Academic literature on the topic 'Virus particle assembly'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Virus particle assembly.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Virus particle assembly"

1

Crist, Rachael M., Siddhartha A. K. Datta, Andrew G. Stephen, et al. "Assembly Properties of Human Immunodeficiency Virus Type 1 Gag-Leucine Zipper Chimeras: Implications for Retrovirus Assembly." Journal of Virology 83, no. 5 (2008): 2216–25. http://dx.doi.org/10.1128/jvi.02031-08.

Full text
Abstract:
ABSTRACT Expression of the retroviral Gag protein leads to formation of virus-like particles in mammalian cells. In vitro and in vivo experiments show that nucleic acid is also required for particle assembly. However, several studies have demonstrated that chimeric proteins in which the nucleocapsid domain of Gag is replaced by a leucine zipper motif can also assemble efficiently in mammalian cells. We have now analyzed assembly by chimeric proteins in which nucleocapsid of human immunodeficiency virus type 1 (HIV-1) Gag is replaced by either a dimerizing or a trimerizing zipper. Both proteins assemble well in human 293T cells; the released particles lack detectable RNA. The proteins can coassemble into particles together with full-length, wild-type Gag. We purified these proteins from bacterial lysates. These recombinant “Gag-Zipper” proteins are oligomeric in solution and do not assemble unless cofactors are added; either nucleic acid or inositol phosphates (IPs) can promote particle assembly. When mixed with one equivalent of IPs (which do not support assembly of wild-type Gag), the “dimerizing” Gag-Zipper protein misassembles into very small particles, while the “trimerizing” protein assembles correctly. However, addition of both IPs and nucleic acid leads to correct assembly of all three proteins; the “dimerizing” Gag-Zipper protein also assembles correctly if inositol hexakisphosphate is supplemented with other polyanions. We suggest that correct assembly requires both oligomeric association at the C terminus of Gag and neutralization of positive charges near its N terminus.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Shainn-Wei, and Anna Aldovini. "RNA Incorporation Is Critical for Retroviral Particle Integrity after Cell Membrane Assembly of Gag Complexes." Journal of Virology 76, no. 23 (2002): 11853–65. http://dx.doi.org/10.1128/jvi.76.23.11853-11865.2002.

Full text
Abstract:
ABSTRACT The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only ∼10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.
APA, Harvard, Vancouver, ISO, and other styles
3

Chlanda, Petr, Oliver Schraidt, Susann Kummer, et al. "Structural Analysis of the Roles of Influenza A Virus Membrane-Associated Proteins in Assembly and Morphology." Journal of Virology 89, no. 17 (2015): 8957–66. http://dx.doi.org/10.1128/jvi.00592-15.

Full text
Abstract:
ABSTRACTThe assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like.IMPORTANCEInfluenza A virus is a major respiratory pathogen. It assembles membrane-enveloped virus particles whose shapes vary from spherical to filamentous. Here we examine the roles of individual viral proteins in mediating virus assembly and determining virus shape. To do this, we used a range of electron microscopy techniques to obtain and compare two- and three-dimensional images of virus particles and virus-like particles during and after assembly. The virus-like particles were produced using different combinations of viral proteins. Among our results, we found that coexpression of one or both of the viral surface proteins (hemagglutinin and neuraminidase) with the viral membrane-associated proteins encoded by the M segment results in assembly and release of filamentous virus-like particles in a manner very similar to that of the budding and release of influenza virions. These data provide novel insights into the roles played by individual viral proteins in influenza A virus assembly.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Chin-Tien, Hsiu-Yu Lai, and Jue-Jyh Li. "Analysis of Minimal Human Immunodeficiency Virus Type 1 gag Coding Sequences Capable of Virus-Like Particle Assembly and Release." Journal of Virology 72, no. 10 (1998): 7950–59. http://dx.doi.org/10.1128/jvi.72.10.7950-7959.1998.

