Academic literature on the topic 'Virus overexpression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virus overexpression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Virus overexpression"
Zou, Zhongcheng, John Misasi, Nancy Sullivan, and Peter D. Sun. "Overexpression of Ebola virus envelope GP1 protein." Protein Expression and Purification 135 (July 2017): 45–53. http://dx.doi.org/10.1016/j.pep.2017.04.010.
Full textGoila-Gaur, Ritu, Dimiter G. Demirov, Jan M. Orenstein, Akira Ono, and Eric O. Freed. "Defects in Human Immunodeficiency Virus Budding and Endosomal Sorting Induced by TSG101 Overexpression." Journal of Virology 77, no. 11 (June 1, 2003): 6507–19. http://dx.doi.org/10.1128/jvi.77.11.6507-6519.2003.
Full textSeo, Young-Jin, Celeste Blake, Stephen Alexander, and Bumsuk Hahm. "Sphingosine 1-Phosphate-Metabolizing Enzymes Control Influenza Virus Propagation and Viral Cytopathogenicity." Journal of Virology 84, no. 16 (June 2, 2010): 8124–31. http://dx.doi.org/10.1128/jvi.00510-10.
Full textLi, Shun, Shanwu Lyu, Yujuan Liu, Ming Luo, Suhua Shi, and Shulin Deng. "Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection." Cells 10, no. 9 (September 1, 2021): 2278. http://dx.doi.org/10.3390/cells10092278.
Full textBarrera-Vázquez, Oscar Salvador, Clotilde Cancio-Lonches, Carlos Emilio Miguel-Rodríguez, Monica Margarita Valdes Pérez, and Ana Lorena Gutiérrez-Escolano. "Survivin Overexpression Has a Negative Effect on Feline Calicivirus Infection." Viruses 11, no. 11 (October 30, 2019): 996. http://dx.doi.org/10.3390/v11110996.
Full textSun, Lijun, Haiying Ren, Ruoxue Liu, Baoyan Li, Tingquan Wu, Feng Sun, Huimin Liu, Xiaomeng Wang, and Hansong Dong. "An h-Type Thioredoxin Functions in Tobacco Defense Responses to Two Species of Viruses and an Abiotic Oxidative Stress." Molecular Plant-Microbe Interactions® 23, no. 11 (November 2010): 1470–85. http://dx.doi.org/10.1094/mpmi-01-10-0029.
Full textCooper, Andrew, Eric Johannsen, Seiji Maruo, Ellen Cahir-McFarland, Diego Illanes, David Davidson, and Elliott Kieff. "EBNA3A Association with RBP-Jκ Down-Regulates c-myc and Epstein-Barr Virus-Transformed Lymphoblast Growth." Journal of Virology 77, no. 2 (January 15, 2003): 999–1010. http://dx.doi.org/10.1128/jvi.77.2.999-1010.2003.
Full textMathieu, Cyrille, Vanessa Guillaume, Amélie Sabine, Kien Chai Ong, Kum Thong Wong, Catherine Legras-Lachuer, and Branka Horvat. "Lethal Nipah Virus Infection Induces Rapid Overexpression of CXCL10." PLoS ONE 7, no. 2 (February 29, 2012): e32157. http://dx.doi.org/10.1371/journal.pone.0032157.
Full textMcdonald, W. F., and P. Traktman. "Overexpression and Purification of the Vaccinia Virus DNA Polymerase." Protein Expression and Purification 5, no. 4 (August 1994): 409–21. http://dx.doi.org/10.1006/prep.1994.1059.
Full textQuinn, Kathrina, Melinda A. Brindley, Melodie L. Weller, Nikola Kaludov, Andrew Kondratowicz, Catherine L. Hunt, Patrick L. Sinn, et al. "Rho GTPases Modulate Entry of Ebola Virus and Vesicular Stomatitis Virus Pseudotyped Vectors." Journal of Virology 83, no. 19 (July 22, 2009): 10176–86. http://dx.doi.org/10.1128/jvi.00422-09.
Full textDissertations / Theses on the topic "Virus overexpression"
Machado, Ana Karla de Freitas. "An exploration of the function of specific components of the predicted secretome of Fusarium graminearum during wheat infection." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/32234.
