To see the other types of publications on this topic, follow the link: Virus identification.

Journal articles on the topic 'Virus identification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Virus identification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Donnik, Irina, Irina Donnik, Ramil Vafin, et al. "Genetic identification of bovine leukaemia virus." Foods and Raw Materials 6, no. 2 (2018): 314–24. http://dx.doi.org/10.21603/2308-4057-2018-2-314-324.

Full text
Abstract:
Molecular genetic research methods make it possible to evaluate the genetic diversity of bovine leukemia virus (BLV) and are the most informative approaches to its genetic identification. Molecular genetic research methods work well for the phylogenetic analysis of sequenced nucleotide DNA sequences of the provirus, as well as for the polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) according to the phylogenetic classification of the pathogen. The purpose of the research was to study the scientific and methodological approaches to the genetic identificatio
APA, Harvard, Vancouver, ISO, and other styles
2

Bontchev, Vesselin. "Macro virus identification problems." Computers & Security 17, no. 1 (1998): 69–89. http://dx.doi.org/10.1016/s0167-4048(97)80275-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

J.C, Obi, and Okpor D.M. "Soft-Computing Virus Identification System." International Journal of Fuzzy Logic Systems 3, no. 2 (2013): 63–72. http://dx.doi.org/10.5121/ijfls.2013.3205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pfeffer, S. "Identification of Virus-Encoded MicroRNAs." Science 304, no. 5671 (2004): 734–36. http://dx.doi.org/10.1126/science.1096781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miller, Sara E. "Virus Identification by Electron Microscopy." Microscopy Today 8, no. 5 (2000): 28–29. http://dx.doi.org/10.1017/s1551929500065226.

Full text
Abstract:
Electron microscopy is clearly the best way to look at enteric viruses, many of which do not grow in tissue culture, and those that can be so coaxed, do so under special conditions that are not routinely found in the culture lab. Biochemical identification (e.g., immunological kits, PCR, Western Blots) require a specific reagent to recognize the virus, and if the right reagent is not used, the viruses will be missed (e.g., if you run a test for rotavirus, you will miss adenovirus, etc.). Furthermore, there are not biochemical reagents for all viruses. With electron microscopy, one can see a wi
APA, Harvard, Vancouver, ISO, and other styles
6

MATSUNO, Keita. "Identification of Yezo Virus Infections." Journal of Veterinary Epidemiology 25, no. 2 (2021): 116–17. http://dx.doi.org/10.2743/jve.25.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Van Regenmortel, M. H. V. "Virus species and virus identification: Past and current controversies." Infection, Genetics and Evolution 7, no. 1 (2007): 133–44. http://dx.doi.org/10.1016/j.meegid.2006.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allander, Tobias, Kalle Andreasson, Shawon Gupta, et al. "Identification of a Third Human Polyomavirus." Journal of Virology 81, no. 8 (2007): 4130–36. http://dx.doi.org/10.1128/jvi.00028-07.

Full text
Abstract:
ABSTRACT We have previously reported on a system for large-scale molecular virus screening of clinical samples. As part of an effort to systematically search for unrecognized human pathogens, the technology was applied for virus screening of human respiratory tract samples. This resulted in the identification of a previously unknown polyomavirus provisionally named KI polyomavirus. The virus is phylogenetically related to other primate polyomaviruses in the early region of the genome but has very little homology (<30% amino acid identity) to known polyomaviruses in the late region. The viru
APA, Harvard, Vancouver, ISO, and other styles
9