Full text
Abstract:
ABSTRACT We have constructed a series of human immunodeficiency virus (HIV)gag mutants by progressive truncation of thegag coding sequence from the C terminus and have combined these mutants with an assembly-competent matrix domain deletion mutation (ΔMA). By using several methods, the particle-producing capabilities of each mutant were examined. Our analysis indicated that truncated Gag precursors lacking most of C-terminal gaggene products assembled and were released from 293T cells. Additionally, a mutant with a combined deletion of the MA (ΔMA) and p6 domains even produced particles at levels comparable to that of the wild-type (wt) virus. However, most mutants derived from combination of the ΔMA and the C-terminal truncation mutations did not release particles as well as the wt. Our smallest HIV gag gene product capable of virus-like particle formation was a 28-kDa protein which consists of a few MA amino acids and the CA-p2 domain. Sucrose density gradient fractionation analysis indicated that most mutants exhibited a wt retrovirus particle density. Exceptions to this rule were mutants with an intact MA domain but deleted downstream of the p2 domains. These C-terminal truncation mutants possessed particle densities of 1.13 to 1.15 g/ml, lower than that of the wt. The N-terminal portions of the CA domain, which have been shown to be dispensable for core assembly, became critical when most of the MA domain was deleted, suggesting a requirement for an intact CA domain to assemble and release particles.
APA, Harvard, Vancouver, ISO, and other styles
5

Joshi, Swati M., and Volker M. Vogt. "Role of the Rous Sarcoma Virus p10 Domain in Shape Determination of Gag Virus-Like Particles Assembled In Vitro and within Escherichia coli." Journal of Virology 74, no. 21 (2000): 10260–68. http://dx.doi.org/10.1128/jvi.74.21.10260-10268.2000.

Full text
Abstract:
ABSTRACT Purified retrovirus Gag proteins can assemble in vitro into virus-like particles (VLPs) in the presence of RNA. It was shown previously that a Rous sarcoma virus Gag protein missing only the protease domain forms spherical particles resembling immature virions lacking a membrane but that a similar protein missing the p10 domain forms tubular particles. Thus, p10 plays a role in spherical particle formation. To further study this shape-determining function, we dissected the p10 domain by mutagenesis and examined VLPs assembled within Escherichia coli or assembled in vitro from purified proteins. The results identified a minimal contiguous segment of 25 amino acid residues at the C terminus of p10 that is sufficient to restore efficient spherical assembly to a p10 deletion mutant. Random and site-directed mutations were introduced into this segment of polypeptide, and the shapes of particles formed in E. coliwere examined in crude extracts by electron microscopy. Three phenotypes were observed: tubular morphology, spherical morphology, or no regular structure. While the particle morphology visualized in crude extracts generally was the same as that visualized for purified proteins, some tubular mutants scored as spherical when tested as purified proteins, suggesting that a cellular factor may also play a role in shape determination. We also examined the assembly properties of smaller Gag proteins consisting of the capsid protein-nucleocapsid protein (CA-NC) domains with short N-terminal extensions or deletions. Addition of one or three residues allowed CA-NC to form spheres instead of tubes in vitro, but the efficiency of assembly was extremely low. Deletion of the N-terminal residue(s) abrogated assembly. Taken together, these results imply that the N terminus of CA and the adjacent upstream 25 residues play an important role in the polymerization of the Gag protein.
APA, Harvard, Vancouver, ISO, and other styles
6

Gómez-Puertas, Paulino, Carmen Albo, Esperanza Pérez-Pastrana, Amparo Vivo, and Agustı́n Portela. "Influenza Virus Matrix Protein Is the Major Driving Force in Virus Budding." Journal of Virology 74, no. 24 (2000): 11538–47. http://dx.doi.org/10.1128/jvi.74.24.11538-11547.2000.

Full text
Abstract:
ABSTRACT To get insights into the role played by each of the influenza A virus polypeptides in morphogenesis and virus particle assembly, the generation of virus-like particles (VLPs) has been examined in COS-1 cell cultures expressing, from recombinant plasmids, different combinations of the viral structural proteins. The presence of VLPs was examined biochemically, following centrifugation of the supernatants collected from transfected cells through sucrose cushions and immunoblotting, and by electron-microscopic analysis. It is demonstrated that the matrix (M1) protein is the only viral component which is essential for VLP formation and that the viral ribonucleoproteins are not required for virus particle formation. It is also shown that the M1 protein, when expressed alone, assembles into virus-like budding particles, which are released in the culture medium, and that the recombinant M1 protein accumulates intracellularly, forming tubular structures. All these results are discussed with regard to the roles played by the virus polypeptides during virus assembly.
APA, Harvard, Vancouver, ISO, and other styles
7

Tellinghuisen, Timothy L., and Richard J. Kuhn. "Nucleic Acid-Dependent Cross-Linking of the Nucleocapsid Protein of Sindbis Virus." Journal of Virology 74, no. 9 (2000): 4302–9. http://dx.doi.org/10.1128/jvi.74.9.4302-4309.2000.