Full textZhang, Shaoyan. "Overexpression of the Turnip Crinkle Virus Replicase Exerts Opposite Effects on the Synthesis of Viral Genomic RNA and a Novel Viral Long Non-Coding RNA." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595258672390499.
Full textRiegert, Céline Cassel Jean-Christophe Jackisch R. "Effects of combined applications of ethanol and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in vitro and in vivo Focus on presynaptic 5-HT1b auto- and heteroreceptors and their possible overexpression using HSV-1-mediated gene transfer /." Strasbourg : Université Louis Pasteur, 2008. http://eprints-scd-ulp.u-strasbg.fr:8080/936/01/RIEGERT_Celine_2007N.pdf.
Full textThèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Bibliogr. p. 204-228.
Rifi, Omar. "Production des polypeptides issus des glycoprotéines d'enveloppe du VIH-1 pour des études biophysique et structurale par RMN et DC." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF026.
Full textA few stable regions have been discovered on the HIV-1 env gp against which some patients produce neutralizing antibodies. The most promising ones are located in the MPER and are probably exposed transiently during the fusion. Whereas the peptides isolated from this region failed to induce immunogenic response, previous studies suggest the lipid membrane plays a role in antigens structure and in the immunogenic response.That is why we investigate the structure of these épitopes in membrane models. This requires the production of these épitopes by bacterial overexpression, their purification and their reconstitution in liposomes. A CD study shows that they could undergo a conformational change; this will be confirmed by NMR. Also their immunogenicity will be checked by mice immunization. In addition, we find that cholesterol could change the orientation of peptides encompassing a gp41 CRAC motif
Tavares, Lucas Alves. "O envolvimento da proteína adaptadora 1 (AP-1) no mecanismo de regulação negativa do receptor CD4 por Nef de HIV-1." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/17/17136/tde-06012017-113215/.
Full textThe Human Immunodeficiency Virus (HIV) is the etiologic agent of Acquired Immunodeficiency Syndrome (AIDS). AIDS is a disease which has a global distribution, and it is estimated that there are currently at least 36.9 million people infected with the virus. During the replication cycle, HIV promotes several changes in the physiology of the host cell to promote their survival and enhance replication. The fast progression of HIV-1 in humans and animal models is closely linked to the function of an accessory protein Nef. Among several actions of Nef, one is the most important is the down-regulation of proteins from the immune response, such as the CD4 receptor. It is known that this action causes CD4 degradation in lysosome, but the molecular mechanisms are still incompletely understood. Nef forms a tripartite complex with the cytosolic tail of the CD4 and adapter protein 2 (AP-2) in clathrin-coated vesicles, inducing CD4 internalization and lysosome degradation. Previous research has demonstrated that CD4 target to lysosomes by Nef involves targeting of this receptor to multivesicular bodies (MVBs) pathway by an atypical mechanism because, although not need charging ubiquitination, depends on the proteins from ESCRTs (Endosomal Sorting Complexes Required for Transport) machinery and the action of Alix, an accessory protein ESCRT machinery. It has been reported that Nef interacts with subunits of AP- 1, AP-2, AP-3 complexes and Nef does not appear to interact with AP-4 and AP-5 subunits. However, the role of Nef interaction with AP-1 or AP-3 in CD4 down-regulation is poorly understood. Furthermore, AP-1, AP-2 and AP-3 are potentially heterogeneous due to the existence of multiple subunits isoforms encoded by different genes. However, there are few studies to demonstrate if the different combinations of APs isoforms are form and if they have distinct functional properties. This study aim to identify and characterize cellular factors involved on CD4 down-modulation induced by Nef from HIV-1. More specifically, this study aimed to characterize the involvement of AP-1 complex in the down-regulation of CD4 by Nef HIV-1 through the functional study of the two isoforms of ?