Vanmechelen, Bert, Joren Stroobants, Winston Chiu, et al. "Identification of novel Ebola virus inhibitors using biologically contained virus." Antiviral Research 200 (April 2022): 105294. http://dx.doi.org/10.1016/j.antiviral.2022.105294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al Juboori,, Firas, N. A. Qassem,, and ,. M. Al-Maadhedi. "MOLECULAR IDENTIFICATION OF GRAPEVINE FANLEAF VIRUS." Mesopotamia Journal of Agriculture 45, no. 3 (2019): 271–74. http://dx.doi.org/10.33899/magrj.2019.161355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guinier, Daniel. "Computer “virus” identification by neural networks." ACM SIGSAC Review 9, no. 4 (1991): 49–59. http://dx.doi.org/10.1145/126569.127021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nishimura, Hidekazu, Kanetsu Sugawara, Peng Gao, et al. "Identification of Influenza C Virus Phosphoproteins." Microbiology and Immunology 39, no. 9 (1995): 737–40. http://dx.doi.org/10.1111/j.1348-0421.1995.tb03251.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bradfute, O. E. "Rapid Identification of Maize Stripe Virus." Phytopathology 80, no. 8 (1990): 715. http://dx.doi.org/10.1094/phyto-80-715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Clavijo, Alfonso, Robert A. Heckert, Gilles C. Dulac, and Ahmad Afshar. "Isolation and identification of bluetongue virus." Journal of Virological Methods 87, no. 1-2 (2000): 13–23. http://dx.doi.org/10.1016/s0166-0934(00)00150-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Amstey, Marvin S. "Identification of varicella zoster virus infection." American Journal of Obstetrics and Gynecology 167, no. 5 (1992): 1480–81. http://dx.doi.org/10.1016/s0002-9378(11)91741-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Huang, Jun-ting, Jian-ning Chen, Li-ping Gong, et al. "Identification of virus-encoded circular RNA." Virology 529 (March 2019): 144–51. http://dx.doi.org/10.1016/j.virol.2019.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rossi, C., O. Rey, P. Jenik, and M. T. Franze-Fernández. "Immunological identification of tacaribe virus proteins." Research in Virology 147, no. 4 (1996): 203–11. http://dx.doi.org/10.1016/0923-2516(96)89650-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lukashevich, I. S., and N. N. Lemeshko. "Machupo virus polypeptides: Identification by immunoprecipitation." Archives of Virology 86, no. 1-2 (1985): 85–99. http://dx.doi.org/10.1007/bf01314115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cun, Zihui. "Identification of New Chickpea Virus and Control of Chickpea Virus Disease." Evidence-Based Complementary and Alternative Medicine 2022 (May 28, 2022): 1–8. http://dx.doi.org/10.1155/2022/6465505.

Full text
Abstract:
Objective. The objective of the study was to discuss the classification, virus characteristics, detection methods, and control measures of chickpea virus, with an aim to provide a theoretical basis for identification of new chickpea virus and control of chickpea virus disease. Methods. The domestic and foreign studies were reviewed, and the virus coat protein or nucleic acid sequence was identified by immunological and molecular diagnostic techniques. Results. There were 14 main types of chickpea viruses attacking, and seven Luteoviridae viruses were reported, namely, chickpea chlorotic stunt
APA, Harvard, Vancouver, ISO, and other styles
20

Poon, L. L. M., D. K. W. Chu, K. H. Chan, et al. "Identification of a Novel Coronavirus in Bats." Journal of Virology 79, no. 4 (2005): 2001–9. http://dx.doi.org/10.1128/jvi.79.4.2001-2009.2005.

Full text
Abstract:
ABSTRACT Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The virus was detected in fecal and respiratory
APA, Harvard, Vancouver, ISO, and other styles
21

Poon, L. L. M., D. K. W. Chu, K. H. Chan, et al. "Identification of a novel coronavirus in bats." Journal of Virology 79, no. 4 (2005): 2001——2009. https://doi.org/10.1128/JVI.79.4.2001-2009.2005.

