Academic literature on the topic 'Viscoelastic Kelvin-Voigt model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Viscoelastic Kelvin-Voigt model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Viscoelastic Kelvin-Voigt model"
Makwana, Harsh, Dr Girish P. Deshmukh, and Dr Laxman Kumar Pandey. "STRAIN RATE DEPENDENCY OF NEOHOOKEAN MATERIAL USING KELVIN-VOIGT VISCOELASTIC MODEL." International Journal of Engineering Applied Sciences and Technology 8, no. 1 (2023): 205–12. http://dx.doi.org/10.33564/ijeast.2023.v08i01.032.
Full textAbdessamad, Zouhair, Ilya Kostin, Grigory Panasenko, and Valery P. Smyshlyaev. "Homogenization of thermo-viscoelastic Kelvin–Voigt model." Comptes Rendus Mécanique 335, no. 8 (2007): 423–29. http://dx.doi.org/10.1016/j.crme.2007.05.022.
Full textStan, Felicia, Adriana-Madalina Turcanu (Constantinescu), and Catalin Fetecau. "Analysis of Viscoelastic Behavior of Polypropylene/Carbon Nanotube Nanocomposites by Instrumented Indentation." Polymers 12, no. 11 (2020): 2535. http://dx.doi.org/10.3390/polym12112535.
Full textPezzinga, Giuseppe. "On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis." Modelling 4, no. 2 (2023): 283–95. http://dx.doi.org/10.3390/modelling4020016.
Full textKundu, Sudeep, and Amiya K. Pani. "Stabilization of Kelvin–Voigt viscoelastic fluid flow model." Applicable Analysis 98, no. 12 (2018): 2284–307. http://dx.doi.org/10.1080/00036811.2018.1460810.
Full textChen, Genmeng. "Comparison of 2-D numerical viscoelastic waveform modeling with ultrasonic physical modeling." GEOPHYSICS 61, no. 3 (1996): 862–71. http://dx.doi.org/10.1190/1.1444011.
Full textAmosov, Andrey, Ilya Kostin, Grigory Panasenko, and Valery P. Smyshlyaev. "Homogenization of a thermo-chemo-viscoelastic Kelvin-Voigt model." Journal of Mathematical Physics 54, no. 8 (2013): 081501. http://dx.doi.org/10.1063/1.4813106.
Full textReyes de Luna, Eduardo, Andriy Kryvko, Juan B. Pascual-Francisco, Ignacio Hernández, and Didier Samayoa. "Generalized Kelvin–Voigt Creep Model in Fractal Space–Time." Mathematics 12, no. 19 (2024): 3099. http://dx.doi.org/10.3390/math12193099.
Full textGholipour, Alireza, Mergen H. Ghayesh, and Yueqiang Zhang. "A Comparison between Elastic and Viscoelastic Asymmetric Dynamics of Elastically Supported AFG Beams." Vibration 3, no. 1 (2020): 3–17. http://dx.doi.org/10.3390/vibration3010002.
Full textNowfal, Shaymaa Hussein, Ganga Rama Koteswara Rao, V. Velmurugan, Sudhakar Sengan, Ravi Kumar Bommisetti, and Pankaj Dadheech. "Advancing viscoelastic material modeling : Tackling time-dependent behavior with fractional calculus." Journal of Interdisciplinary Mathematics 27, no. 2 (2024): 307–16. http://dx.doi.org/10.47974/jim-1827.
Full textDissertations / Theses on the topic "Viscoelastic Kelvin-Voigt model"
Potvin, Marie-Josee. "Comparison of time-domain finite element modelling of viscoelastic structures using an efficient fractional Voigt-Kelvin model or prony series." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37814.
Full textДзюба, Лідія Федорівна. "Поперечні коливання в’язкопружних поздовжньо-рухомих гнучких елементів". Thesis, 2016. http://hdl.handle.net/123456789/2139.
Full textBook chapters on the topic "Viscoelastic Kelvin-Voigt model"
Manoli D.M. "The influence of the ground's morphology on the seismic analysis with no integration errors." In Geotechnical Engineering: New Horizons. IOS Press, 2011. https://doi.org/10.3233/978-1-60750-808-3-146.
Full textMerveil Anague Tabejieu, Lionel, Blaise Roméo Nana Nbendjo, and Giovanni Filatrella. "Vibrations of an Elastic Beam Subjected by Two Kinds of Moving Loads and Positioned on a Foundation having Fractional Order Viscoelastic Physical Properties." In Advances in Dynamical Systems Theory, Models, Algorithms and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96878.
Full textConference papers on the topic "Viscoelastic Kelvin-Voigt model"
Li, Zhi, Weifeng Pan, Yanwei Liu, and Jiangong Yu. "Research on ultrasonic guided wave characteristics and defect detection of bolt based on Kelvin-Voigt viscoelastic model." In 2024 18th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2024. https://doi.org/10.1109/spawda63926.2024.10878869.
Full textButcher, Eric A., and Daniel J. Segalman. "Characterizing Damping and Restitution in Compliant Impacts via Linear Viscoelastic Models." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8335.
Full textHerrmann, Torsten, and Valdas Chaika. "Identification of Viscoelastic Properties of Finite Element Structures With Joints." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4246.
Full textBakhtiari-Nejad, Firooz, Ehsan Loghman, and Mostafa Pirasteh. "Nonlinear Vibration Analysis of a Fractional Viscoelastic Euler-Bernoulli Microbeam." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87061.
Full textDavid, N. V., X. L. Gao, J. Q. Zheng, and K. Masters. "Three-Parameter Viscoelasticity Models for Ballistic Fabrics." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68853.
Full textChen, Tao, and Zhichao Hou. "Summation Resonance of Parametrically Excited Moving Viscoelastic Belts." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43995.
Full textTecse, Aldo, Stefano E. Romero, Carlos Romero, Roozbeh Naemi, and Benjamin Castaneda. "Mechanical validation of viscoelastic parameters for different interface pressures using the Kelvin-Voigt fractional derivative model." In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9872009.
Full textKaul, Sudhir. "Nonlinear Design of a Passive Vibration Isolator: Influence of Multi-Axial Stiffness." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10021.
Full textDabiri, Arman, Eric A. Butcher, and Morad Nazari. "Modelling One-Dimensional Fractional Impact Using Basic Fractional Viscoelastic Models." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60339.
Full textAmador, Carolina, Matthew W. Urban, Shigao Chen, and James F. Greenleaf. "Acoustic Radiation Force Creep and Shear Wave Propagation Method for Elasticity Imaging." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87622.
Full text