Full text
Abstract:
ABSTRACT The assembly of the alphavirus nucleocapsid core is a multistep event requiring the association of the nucleocapsid protein with nucleic acid and the subsequent oligomerization of capsid proteins into an assembled core particle. Although the mechanism of assembly has been investigated extensively both in vivo and in vitro, no intermediates in the core assembly pathway have been identified. Through the use of both truncated and mutant Sindbis virus nucleocapsid proteins and a variety of cross-linking reagents, a possible nucleic acid-protein assembly intermediate has been detected. The cross-linked species, a covalent dimer, has been detected only in the presence of nucleic acid and with capsid proteins capable of binding nucleic acid. Optimum nucleic acid-dependent cross-linking was seen at a protein-to-nucleic-acid ratio identical to that required for maximum binding of the capsid protein to nucleic acid. Identical results were observed when cross-linking in vitro assembled core particles of both Sindbis and Ross River viruses. Purified cross-linked dimers of truncated proteins and of mutant proteins that failed to assemble were found to incorporate into assembled core particles when present as minor components in assembly reactions, suggesting that the cross-linking traps an authentic intermediate in nucleocapsid core assembly. Endoproteinase Lys-C mapping of the position of the cross-link indicated that lysine 250 of one capsid protein was cross-linked to lysine 250 of an adjacent capsid protein. Examination of the position of the cross-link in relation to the existing model of the nucleocapsid core suggests that the cross-linked species is a cross-capsomere contact between a pentamer and hexamer at the quasi-threefold axis or is a cross-capsomere contact between hexamers at the threefold axis of the icosahedral core particle and suggests several possible assembly models involving a nucleic acid-bound dimer of capsid protein as an early step in the assembly pathway.
APA, Harvard, Vancouver, ISO, and other styles
8

Yuste-Calvo, Carmen, Pablo Ibort, Flora Sánchez, and Fernando Ponz. "Turnip Mosaic Virus Coat Protein Deletion Mutants Allow Defining Dispensable Protein Domains for ‘in Planta’ eVLP Formation." Viruses 12, no. 6 (2020): 661. http://dx.doi.org/10.3390/v12060661.

Full text
Abstract:
The involvement of different structural domains of the coat protein (CP) of turnip mosaic virus, a potyvirus, in establishing and/or maintaining particle assembly was analyzed through deletion mutants of the protein. In order to identify exclusively those domains involved in protein–protein interactions within the particle, the analysis was performed by agroinfiltration “in planta”, followed by the assessment of CP accumulation in leaves and the assembly of virus-like particles lacking nucleic acids, also known as empty virus-like particles (eVLP). Thus, the interactions involving viral RNA could be excluded. It was found that deletions precluding eVLP assembly did not allow for protein accumulation either, probably indicating that non-assembled CP protein was degraded in the plant leaves. Deletions involving the CP structural core were incompatible with particle assembly. On the N-terminal domain, only the deletion avoiding the subdomain involved in interactions with other CP subunits was incorporated into eVLPs. The C-terminal domain was shown to be more permissive to deletions. Assembled eVLPs were found for mutants, eliminating the whole domain. The C-terminal domain mutants were unusually long, suggesting some role of the domain in the regulation of particle length. The identification of the CP domains responsible for eVLP formation will allow for new approaches to protein stretch replacement with peptides or proteins of nanobiotechnological interest. Finally, specific cases of application are considered.
APA, Harvard, Vancouver, ISO, and other styles
9

Campbell, Stephen, and Alan Rein. "In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain." Journal of Virology 73, no. 3 (1999): 2270–79. http://dx.doi.org/10.1128/jvi.73.3.2270-2279.1999.

Full text
Abstract:
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Δp6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Δp6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Δp6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Δp6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Δp6 and nucleic acid are not sufficient for the formation of normal-sized particles.
APA, Harvard, Vancouver, ISO, and other styles
10

Moraleda, Gloria, Steven Seeholzer, Vadim Bichko, Roland Dunbrack, James Otto, and John Taylor. "Unique Properties of the Large Antigen of Hepatitis Delta Virus." Journal of Virology 73, no. 9 (1999): 7147–52. http://dx.doi.org/10.1128/jvi.73.9.7147-7152.1999.

