Journal articles on the topic 'Viscoelastic creep law'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Viscoelastic creep law.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dacol, Vitor, Elsa Caetano, and João R. Correia. "A Combined Exponential-Power-Law Method for Interconversion between Viscoelastic Functions of Polymers and Polymer-Based Materials." Polymers 12, no. 12 (December 16, 2020): 3001. http://dx.doi.org/10.3390/polym12123001.
Full textSagar, Gautam, Dong Zheng, Anuwat Suwannachit, Maik Brinkmeier, Kristin Fietz, and Carsten Hahn. "On the Development of Creep Laws for Rubber in the Parallel Rheological Framework." Tire Science and Technology 47, no. 1 (March 1, 2019): 2–30. http://dx.doi.org/10.2346/tire.18.470104.
Full textDai, H. L., and H. Y. Zheng. "Creep Buckling and Post-Buckling Analyses of a Viscoelastic FGM Cylindrical Shell with Initial Deflection Subjected to a Uniform In-Plane Load." Journal of Mechanics 28, no. 2 (May 8, 2012): 391–99. http://dx.doi.org/10.1017/jmech.2012.44.
Full textZou, Yong, Chin Jian Leo, and Henry Wong. "Time Dependent Viscoelastic Behaviour of EPS Geofoam." Applied Mechanics and Materials 330 (June 2013): 1095–99. http://dx.doi.org/10.4028/www.scientific.net/amm.330.1095.
Full textPereira, Ayrton Alef Castanheira, José Roberto Moraes d'Almeida, and Thiago Motta Linhares Castro. "Evaluation of Short-term Creep Behavior of PE-HD after Aging in Oil Derivatives." Polymers and Polymer Composites 26, no. 3 (March 2018): 243–50. http://dx.doi.org/10.1177/096739111802600304.
Full textHagin, Paul N., and Mark D. Zoback. "Viscous deformation of unconsolidated reservoir sands—Part 2: Linear viscoelastic models." GEOPHYSICS 69, no. 3 (May 2004): 742–51. http://dx.doi.org/10.1190/1.1759460.
Full textOsman, Ekhlas A., and Saad A. Mutasher. "Viscoelastic properties of kenaf reinforced unsaturated polyester composites." International Journal of Computational Materials Science and Engineering 03, no. 01 (March 2014): 1450004. http://dx.doi.org/10.1142/s2047684114500043.
Full textAlrubaie, Murtada Abass A., Roberto A. Lopez-Anido, Douglas J. Gardner, Mehdi Tajvidi, and Yousoo Han. "Modeling the hygrothermal creep behavior of wood plastic composite (WPC) lumber made from thermally modified wood." Journal of Thermoplastic Composite Materials 33, no. 8 (January 9, 2019): 1109–24. http://dx.doi.org/10.1177/0892705718820404.
Full textMarklund, Erik, Janis Varna, and Lennart Wallström. "Nonlinear Viscoelasticity and Viscoplasticity of Flax/Polypropylene Composites." Journal of Engineering Materials and Technology 128, no. 4 (June 30, 2006): 527–36. http://dx.doi.org/10.1115/1.2345444.
Full textOrlet, M. W., and C. E. Bakis. "Viscoelastic Characterization of High Fiber Content Filament Wound Polyurethane Matrix Composites." Rubber Chemistry and Technology 71, no. 5 (November 1, 1998): 1042–58. http://dx.doi.org/10.5254/1.3538509.
Full textAbuzeid, Osama M., and Peter Eberhard. "Linear Viscoelastic Creep Model for the Contact of Nominal Flat Surfaces Based on Fractal Geometry: Standard Linear Solid (SLS) Material." Journal of Tribology 129, no. 3 (February 16, 2007): 461–66. http://dx.doi.org/10.1115/1.2736427.
Full textNgudiyono, Bambang Suhendro, Ali Awaludin, and Andreas Triwiyono. "Review of creep modelling for predicting of long-term behavior of glued-laminated bamboo structures." MATEC Web of Conferences 258 (2019): 01023. http://dx.doi.org/10.1051/matecconf/201925801023.