-adaptins, AP-1 subunits. By pull-down technique, we showed that Nef is able to interact with ?2. In addition, our data from immunoblots indicated that ?2- adaptin, not ?1-adaptin, is required in Nef-mediated targeting of CD4 to lysosomes and the ?2 participation in this process is conserved by Nef from different viral strains. Furthermore, by flow cytometry assay, ?2 depletion, but not ?1 depletion, compromises the reduction of surface CD4 levels induced by Nef. Immunofluorescence microscopy analysis also revealed that ?2 depletion impairs the redistribution of CD4 by Nef to juxtanuclear region, resulting in CD4 accumulation in primary endosomes. Knockdown of ?1A, another subunit of AP-1, resulted in decreased cellular levels of ?1 and ?2 and, compromising the efficient CD4 degradation by Nef. Moreover, upon artificially stabilizing ESCRT-I in early endosomes, via overexpression of HRS, internalized CD4 accumulates in enlarged HRS-GFP positive endosomes, where co-localize with ?2. Together, the results indicate that ?2-adaptin is a molecule that is essential for CD4 targeting by Nef to ESCRT/MVB pathway, being an important protein in the endo-lysosomal system. Furthermore, the results indicate that ?-adaptins isoforms not only have different functions, but also seem to compose AP-1 complex with distinct cell functions, and only the AP-1 variant comprising ?2, but not ?1, acts in the CD4 down-regulation induced by Nef. These studies contribute to a better understanding on the molecular mechanisms involved in Nef activities, which may also help to improve the understanding of the HIV pathogenesis and the related syndrome. In addition, this work contributes with the understanding of primordial process regulation on intracellular trafficking of transmembrane proteins.
Chou, Yuan-Lin, and 周遠霖. "Overexpression, Purification, and Characterization of the Triple-Gene-Block Protein 3 of Bamboo Mosaic Virus." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/99253679550321267866.
Full text中興大學
生物化學研究所
94
The triple gene block (TGB) of Bamboo mosaic virus (BaMV) encodes three movement proteins, TGBp1, TGBp2 and TGBp3, which are involved in cell-to-cell movement of viral RNA. However, detailed mechanism of the three TGB proteins to assist viral movement remains to be uncovered. The purpose of this study is to analyze the biochemical properties of TGBp3 as well as the possibility of interaction between TGBp3 and other viral movement components. Amino acid sequence analysis of TGBp3 revealed that it is a 6 kDa protein with an N-terminal hydrophobic transmembrane segment and a hydrophilic C-terminal region. Moreover, about 25% of the amino acid codons in TGBp3 are rarely used by E. coli. Therefore, E. coli Rosetta (DE3) / pLysSRARE carrying plasmid-borne tRNA complementary to the rare codons was used as host for TGBp3 expression. In addition, mutant TGBp3 with the rare codons in the whole coding sequence replaced with the frequently used ones was created. The overexpressed TGBp3 was purified by TALON immobilized metal affinity chromatography and a subsequent gel purification protocol. The identity of the purified protein was confirmed by N-terminal sequencing to be TGBp3. To confirm that TGBp3 is really an integral membrane protein, a micelle-vesicle transition theory was adopted to reconstitute TGBp3-containing proteoliposomes. Ficoll gradient centrifugation of the reconstituted sample revealed that TGBp3 was able to co-migrate with phospholipid, suggesting that it is membrane associated. Chemical treatments of TGBp3-containing liposomes revealed that most of TGBp3 is integrated in lipid-bilayer. In the future, the membrane topology of TGBp3 and the interaction between TGBp3 and other viral movement components will be studied.
Li, Yi-Ija, and 李宜佳. "Overexpression, purification and characterization of the open reading frame 1 product of bamboo mosaic virus." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/75934943718262670840.
Full text國立中興大學
農業生物科技學研究所
85
The product of open-reading frame 1(ORF1) of bamboo mosaicvirus(BaMV) has been postulated to be a replicase that is involved in the replication of viral genome and in the capping reaction of the positive strand RNA according to the analysis of nucleotide sequence. In this study, the corresponding cDNA was inserted into pET-32a or pET29a and transformed intoEscherichia coli strain BL21(DE3). The recombinant viral protein, fused at N-terminus with thioredoxin , was over-expressed under the induction of isopropyl b-D-thiogalactopyranoside, and partial purified by differential S*Tag affinity chromatography or glycerol gradient centrifugation. The purified enzyme was able to produce P32-labeled RNA fragments upon the addition of particular RNA substrates. Among the RNA molecules tested in this study, such reaction was observed when the substrate was 3*-terrminal fragment of positive strand or negative strand RNA of BaMV. The sensitivity of the P32-labeled RNA products to nuclease S1 digestion suggests that they were arise from the incorporation of a-P32-GTP or a-P32-UTP moiety at 3*-end of RNA substrates. Neither guanylyltransferase or methyltransferase was observed in this study.