Full text
Abstract:
ABSTRACT The large form of the hepatitis delta virus (HDV) protein (L) can be isoprenylated near its C terminus, and this modification is considered essential for particle assembly. Using gel electrophoresis, we separated L into two species of similar mobilities. The slower species could be labeled by the incorporation of [14C]mevalonolactone and is interpreted to be isoprenylated L (Li). In serum particles, infected liver, transfected cells, and assembled particles, 25 to 85% of L was isoprenylated. Isoprenylation was also demonstrated by 14C incorporation in vitro with a rabbit reticulocyte coupled transcription-translation system. However, the species obtained migrated even slower than that detected by labeling in vivo. Next, in studies of HDV particle assembly in the presence of the surface proteins of human hepatitis B virus, we observed the following. (i) Relative to L, Li was preferentially assembled into virus-like particles. (ii) Li could coassemble the unmodified L and the small delta protein, S. (iii) In contrast, a form of L with a deletion in the dimerization domain was both isoprenylated and assembled, but it could not support the coassembly of S. Finally, to test the expectation that the isoprenylation of L would increase its hydrophobicity, we applied a phase separation strategy based on micelle formation with the nonionic detergent Triton X-114. We showed the following. (i) The unique C-terminal 19 amino acids present on L relative to S caused a significant increase in the hydrophobicity. (ii) This increase was independent of isoprenylation. (iii) In contrast, other, artificial modifications at either the N or C terminus of S did not increase the hydrophobicity. (iv) The increased hydrophobicity was not sufficient for particle assembly; nevertheless, we speculate that it might facilitate virion assembly.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Virus particle assembly"

1

Isherwood, Beverley Jane. "Hepatitis C virus : particle assembly and morphogenesis." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soh, Timothy Kinshiong. "Single particle studies of vesicular stomatitis virus assembly." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17464089.

Full text
Abstract:
The formation of viral particles requires the coordinated assembly of both nucleic acids and proteins. In the case of Rhabdoviruses, such as vesicular stomatitis virus (VSV), the particles display a characteristic bullet-shape. VSV virions consist of the matrix protein (M), glycoprotein (G), and viral ribonucleoprotein (RNP), which contains the nucleocapsid protein (N) coated RNA bound to the large polymerase protein (L) through the phosphoprotein (P). During assembly, these components are recruited to the plasma membrane where the viral RNP undergoes condensation by M and envelopment with G containing membranes. To address whether formation of the bullet-shape requires a consistent packaging of the viral proteins, the composition of single virions was measured with fluorescence microscopy. We generated autonomously replicating VSV bearing up to 3 fluorescent protein fusions in the disordered N-terminal region of M and N-terminus of P and G. Quantification of single particles reveals that VSV assembles with a range of M, P, and G molecules, suggesting a flexible packaging mechanism. The maintenance of the bullet-shape with significantly less M proposes that condensation does not require the particle to be saturated with M. Our fluorescent VSV clones permit the tracking of viral components in live cells. We observed that assembly of M into particles requires ~2 min and can be broken into 4 stages. First, M forms a small preassembly complex. Second, M rapidly assembles into particles where its incorporation initiates before P, although they are packaged concurrently. This is followed by a delay before final release of particles into the supernatant. Late domains in M were thought to only recruit the endosomal sorting complexes required for transport (ESCRT) pathway to mediate fission. However, using our M fusions we demonstrate that these motifs are required for efficient competition into released particles and a step in assembly prior to pinching off. These constructs have permitted the study of viral assembly at the single particle level and are useful tools for studying viral entry and egress. Specifically, VSV containing M-eGFP and the lassa virus glycoprotein instead of G was used to demonstrate the requirement of a host factor for lassa virus fusion.<br>Medical Sciences
APA, Harvard, Vancouver, ISO, and other styles
3

Höfer, Chris Tina. "Influenza virus assembly." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17251.