Full textFan, Xiyan, Wenling Jiang, Ning Mei, and Chuanqi Su. "Nonlinear Creep Model and Parameter Determination of Asphalt." Journal of Physics: Conference Series 2174, no. 1 (January 1, 2022): 012090. http://dx.doi.org/10.1088/1742-6596/2174/1/012090.
Full textZhu, Yuan, Pei Ying Liu, and Zhi Hong Jiang. "The Creep Behavior of Wood-Polymer Composites." Advanced Materials Research 815 (October 2013): 632–38. http://dx.doi.org/10.4028/www.scientific.net/amr.815.632.
Full textRiesen, P., K. Hutter, and M. Funk. "A viscoelastic Rivlin-Ericksen material model applicable to glacier ice." Nonlinear Processes in Geophysics 17, no. 6 (December 1, 2010): 673–84. http://dx.doi.org/10.5194/npg-17-673-2010.
Full textGarrido, Mário, and João R. Correia. "Elastic and viscoelastic behaviour of sandwich panels with glass-fibre reinforced polymer faces and polyethylene terephthalate foam core." Journal of Sandwich Structures & Materials 20, no. 4 (June 30, 2016): 399–424. http://dx.doi.org/10.1177/1099636216657388.
Full textBogobowicz, A. "Non-Newtonian Creep Into a Two-Dimensional Cavity of Near-Rectangular Shape." Journal of Applied Mechanics 63, no. 4 (December 1, 1996): 1047–51. http://dx.doi.org/10.1115/1.2787230.
Full textFu, Jianghua, Yang Liu, Jintao Su, Bao Chen, and Zheming Chen. "Rubber Creep Model and Its Influence on Mounting Stiffness." Applied Sciences 12, no. 24 (December 12, 2022): 12764. http://dx.doi.org/10.3390/app122412764.
Full textAbdullah, Orhan Sabah, Shaker S. Hassan, and Ahmed N. Al-Khazraji. "Evaluating and Modeling of Tensile Creep Rupture Behavior for Neat and Reinforced Polyamide 6.6." Materials Science Forum 1002 (July 2020): 95–103. http://dx.doi.org/10.4028/www.scientific.net/msf.1002.95.
Full textMainardi, Francesco, and Giorgio Spada. "On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep." Rheologica Acta 51, no. 9 (May 16, 2012): 783–91. http://dx.doi.org/10.1007/s00397-012-0634-x.
Full textBrown, Christopher U., Timothy L. Norman, Vincent L. Kish, Thomas A. Gruen, and J. David Blaha. "Time-Dependent Circumferential Deformation of Cortical Bone Upon Internal Radial Loading." Journal of Biomechanical Engineering 124, no. 4 (July 30, 2002): 456–61. http://dx.doi.org/10.1115/1.1488168.
Full textCheng, Yang-Tse, and Fuqian Yang. "Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles." Journal of Materials Research 24, no. 10 (October 2009): 3013–17. http://dx.doi.org/10.1557/jmr.2009.0365.
Full textAlrubaie, Murtada Abass A., Douglas J. Gardner, and Roberto A. Lopez-Anido. "Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber." Applied Sciences 10, no. 14 (July 21, 2020): 5017. http://dx.doi.org/10.3390/app10145017.
Full textMorland, L. W. "Primary, secondary and tertiary creep of ice modelled as a viscoelastic fluid." Journal of Glaciology 55, no. 189 (2009): 170–78. http://dx.doi.org/10.3189/002214309788608976.
Full textHeinrich, S. M., S. Shakya, J. Liang, and P. S. Lee. "An Analytical Model for Time-Dependent Shearing Deformation in Area-Array Interconnects." Journal of Electronic Packaging 122, no. 4 (January 28, 2000): 328–34. http://dx.doi.org/10.1115/1.1289631.