Full text
Abstract:
Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The virus was detected in fecal and respiratory samples
APA, Harvard, Vancouver, ISO, and other styles
22

Poon, L. L. M., D. K. W. Chu, K. H. Chan, et al. "Identification of a novel coronavirus in bats." Journal of Virology 79, no. 4 (2005): 2001–9. https://doi.org/10.5281/zenodo.13506149.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The v
APA, Harvard, Vancouver, ISO, and other styles
23

Poon, L. L. M., D. K. W. Chu, K. H. Chan, et al. "Identification of a novel coronavirus in bats." Journal of Virology 79, no. 4 (2005): 2001–9. https://doi.org/10.5281/zenodo.13506149.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The v
APA, Harvard, Vancouver, ISO, and other styles
24

Poon, L. L. M., D. K. W. Chu, K. H. Chan, et al. "Identification of a novel coronavirus in bats." Journal of Virology 79, no. 4 (2005): 2001–9. https://doi.org/10.5281/zenodo.13506149.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The v
APA, Harvard, Vancouver, ISO, and other styles
25

Poon, L. L. M., D. K. W. Chu, K. H. Chan, et al. "Identification of a novel coronavirus in bats." Journal of Virology 79, no. 4 (2005): 2001–9. https://doi.org/10.5281/zenodo.13506149.

Full text
Abstract:
(Uploaded by Plazi for the Bat Literature Project) Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The v
APA, Harvard, Vancouver, ISO, and other styles
26

Xuednan, Liu, Yin Yuqi, and Cui Xinmin. "IDENTIFICATION OF GRAPFVINE FANLEAF VIRUS IN XINJIAN." HortScience 28, no. 5 (1993): 479e—479. http://dx.doi.org/10.21273/hortsci.28.5.479e.

Full text
Abstract:
A isolate from vineof Vitis vinifera cv. Monukka with fanleaf-like symptoms in Vill Xinjian was obtained and studied. It infected Chenopdium quinoa, C. amaranticolor, Gomphrena globesa, Cucumis sative, Hicotana clevelandii. The virus is isometriealspherical particle of 30nm in dianeter. In the double diffusion test in agar and the indexing of immunosorbent electron microscopy(ISEM), it gave positive reaction with GFV antiserm. The virus was propagated on O. quinoa and purified by using Chloroform-Butanol + PEG(P. wt.6000), differental centrifugation and sucroses density gradient cetrifugation.
APA, Harvard, Vancouver, ISO, and other styles
27

Cluever, Jeffrey D., and Hugh A. Smith. "Pest Identification Guide: Western Flower Thrips Frankliniella occidentalis (Pergande)." EDIS 2016, no. 4 (2016): 2. http://dx.doi.org/10.32473/edis-in1127-2016.

Full text
Abstract:
Western flower thrips transmit the carmovirus Pelargonium flower break virus (PFBV), the ilarvirus Tobacco streak virus (TSV), the tospoviruses Chrysanthemum stem necrosis virus (CSNV), Groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV), Tomato chlorotic spot virus (TCSV), and Tomato spotted wilt virus (TSWV). This species is primarily a flower feeder, so most damage would be expected on the flower or fruit. Learn to identify the western flower thrips with this two-page illustrated guide written by Jeffrey D. Cluever and Hugh A. Smith, and published by the Department of Ento
APA, Harvard, Vancouver, ISO, and other styles
28

Meral, Gulsen. "Identification of respiratory syncthial virus in nasal secretions in lower respiratory tract infections." International Journal of Academic Research 9, no. 1 (2017): 43–46. http://dx.doi.org/10.7813/2075-4124.2017/9-1/a.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gnutova, R. V., V. F. Tolkach, and Ju V. Bogunov. "Criteria for identification of Cauliflower mosaic virus’s of the far eastern strains." Plant Protection Science 38, SI 2 - 6th Conf EFPP 2002 (2017): 258–60. http://dx.doi.org/10.17221/10461-pps.

