. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3687-8_13.
Full textDobrica, Mihaela-Olivia, Catalin Lazar, and Norica Branza-Nichita. "Production of Chimeric Hepatitis B Virus Surface Antigens in Mammalian Cells." In Vaccine Delivery Technology, 83–94. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0795-4_7.
Full textDhanasooraj, Dhananjayan, R. Ajay Kumar, and Sathish Mundayoor. "Subunit Protein Vaccine Delivery System for Tuberculosis Based on Hepatitis B Virus Core VLP (HBc-VLP) Particles." In Vaccine Design, 377–92. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3389-1_26.
Full textWahome, Newton, Anne Cooper, Prem Thapa, Shyamal Choudhari, Fei P. Gao, David B. Volkin, and C. Russell Middaugh. "Production of Well-Characterized Virus-like Particles in an Escherichia coli-Based Expression Platform for Preclinical Vaccine Assessments." In Vaccine Design, 437–57. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3389-1_29.
Full textWang, Wei, Pengtao Zhang, and Ying Tan. "An Immune Concentration Based Virus Detection Approach Using Particle Swarm Optimization." In Lecture Notes in Computer Science, 347–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13495-1_43.
Full textConference papers on the topic "Virus-based particles"
Lin, Shih-Yeh, Cheng-Yu Chung, Yao-Chi Chung, Hsin-Yi Chiu, and Yu-Chen Hu. "Development of Enterovirus 71 Vaccine based on Virus-like Particles." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_411.
Full textSong, Minghao, and Hongwei Sun. "Microfluidics Based Impinger for Air Sampling." In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73230.
Full textHuh, Yun Suk, Aram J. Chung, Bernardo Cordovez, and David Erickson. "Optofluidic Surface Enhanced Raman Scattering Chip for Detection of Dengue Virus." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67243.
Full textMohsen, Mona Omar, and Martin F. Bachmann. "Development and Exploration of a Novel Personalized Cancer Vaccine Based on Virus-Like Particles (VLPs) by Incorporating Melanoma Specific T-cell Epitopes." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2018. http://dx.doi.org/10.5339/qfarc.2018.hbpd53.
Full textWu, Yichen, Aniruddha Ray, Qingshan Wei, Alborz Feizi, Xin Tong, Eva Chen, Yi Luo, and Aydogan Ozcan. "Particle-Aggregation Based Virus Sensor Using Deep Learning and Lensless Digital Holography." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_at.2019.atu4k.3.
Full textKylberg, Gustaf, Ida-Maria Sintorn, Mats Uppstrom, and Martin Ryner. "Local intensity and PCA based detection of virus particle candidates in transmission electron microscopy images." In 2009 6th International Symposium on Image and Signal Processing and Analysis. IEEE, 2009. http://dx.doi.org/10.1109/ispa.2009.5297708.
Full textReports on the topic "Virus-based particles"
Douglas, Trevor. Self-Assembly of Virus Particle Based Materials for Hydrogen Catalysis. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1722913.
Full text