Full textDacol, Vitor, Elsa Caetano, and João Correia. "A New Viscoelasticity Dynamic Fitting Method Applied for Polymeric and Polymer-Based Composite Materials." Materials 13, no. 22 (November 18, 2020): 5213. http://dx.doi.org/10.3390/ma13225213.
Full textDI MINO, Gaetano, Gordon AIREY, Mario DI PAOLA, Francesco Paolo PINNOLA, Giacomo D’ANGELO, and Davide LO PRESTI. "LINEAR AND NONLINEAR FRACTIONAL HEREDITARY CONSTITUTIVE LAWS OF ASPHALT MIXTURES." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 22, no. 7 (July 12, 2016): 882–89. http://dx.doi.org/10.3846/13923730.2014.914104.
Full textSorvari, Joonas, Teemu Leppänen, and Jukka Silvennoinen. "The effect of the through-thickness moisture content gradient on the moisture accelerated creep of paperboard: Hygro-viscoelastic modeling approach." Nordic Pulp & Paper Research Journal 33, no. 1 (May 23, 2018): 122–32. http://dx.doi.org/10.1515/npprj-2018-3001.
Full textLavergne, François A., Peter Sollich, and Véronique Trappe. "Delayed elastic contributions to the viscoelastic response of foams." Journal of Chemical Physics 156, no. 15 (April 21, 2022): 154901. http://dx.doi.org/10.1063/5.0085773.
Full textMinárová, Mária. "Isothermal viscoelasticity and energy." MATEC Web of Conferences 310 (2020): 00043. http://dx.doi.org/10.1051/matecconf/202031000043.
Full textJohnson, A. R., A. Tessler, and M. Dambach. "Dynamics of Thick Viscoelastic Beams." Journal of Engineering Materials and Technology 119, no. 3 (July 1, 1997): 273–78. http://dx.doi.org/10.1115/1.2812256.
Full textVena, P., D. Gastaldi, and R. Contro. "A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments." Journal of Biomechanical Engineering 128, no. 3 (December 12, 2005): 449–57. http://dx.doi.org/10.1115/1.2187046.
Full textBartelt, Perry, and Markus Von Moos. "Triaxial tests to determine a microstructure-based snow viscosity law." Annals of Glaciology 31 (2000): 457–62. http://dx.doi.org/10.3189/172756400781819761.
Full textPatnaik, S. Srikant, and Tarapada Roy. "Viscoelastic and mechanical properties of CNT-reinforced polymer-based hybrid composite materials using hygrothermal creep." Polymers and Polymer Composites 29, no. 9_suppl (November 2021): S1386—S1402. http://dx.doi.org/10.1177/09673911211052730.
Full textWang, Shau-Chew, and Eberhard A. Meinecke. "Buckling of Viscoelastic Columns. Part I: Constant Load Buckling." Rubber Chemistry and Technology 58, no. 1 (March 1, 1985): 154–63. http://dx.doi.org/10.5254/1.3536056.
Full textChepurnenko, Anton, Stepan Litvinov, Besarion Meskhi, and Alexey Beskopylny. "Optimization of Thick-Walled Viscoelastic Hollow Polymer Cylinders by Artificial Heterogeneity Creation: Theoretical Aspects." Polymers 13, no. 15 (July 22, 2021): 2408. http://dx.doi.org/10.3390/polym13152408.
Full textSchiffmann, Kirsten Ingolf. "Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models." International Journal of Materials Research 97, no. 9 (September 1, 2006): 1199–211. http://dx.doi.org/10.1515/ijmr-2006-0189.
Full textMacAyeal, Douglas R., Olga V. Sergienko, and Alison F. Banwell. "A model of viscoelastic ice-shelf flexure." Journal of Glaciology 61, no. 228 (2015): 635–45. http://dx.doi.org/10.3189/2015jog14j169.
Full textAlotta, Gioacchino, Olga Barrera, and Elise C. Pegg. "Viscoelastic material models for more accurate polyethylene wear estimation." Journal of Strain Analysis for Engineering Design 53, no. 5 (April 24, 2018): 302–12. http://dx.doi.org/10.1177/0309324718765512.