Geissinger, Ulrike. "Vaccinia Virus-mediated MR Imaging of Tumors in Mice: Overexpression of Iron-binding Proteins in Colonized Xenografts." Doctoral thesis, 2010. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-48099.
Full textDas Vaccinia Virus spielt in der Humanmedizin und Molekularbiologie eine wichtige Rolle seit E. Jenner im 18. Jahrhundert seinen Nutzen als Impfvirus entdeckt hat. Nach der erfolgreichen Ausrottung der Pocken, wird das Vaccinia Virus heutzutage neben der Anwendung als Impfstoffträger hauptsächlich als viraler Vektor in der Molekularbiologie und in zunehmendem Maße in der Krebstherapie verwendet. Die Fähigkeit Krebszellen gezielt zu zerstören, macht es zu einem perfekten Wirkstoff für die onkolytische Virotherapie. Des Weiteren kann das Virus durch das Inserieren von Genen, die für therapeutische oder diagnostische Proteine kodieren, und im Tumor exprimiert werden, modifiziert werden. Der Schwerpunkt dieser Arbeit war die Tumordiagnose mit Hilfe verschiedener Vaccinia Virusstämme. Viren mit der Fähigkeit, Metalle anzureichern wurden zur Tumordetektion mittels Kernspintomographie hergestellt und auf ihre Nutzbarkeit in Zellkultur und in vivo getestet. Die Virusstämme GLV-1h132, GLV-1h132 und GLV-1h133 tragen das Gen, welches für die zwei Untereinheiten des Eisenspeicherproteins Ferritin kodieren unter der Kontrolle von drei verschiedenen Promotoren. GLV-1h110, GLV-1h111, und GLV-1h112 tragen das Gen, welches für das bakterielle Eisenspeicherprotein Bacterioferritin kodiert, wohingegen das inserierte Gen in GLV-1h113 für die codon-optimierte Version dieses Proteins kodiert, die eine effizientere Expression in humanen Zellen ermöglichen soll. GLV-1h22 beinhaltet das Transferrin-Rezeptor-Gen, welches eine wichtige Rolle in der Eisenaufnahme spielt, und GLV-1h114 und GLV-1h115 beinhalten das murine Transferrin-Rezeptor-Gen. Für eine möglicherweise bessere Eisenaufnahme wurden die Virusstämme GLV-1h154, GLV-1h155, GLV-1h156 und GLV-1h157 mit je einer Version eines Ferritin-Gens und eines Transferrin-Rezeptor-Gens generiert. GLV-1h154 trägt die Gene, die für Bacterioferritin und den humanen Transferrin Rezeptor kodieren, GLV-1h155 trägt die Gene für die humane Ferritin H-Untereinheit und den humanen Transferrin Rezeptor. Zellen, die mit GLV-1h156 und GLV-1h157 infiziert wurden, exprimierten den Maus-Transferrin-Rezeptor und Bacterioferritin beziehungsweise die humane Ferritin-H-Untereinheit. Die Virusstämme GLV-1h186 und GLV-1h187 wurden mit einer mutierten Form der leichten Untereinheit von Ferritin, für die eine Überladung mit Eisen gezeigt wurde, beziehungsweise mit der leichten Untereinheit des wildtypischen Gens ausgestattet. Das Gen, das für den Divalenten Metal Transporter 1 kodiert, welches ein bedeutendes Protein für die Aufnahme von Eisen darstellt, wurde in den Virusstamm GLV-1h102 inseriert. Der Virusstamm GLV-1h184 trägt das magA Gen des magnetotaktischen Bakteriums Magnetospirillum magnetotacticum, welches magnetische Nanopartikel zur Orientierung im Erdmagnetfeld produziert. Zunächst wurde die Infektions- und Replikationsfähigkeit aller Viren analysiert