Full text
Abstract:
Influenza A Viren besitzen ein segmentiertes, einzelsträngiges RNA-Genom, welches in Form viraler Ribonukleoprotein (vRNP)-Komplexe verpackt ist. Während das virale Genom im Zellkern repliziert wird, finden Assemblierung und Knospung reifer Viruspartikel an der apikalen Plasmamembran statt. Für die Virusbildung müssen die einzelnen viralen Komponenten hierher gebracht werden. Während intrinsische apikale Signale der viralen Transmembranproteine bekannt sind, sind der zielgerichtete Transport und der Einbau des viralen Genoms in neuentstehende Virionen noch wenig verstanden. In dieser Arbeit wurden potentielle Mechanismen des vRNP-Transportes untersucht, wie die Fähigkeit der vRNPs mit Lipidmembranen zu assoziieren und die intrinsische subzellulären Lokalisation des viralen Nukleoproteins (NP), eines Hauptbestandteils der vRNPs. Es konnte gezeigt werden, dass vRNPs nicht mit Lipidmembranen assoziieren, was mittels Flotation aufgereinigter vRNPs mit Liposomen unterschiedlicher Zusammensetzung untersucht wurde. Die Ergebnisse deuten jedoch darauf hin, dass das virale M1 in der Lage ist, Bindung von vRNPs an negativ-geladene Lipidmembranen zu vermitteln. Subzelluläre Lokalisation von NP wurde des Weiteren durch Expression fluoreszierender NP-Fusionsproteine und Fluoreszenzphotoaktivierung untersucht. Es konnte gezeigt werden, dass NP allein nicht mit zytoplasmatischen Strukturen assoziiert, stattdessen aber umfangreiche Interaktionen im Zellkern eingeht und mit hoher Affinität mit bestimmten Kerndomänen assoziiert, und zwar den Nukleoli sowie kleinen Kerndomänen, welche häufig in der Nähe von Cajal-Körperchen und PML-Körperchen zu finden waren. Schließlich wurde ein experimenteller Ansatz etabliert, welcher erlaubt, den Transport vRNP-ähnlicher Komplexe mittels Fluoreszenzdetektion aufzuzeichnen und Einzelpartikelverfolgungsanalysen durchzuführen. Unterschiedliche Phasen des vRNP-Transportes konnten beobachtet werden und ein 3-Phasen-Transportmodell wird skizziert.<br>Influenza A viruses have a segmented single-stranded RNA genome, which is packed in form of viral ribonucleoprotein (vRNP) complexes. While the viral genome is replicated and transcribed in the host cell nucleus, assembly and budding of mature virus particles take place at the apical plasma membrane. Efficient virus formation requires delivery of all viral components to this site. While intrinsic apical targeting signals of the viral transmembrane proteins have been identified, it still remains poorly understood how the viral genome is transported and targeted into progeny virus particles. In this study, potential targeting mechanisms were investigated like the ability of vRNPs to associate with lipid membranes and the intrinsic ability of the viral nucleoprotein (NP) – which is the major protein component of vRNPs – for subcellular targeting. It could be shown that vRNPs are not able to associate with model membranes in vitro, which was demonstrated by flotation of purified vRNPs with liposomes of different lipid compositions. Results indicated, however, that the matrix protein M1 can mediate binding of vRNPs to negatively charged lipid bilayers. Intrinsic subcellular targeting of NP was further investigated by expression of fluorescent NP fusion protein and fluorescence photoactivation, revealing that NP by itself does not target cytoplasmic structures. It was found to interact extensively with the nuclear compartment instead and to target specific nuclear domains with high affinity, in particular nucleoli and small interchromatin domains that frequently localized in close proximity to Cajal bodies and PML bodies. An experimental approach was finally established that allowed monitoring the transport of vRNP-like complexes in living infected cells by fluorescence detection. It was possible to perform single particle tracking and to describe different stages of vRNP transport between the nucleus and the plasma membrane. A model of three-stage transport is suggested.
APA, Harvard, Vancouver, ISO, and other styles
4

Ziegler, Christopher Michael. "Key Virus-Host Interactions Required For Arenavirus Particle Assembly And Release." ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/755.