Full textLakes, R. S., and R. Vanderby. "Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments." Journal of Biomechanical Engineering 121, no. 6 (December 1, 1999): 612–15. http://dx.doi.org/10.1115/1.2800861.
Full textYazyev, Batyr M., Anton S. Chepurnenko, and Anzhelika V. Saibel. "MODELING OF STRESS-STRAIN STATE OF THICK CONCRETE SLABS TAKING THE CREEP OF CONCRETE INTO ACCOUNT." International Journal for Computational Civil and Structural Engineering 13, no. 4 (December 31, 2017): 140–48. http://dx.doi.org/10.22337/2587-9618-2017-13-4-140-148.
Full textATTIA, MOHAMED A., AHMED G. EL-SHAFEI, and FATIN F. MAHMOUD. "NONLINEAR ANALYSIS OF FRICTIONAL THERMO-VISCOELASTIC CONTACT PROBLEMS USING FEM." International Journal of Applied Mechanics 06, no. 03 (May 6, 2014): 1450028. http://dx.doi.org/10.1142/s1758825114500288.
Full textABDEL RAHMAN, ALAA A., AHMED G. EL-SHAFEI, and FATIN F. MAHMOUD. "NONLINEAR ANALYSIS OF VISCOELASTICALLY LAYERED ROLLS IN STEADY STATE ROLLING CONTACT." International Journal of Applied Mechanics 06, no. 06 (December 2014): 1450065. http://dx.doi.org/10.1142/s1758825114500653.
Full textKovalchenko, M. S. "Rheology and Kinetics of Pressure Sintering." Materials Science Forum 835 (January 2016): 76–105. http://dx.doi.org/10.4028/www.scientific.net/msf.835.76.
Full textLenormand, Guillaume, Emil Millet, Ben Fabry, James P. Butler, and Jeffrey J. Fredberg. "Linearity and time-scale invariance of the creep function in living cells." Journal of The Royal Society Interface 1, no. 1 (November 22, 2004): 91–97. http://dx.doi.org/10.1098/rsif.2004.0010.
Full textLi, Sheng-Nan, Zhu Peng, Zhong-Hua Huang, Qiao Liang, Jie Liu, and Wen-Quan Zhou. "Time-Dependent Deformation and Long-Term Strength of Carbonaceous Mudstone under Dry and Wet Cycles." Sustainability 14, no. 19 (September 23, 2022): 12044. http://dx.doi.org/10.3390/su141912044.
Full textAlrubaie, Murtada Abass A., Roberto A. Lopez-Anido, and Douglas J. Gardner. "Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood." Polymers 12, no. 2 (January 24, 2020): 262. http://dx.doi.org/10.3390/polym12020262.
Full textÁlvarez-Vázquez, Adrián, Alfonso Fernández-Canteli, Enrique Castillo Ron, Pelayo Fernández Fernández, Miguel Muñiz-Calvente, and María Jesús Lamela Rey. "A Novel Approach to Describe the Time–Temperature Conversion among Relaxation Curves of Viscoelastic Materials." Materials 13, no. 8 (April 11, 2020): 1809. http://dx.doi.org/10.3390/ma13081809.
Full textAbuzeid, Osama M., Anas N. Al-Rabadi, and Hashem S. Alkhaldi. "Fractal Geometry-Based Hypergeometric Time Series Solution to the Hereditary Thermal Creep Model for the Contact of Rough Surfaces Using the Kelvin-Voigt Medium." Mathematical Problems in Engineering 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/652306.
Full textYazyev, S. В., V. I. Andreev, and А. S. Chepurnenko. "Stability analysis of wooden arches with account for nonlinear creep." Advanced Engineering Research 21, no. 2 (July 9, 2021): 114–22. http://dx.doi.org/10.23947/2687-1653-2021-21-2-114-122.
Full text