Full text
Abstract:
On the base of the present-day principles to classify plant viruses the identification of Cauliflower mosaic virus (CaMV), a new virus for the Russian Federation, is carried out. Biological properties of 7 isolates have been studied. Symptomatology, range of host-plants and physical properties of virions of studied strains differ. The least thermostable strain is CaMV-B3 (TIP – 75°C) and the highest TIP (85°C) is CaMV-B1. The highest virus concentration in sap was observed for CaMV-B2 (DEP – 10<sup>–6</sup>), and lowest – CaMV-R1 (10<sup>–1</sup>–10<sup>–2</sup
APA, Harvard, Vancouver, ISO, and other styles
30

Kapoor, A., P. Simmonds, J. M. Cullen, et al. "Identification of a Pegivirus (GB Virus-Like Virus) That Infects Horses." Journal of Virology 87, no. 12 (2013): 7185–90. http://dx.doi.org/10.1128/jvi.00324-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Uhlenhaut, C., S. D. McClenahan, S. Sosnovtsev, et al. "Enteric virus detection and identification with a universal virus discovery assay." International Journal of Infectious Diseases 14 (March 2010): e188-e189. http://dx.doi.org/10.1016/j.ijid.2010.02.1907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cluever, Jeffrey D., and Hugh A. Smith. "Pest Identification Guide: Melon Thrips, Thrips palmi Karny." EDIS 2016, no. 4 (2016): 2. http://dx.doi.org/10.32473/edis-in1126-2016.

Full text
Abstract:
Melon thrips transmits Calla lily chlorotic spot virus (CCSV), Groundnut bud necrosis virus (GBNV), Melon yellow spot virus (MYSV), Tomato spotted wilt virus (TSWV), and Watermelon silver mottle virus (WSMoV). This species is primarily a foliage feeder (except in pepper and eggplant, where flowers are more preferred). Feeding on the leaves results in yellowing followed by death of leaf. Leaf feeding can also cause terminal growth to be discolored, stunted, and malformed. Feeding on fruit may cause scarring and malformed fruit. Learn to identify the melon thrips with this 2-page illustrated gui
APA, Harvard, Vancouver, ISO, and other styles
33

Vafin, R. R., N. Z. Khazipov, A. Y. Shaeva, et al. "Genotypic identification of the bovine leukemia virus." Molecular Genetics, Microbiology and Virology 29, no. 4 (2014): 195–203. http://dx.doi.org/10.3103/s0891416814040120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Å UBÍKOVÁ, V., V. MALIARCIKOVÁ, and H. BAUMGARTNEROVÁ. "IDENTIFICATION OF TOMATO RINGSPOT VIRUS IN SLOVAKIA." Acta Horticulturae, no. 422 (July 1996): 402–3. http://dx.doi.org/10.17660/actahortic.1996.422.98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tátrai, Enikő, István ifj. Hartyánszky, András Lászik, Márta Hubay, György Acsády, and Péter Sótonyi. "Molecular biological virus identification in dilated cardiomyopathy." Orvosi Hetilap 148, no. 48 (2007): 2275–78. http://dx.doi.org/10.1556/oh.2007.28213.

Full text
Abstract:
Régóta ismert, hogy főként az enterovírusok, azok közül is a Coxsackie-B3 játszik elsődleges szerepet a szívizomgyulladás patomechanizmusában, továbbá az annak lehetséges következményeként kialakuló dilatativ cardiomyopathiában. Célkitűzés: Jelen vizsgálatainkban ezeknek a vírusoknak feltételezett kóroki szerepét kívántuk kimutatni szívátültetésen átesett dilatativ cardiomyopathiás betegekben. Módszer: A víruskimutatás e betegek explantált szívizommintáiból történt. A szív öt különböző, előre meghatározott régióiból ún. nested polimeráz láncreakciót alkalmazva sokszoroztuk az Adenovírus-3, Hum
APA, Harvard, Vancouver, ISO, and other styles
36