Full text
Abstract:
Viruses are infectious agents that must infect the cells of living organisms in order to reproduce. They have relatively simple genomes which encode few proteins but can compensate for their simplicity by hijacking components of their cellular hosts. Arenaviruses, a family of zoonotic viruses carried by rodents, encode only 4 proteins. One of these proteins, Z, is responsible for several functions during the virus life cycle including driving the formation and release of new virus particles at the plasma membrane of infected cells. Relatively little is known about how this viral protein is regulated or the complement of host proteins it engages in order to produce new virus particles or augment Z's other functions. To address this gap in knowledge, mass spectrometry was used to identify phosphorylation sites in the Old World arenavirus, lymphocytic choriomeningitis virus (LCMV) Z protein. Phosphorylation sites were identified at serine 41 (S41) and tyrosine 88 (Y88). Functional studies using recombinant (r)LCMV containing mutations at these phosphorylation sites revealed that both were important for the production of defective interfering (DI) particles. DI particles are replication-incompetent virus particles that interfere with the production of infectious virus and mitigate its cytopathic effect. While a mutation that mimics phosphorylation at S41 reduced LCMV's ability to produce both infectious and DI particles, this mutation had a much stronger impact on DI particles. Production of DI particles in Y88-mutant rLCMV was drastically reduced while the impact on infectious virus was minimal. Y88 lies within a type of viral late domain (PPXY) also found in matrix proteins of several disparate virus families where it has been shown to drive infectious virus release by recruiting the membrane scission machinery of the cellular endosomal sorting complex required for transport (ESCRT). Inhibition of the ESCRT pathway drastically reduced LCMV DI particle but not infectious virus release indicating that Z's PPXY late domain and the cellular ESCRT complex are required specifically for the production of DI particles. Mass spectrometry was also used to identify host protein partners of Z as well as the host proteins recruited into virus particles for the New World arenavirus, Junin (JUNV). ESCRT complex proteins were enriched in JUNV virus-like particles (VLPs) and bona fide virions. In contrast to LCMV, inhibition of the ESCRT complex resulted in significantly less infectious JUNV release. This indicates that the ultimate role of ESCRT engagement by the Old World arenavirus, LCMV, differs from that of New World, JUNV. This work represents the first demonstration that a viral protein motif and the host machinery it engages selectively drive DI particle production independently of infectious virus. It also suggests that host cell kinases can dynamically regulate the production of DI particles through phosphorylation of Z. Finally, the late domain-mutant rLCMV generated in these studies represents the first LCMV strain known to produce undetectable levels of DI particles which provides the opportunity to assess the impact that a loss of DI particles has on the ability of LCMV to establish or maintain a persistent infection.
APA, Harvard, Vancouver, ISO, and other styles
5

Corless, Lynsey. "The role of the host ESCRT complex in hepatitis C virus particle assembly and release." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.530841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hughes, Mair Elisabeth. "Identification of residues in hepatitis C virus NS5A with a critical role in genome replication of particle assembly." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kern, Anika [Verfasser], and Karl Klaus [Akademischer Betreuer] Conzelmann. "Assembly and budding of Rabies Virus : the phosphoprotein as critical determinant of particle production / Anika Kern. Betreuer: Karl Klaus Conzelmann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1031381120/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kern, Anika [Verfasser], and Karl-Klaus [Akademischer Betreuer] Conzelmann. "Assembly and Budding of Rabies Virus : The Phosphoprotein as Critical Determinant of Particle Production / Anika Kern. Betreuer: Karl-Klaus Conzelmann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/102366092X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boyer, Audrey. "Caractérisation de mécanismes mis en jeu lors des étapes précoces de l'assemblage des lipoviroparticules du virus de l'hépatite C." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR3308/document.