und mit der des Ausgangsstammes GLV-1h68 verglichen, was zeigte, dass alle Viren in der Lage waren humane Krebszellen der Zelllinien GI-101A und A549 zu infizieren. Alle Konstrukte zeigten einen vergleichbaren Infektionsverlauf zu GLV-1h68. Als nächstes, um die Expression der fremden Proteine in GI-101A und A549 Zellen zu untersuchen, wurden SDS-Gelelektrophorese, Western Blots und ELISAs durchgeführt. Die Proteine, welche unter der Kontrolle von starken Promotoren exprimiert wurden, konnten mit diesen Methoden detektiert werden. Um die Expression von MagA und DMT1 zu detektieren, welche unter der Kontrolle des schwachen Promotors exprimiert wurden, wurde die sensitivere Methode RT-PCR angewendet, mit der zumindest die Transkription der Gene nachgewiesen werden konnte. Die Bestimmung des Eisengehaltes in infizierten GI-101A und A549 Zellen zeigte, dass die Infektion mit allen Viren im Vergleich zu uninfizierten Zellen zu einer Eisenanreicherung führte, sogar die Infektion mit dem Ausgangsstamm GLV-1h68. Für das synthetische Phytochelatin EC20 wurde auch eine Anhäufung von verschiedenen Schwermetallen in Bakterienkulturen gezeigt. In vivo Experimente mit A549 tumor-tragenden athymischen Nacktmäusen ergaben, dass Viruspartikel 24 Tage nach der Infektion hauptsächlich im Tumor gefunden wurden. Die von den Viren vermittelte Expression der rekombinanten Proteine in den Tumoren wurde erfolgreich mit Hilfe von Western Blots detektiert. Die Eisenansammlung in Tumorlysaten wurde mit dem Ferrozine Assay untersucht und führte zu dem Ergebnis, dass Tumore, die mit GLV-1h68 infiziert wurden, den höchsten Eisengehalt vorwiesen. Histologische Färbungen bestätigten die Erkenntnis, dass die Eisenansammlung nicht ein direktes Resultat der Insertion von eisenansammelnden Genen in das Virusgenom war. Darüberhinaus wurden tumortragende Mäuse, denen Virus injiziert wurde, mittels Kernspintomographie analysiert. Zwei verschiedene Messungen wurden durchgeführt, wobei die erste Messung sieben Tage nach Virusinjektion mit einem sieben Tesla Kleintier-Scanner durchgeführt wurde und die zweite Messung mit einem humanen drei Tesla Scanner 21 Tage nach Virusinjektion. Tumore von Mäusen, die mit den Virusstämmen GLV-1h113 und GLV-1h184 injiziert wurden, zeigten verkürzte T2- und T2*-Relaxationszeiten, was auf eine verbesserte Eisenakkumulation hinweist. Zusammenfassend deuten die Experimente dieser Studie darauf hin, dass der Virusstamm GLV-1h113, welcher für Bacterioferritin kodiert, und der Virusstamm GLV-1h184, welcher für MagA kodiert, nach weiterer Untersuchung und Optimierung vielversprechende Kandidaten für die Krebs Bildgebung sind
Geißinger, Ulrike [Verfasser]. "Vaccinia virus-mediated MR imaging of tumors in mice : overexpression of iron-binding proteins in colonized xenografts / vorgelegt von Ulrike Geißinger." 2010. http://d-nb.info/1012812790/34.
Full textLee, Ying-Ray, and 李英瑞. "Study on the Role of Autophagosome Formation and Monocyte Chemoattractant Protein-1 (MCP-1) Overexpression in the Pathogenesis of Dengue Virus Infection." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/58124713770005122454.
Full text國立成功大學
基礎醫學研究所
96
Dengue virus infection may cause self-limited dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). The viral load is the key point of the pathogenesis of dengue virus infection. Moreover, vascular leakage, thrombocytopenia and hemoconcentration are the hallmarks of dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). Permeability aberration may contribute to the plasma leakage, which is most likely affected by certain soluble mediators. Cytokines may play an important role in the vascular leakage. Autophagy, a cellular response against stresses, functions to recycle protein and organelles. However, the roles of autophagy in disease pathogenesis and microbial infection remain unclear. Several viral infections could induce autophagy and replicate using the autophagosome. We found that dengue virus-2 (DV2) infection can induce punctate GFP-microtubule-associated protein light chain (GFP-LC3) and increased expression of the proteolytic derivate LC-II in DV2 infected cells. DV2 infection induced autophagosome formation revealed by immuno-gold labeling of LC3 protein under the transsimission electron microscopy. The mTOR/p70S6K signaling pathway may be involved in DV2-induced autophagy. Further study reveals that DV2 infection-induced autophagy can enhance the replication of the virus in the infected cells. Furthermore, high levels of monocyte chemoattractant protein-1 (MCP-1) were detected in the plasma of DHF patients. DV2 infection can induce MCP-1 production in monocytes, but not in hepatoma and endothelium cells. The production of MCP-1 is dengue virus-dose dependent. Exposure of human umbilical vein endothelial cells (HUVEC) to recombinant human MCP-1 (rhMCP-1) or the cultured supernatant of DV2-infected human monocytes increased vascular permeability of HUVECs. Neutralizing monoclonal antibody of MCP-1 partially reduced vascular permeability. The distribution of the tight junction protein ZO-1 on the cellular membrane of HUVEC was disrupted either by pretreatment of recombinant MCP-1 or the conditioned medium from DV2-infected monocytes. All together, we unravel that dengue virus infection can induce autophagosome formation and increase viral replication. Moreover, increased viral load sustains the overexpression of MCP-1, which further increases the degree of the vascular permeability. Our findings open a new direction toward understanding the pathogenesis of DHF.
Books on the topic "Virus overexpression"
Biloshytsky, Vadym, and Roman Cregg. Pioneering use of gene therapy for pain. Edited by Paul Farquhar-Smith, Pierre Beaulieu, and Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0083.
Full textBook chapters on the topic "Virus overexpression"
Ahlquist, Richard M., and Jane M. Sullivan. "Overexpression of Proteins in Neurons Using Replication-Deficient Virus." In Ion Channels, 15–26. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59745-095-2:15.
Full textDelmas, B., E. Kut, J. Gelfi, and H. Laude. "Overexpression of TGEV Cell Receptor Impairs the Production of Virus Particles." In Advances in Experimental Medicine and Biology, 379–85. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1899-0_62.
Full textChamero, Pablo, and Frank Zufall. "Virus-Mediated Overexpression of Vomeronasal Receptors and Functional Assessment by Live-Cell Calcium Imaging." In Methods in Molecular Biology, 43–56. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8609-5_4.
Full textKumar, Swatantra, Rajni Nyodu, Vimal K. Maurya, and Shailendra K. Saxena. "Pathogenesis and Host Immune Response during Japanese Encephalitis Virus Infection." In Innate Immunity in Health and Disease. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98947.
Full textNoè, Francesco M., Andreas T. Sørensen, Merab Kokaia, and Annamaria Vezzani. "Gene Therapy of Focal-Onset Epilepsy Using Adeno-Associated Virus Vector-Mediated Overexpression of Neuropeptide Y." In Jasper's Basic Mechanisms of the Epilepsies, 1139–49. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199746545.003.0089.
Full textConference papers on the topic "Virus overexpression"
Xiang, Jun, Anchun Cheng, Mingshu Wang, Hua Chang, Shunchuan Zhang, Anchun Cheng, Mingshu Wang, et al. "Prediction of B Cell Epitopes and Overexpression of Truncated VP19c of Duck Enteritis Virus in Escherichia Coli." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5517870.
Full textLasithiotaki, Ismini, Eliza Tsitoura, Anastasios Koutsopoulos, Eleni Lagoudaki, Demetrios Spandidos, Nikolaos Siafakas, Giorgos Sourvinos, and Katerina Antoniou. "Overexpression of miR-21 in non-small cell lung cancer, positive for Merkel cell polyoma virus (ΜCPyV)." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.oa2929.
Full textAli, Naushad, Parthasarathy Chandrakesan, Mark Huycke, Sanam Husain, Allison F. Gillaspy, Randal May, William L. Berry, et al. "Abstract 3171: Overexpression of a cancer stem cell marker doublecortin-like kinase (DCLK1) leads to activation of inflammatory cascade during development of virus-induced hepatocellular carcinoma." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3171.
Full text