Assoun, Paul-Laurent. "Identification et contamination : du virus à l’amour." Cahiers de psychologie clinique 58, no. 1 (2022): 11–28. http://dx.doi.org/10.3917/cpc.058.0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Aso, Shiro, Koichi Kitao, Akira Hashimoto-Gotoh, Shoichi Sakaguchi, and Takayuki Miyazawa. "Identification of Feline Foamy Virus-derived MicroRNAs." Microbes and Environments 36, no. 4 (2021): n/a. http://dx.doi.org/10.1264/jsme2.me21055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Eisfeld, Amie J., Gabriele Neumann, and Yoshihiro Kawaoka. "Influenza A virus isolation, culture and identification." Nature Protocols 9, no. 11 (2014): 2663–81. http://dx.doi.org/10.1038/nprot.2014.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jöns, A., and T. C. Mettenleiter. "Identification and characterization of pseudorabies virus dUTPase." Journal of virology 70, no. 2 (1996): 1242–45. http://dx.doi.org/10.1128/jvi.70.2.1242-1245.1996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

OSTERHAUS, A. D. M. E., and E. J. VEDDER. "Identification of virus causing recent seal deaths." Nature 335, no. 6185 (1988): 20. http://dx.doi.org/10.1038/335020a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Visalli, Robert J., Adam M. Schwartz, Shivam Patel, and Melissa A. Visalli. "Identification of the Epstein Barr Virus portal." Virology 529 (March 2019): 152–59. http://dx.doi.org/10.1016/j.virol.2019.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ndiaye, M., J. F. Saluzzo, J. P. Digoutte, and X. Mattei. "Identification du virus Nkolbisson par microscopie électronique." Annales de l'Institut Pasteur / Virologie 138, no. 4 (1987): 517–21. http://dx.doi.org/10.1016/s0769-2617(87)80041-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Marco, S. "Identification of peanut mottle virus in Israel." Phytoparasitica 14, no. 3 (1986): 236. http://dx.doi.org/10.1007/bf02980494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Walpita, P., J. D. Connor, and D. Pfeifer. "Protein fingerprinting: a novel virus identification system." Journal of Virological Methods 25, no. 3 (1989): 315–24. http://dx.doi.org/10.1016/0166-0934(89)90058-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Schmaljohn, Connie S., Gerald B. Jennings, and Joel M. Dalrymple. "Identification of hantaan virus messenger RNA species." Virus Research 3 (September 1985): 21. http://dx.doi.org/10.1016/0168-1702(85)90294-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lemm, Julie A., Donald O'Boyle, Mengping Liu, et al. "Identification of Hepatitis C Virus NS5A Inhibitors." Journal of Virology 84, no. 1 (2009): 482–91. http://dx.doi.org/10.1128/jvi.01360-09.

Full text
Abstract:
ABSTRACT Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was ∼5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses. Replicon cells resistant to BMS-824 were isolated, and mutations were identified. A combination of amino acid substitutions of leucine to valine at residue 3
APA, Harvard, Vancouver, ISO, and other styles
47

Ichihashi, Yasuo, Tetsuya Takahashi, and Masayasu Oie. "Identification of a Vaccinia Virus Penetration Protein." Virology 202, no. 2 (1994): 834–43. http://dx.doi.org/10.1006/viro.1994.1405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Forng, Ren-Yo, and Teryl K. Frey. "Identification of the Rubella Virus Nonstructural Proteins." Virology 206, no. 2 (1995): 843–53. http://dx.doi.org/10.1006/viro.1995.1007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Grosenbach, Douglas W., Scott G. Hansen, and Dennis E. Hruby. "Identification and Analysis of Vaccinia Virus Palmitylproteins." Virology 275, no. 1 (2000): 193–206. http://dx.doi.org/10.1006/viro.2000.0522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ianevski, Aleksandr, Rouan Yao, Svetlana Biza, et al. "Identification and Tracking of Antiviral Drug Combinations." Viruses 12, no. 10 (2020): 1178. http://dx.doi.org/10.3390/v12101178.

Full text
Abstract:
Combination therapies have become a standard for the treatment for HIV and hepatitis C virus (HCV) infections. They are advantageous over monotherapies due to better efficacy, reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify new synergistic combinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), echovirus 1 (EV1), hepatitis C virus (HCV) and human immunodeficiency virus 1 (HIV-1) in vitro. We observed synergistic activity of nelfinavir with convalescent serum and with pu
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!