Full text
Abstract:
Lors d’une infection chronique, le virus de l'hépatite C (HCV) circule sous forme de lipoviroparticule (LVP) : particules hybrides associant des composants viraux (ARN, les protéines structurelles) et des composants cellulaires (apolipoprotéines, cholestérol). Au cours de ma thèse, nous nous sommes intéressés à identifier la plateforme d'assemblage du HCV, et le rôle du rassemblement des protéines virales par NS2 dans sa formation. Nous avons montré que des interactions de natures différentes sur la membrane du RE sont impliquées dans cette association protéique. Nos résultats suggèrent que des interactions complexes (directes ou via des « membranes résistantes aux détergents » (DRM)) entre les protéines complexées par NS2, peuvent immédiatement précéder la formation LVP. Nous avons également démontré que l’hétérodimère E1E2, les apolipoprotéines B et E (ApoB, ApoE) s’associent en un complexe de protéines dans le réticulum endoplasmique (RE) lorsqu'elles sont exprimées ensembles. Ce complexe se forme au début de l'assemblage du HCV, quelle que soit l'expression des autres protéines virales, et est conservée sur les LVP sécrétées. Basé sur ces données, nous avons proposé un mécanisme expliquant l’initiation de la morphogenèse des LVP. Ensuite, nous avons évalué l'importance de l'association E1E2/ApoE pour le cycle de vie du virus. Nous avons initié une étude pour identifier les acides aminés E1E2 impliqués dans l'interaction avec les apolipoprotéines. Avec ces données, nous souhaitons proposer une meilleure compréhension des mécanismes de la morphogenèse du HCV<br>In chronic infection, the hepatitis C virus (HCV) circulates as lipoviral particles (LVP): hybrid particles associating viral (RNA, structural proteins) and cellular components (apolipoproteins, cholesterol). During my PhD, we were interested in identifying the HCV assembly platform, and the role of the association of the viral proteins by NS2 during its formation. We showed that different natures of interactions on the ER membrane are involved in this proteic association. Our results suggest that a complex interplay between proteins of the complex formed by NS2, directly or through “detergent resistant membranes” (DRMs) may be immediately followed by LVPs formation. We also demonstrated that E1E2 heterodimer, apolipoproteins B and E (ApoB, ApoE) associate as a protein complex in the endoplasmic reticulum (ER) when expressed together. This complex is formed early in HCV assembly, regardless the expression of other viral proteins, and is conserved on the secreted LVPs. Based on these data, we proposed a mechanism explaining LVP morphogenesis initiation. Then we assessed the importance of E1E2/ApoE association for viral life cycle. We initiate a study to identify the E1E2 amino acids involved in the interaction with apolipoproteins. With these data, we wished to provide a better understanding of the mechanisms of the HCV morphogenesis
APA, Harvard, Vancouver, ISO, and other styles
10

Bouter, Caroline [Verfasser], Frank Torsten [Akademischer Betreuer] Hufert, and Detlef [Akademischer Betreuer] Doenecke. "The Role of NS3 Helicase Domain in Hepatitis C Virus Particle Assembly / Caroline Bouter. Gutachter: Frank Torsten Hufert ; Detlef Doenecke. Betreuer: Frank Torsten Hufert." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://d-nb.info/1044869844/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Virus particle assembly"

1

Adamson, Catherine Sarah. An analysis of the TY1 virus-like particle: Assembly and interaction witht he host microtubule network. University of Manchester, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sherwood, Dennis, and Paul Dalby. Thermodynamics today – and tomorrow. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782957.003.0026.

Full text
Abstract:
This last chapter explores the frontiers of how thermodynamics is currently being applied to biology, moving from the scale of the molecule to the scale of the cell. The key theme is ‘self-assembly’ – the process by which macromolecules spontaneously assemble into larger structures such as cell membranes, cell organelles, cells, and ultimately organisms. The starting point is the simplest process of self-assembly, the formation of a liquid from the condensation of a gas, which draws on some results from Chapter 15, and develops the concept of nucleation, this leads to a discussion of protein aggregation, and how virus particles are formed. The chapter, and the book, ends with a key challenge for the future: how can we deliberately design self-assembling systems that can perform valuable functions?
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Virus particle assembly"

1

Lee, L. Andrew, Elizabeth Balizan, Yuan Lin, and Qian Wang. "Assembly of Virus Particles and Virus-like Particles as Templates for Biomedical Applications." In ACS Symposium Series. American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1119.ch002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dekhtyar, Yu, Anna Kachanovska, G. Mezinskis, A. Patmalnieks, P. Pumpens, and R. Renhofa. "Self — Assembled System: Semiconductor and Virus Like Particles." In IFMBE Proceedings. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69367-3_163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dobrica, Mihaela-Olivia, Catalin Lazar, and Norica Branza-Nichita. "Production of Chimeric Hepatitis B Virus Surface Antigens in Mammalian Cells." In Vaccine Delivery Technology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0795-4_7.

Full text
Abstract:
Abstract The small (S) envelope protein of the Hepatitis B Virus (HBV), HBV-S, has the unique ability to self-assemble into highly immunogenic subviral particles (SVPs), in the absence of other viral factors, in eukaryotic cells, including those of nonhepatic origin. This feature is currently exploited for generation of SVPs exposing heterologous epitopes on their surface that can be used as vaccine candidates to target various diseases. Here, we describe a simple and robust method for production of such chimeric HBV-S protein-based SVPs in transiently transfected HEK293T cells and purification from cell supernatants by ultracentrifugation on sucrose cushion and sucrose step gradients. The SVPs obtained by this methodology have been successfully used in immunogenicity studies in animal models.
APA, Harvard, Vancouver, ISO, and other styles
4

Hwang, D. J., I. M. Roberts, and T. M. A. Wilson. "Assembly of tobacco mosaic virus and TMV-like pseudovirus particles in Escherichia coli." In Positive-Strand RNA Viruses. Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-9326-6_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Datta, Siddhartha A. K., and Alan Rein. "Preparation of Recombinant HIV-1 Gag Protein and Assembly of Virus-Like Particles In Vitro." In Methods in Molecular Biology. Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-170-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Snippe, Marjolein, Rob Goldbach, and Richard Kormelink. "Tomato Spotted Wilt Virus Particle Assembly and the Prospects of Fluorescence Microscopy to Study Protein–protein Interactions Involved." In Advances in Virus Research. Elsevier, 2005. http://dx.doi.org/10.1016/s0065-3527(05)65003-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Assembly of a Bluetongue Virus-Like Particle: Multiprotein Complex and Its Use as Vaccine." In Viral Nanotechnology. CRC Press, 2015. http://dx.doi.org/10.1201/b18596-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jeffery-Smith, Anna, and C. Y. William Tong. "The Biology of Viruses." In Tutorial Topics in Infection for the Combined Infection Training Programme. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198801740.003.0008.

Full text
Abstract:
In order to be classified as a virus, certain criteria have to be fulfilled. Viruses must ● Be only capable of growth and multiplication within living cells, i.e. obligate intracellular parasite. Host cells could include humans, animals, insects, plants, protozoa, or even bacteria. ● Have a nucleic acid genome (either RNA or DNA, but not both) surrounded by a protein coat (capsid). ● Have no semipermeable membrane, though some have an envelope formed of phospholipids and proteins. ● Be inert outside of the host cell. Enveloped viruses are susceptible to inactivation by organic solvents such as alcohol. ● Perform replication by independent synthesis of components followed by assembly (c.f. binary fission in bacteria). Viruses are considered as a bundle of genetic programmes encoded in nucleic acids and packaged with a capsid +/ - envelope protein, which can be activated on entry into a host cell (compare this with computer viruses packaged in an enticing way in order to infect and take over control of your PC). Although they share some similarities in their properties, mycoplasma and chlamydia are true bacteria. The virion (assembled infectious particle) consists of viral nucleic acid and capsid. The nucleic acid of a virus can either be ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), and the amount of genetic material varies widely, with some viruses able to encode a few proteins and others having genetic material that encodes hundreds of proteins. In association with the nucleic acid there may be non- structural viral proteins, such as a viral polymerase. The nucleic acid and non- structural proteins are protected by a surrounding layer of capsid proteins. The capsid includes proteins which can attach to host cell receptors. The proteins and the cell receptors to which they bind determine a virus’ tropism, i.e., the ability to bind to and enter different cell types. The term nucleocapsid refers to the nucleic acid core surrounded by capsid protein. Some viruses also have an envelope made up of phospholipids and proteins surrounding the nucleocapsid. This envelope can be formed by the host cell membrane during the process of a virus budding from a cell during replication.
APA, Harvard, Vancouver, ISO, and other styles
9

Hull, Roger. "Architecture and Assembly of Virus Particles." In Matthews' Plant Virology. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012361160-4/50056-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hull, Roger. "Architecture and Assembly of Virus Particles." In Plant Virology. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-384871-0.00003-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Virus particle assembly"

1

Lipin, Daniel, Yap Chuan, Marcus Neibert, Yuan Fan, and Anton Middelberg. "Processing and in vitro Assembly of Virus Like Particle Nanostructures." In 2006 International Conference on Nanoscience and Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/iconn.2006.340590.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Virus particle assembly"

1

Douglas, Trevor. Self-Assembly of Virus Particle Based Materials for Hydrogen Catalysis. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1722913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography