Journal articles on the topic 'Viscoelastic Kelvin-Voigt model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Viscoelastic Kelvin-Voigt model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Makwana, Harsh, Dr Girish P. Deshmukh, and Dr Laxman Kumar Pandey. "STRAIN RATE DEPENDENCY OF NEOHOOKEAN MATERIAL USING KELVIN-VOIGT VISCOELASTIC MODEL." International Journal of Engineering Applied Sciences and Technology 8, no. 1 (2023): 205–12. http://dx.doi.org/10.33564/ijeast.2023.v08i01.032.
Full textAbdessamad, Zouhair, Ilya Kostin, Grigory Panasenko, and Valery P. Smyshlyaev. "Homogenization of thermo-viscoelastic Kelvin–Voigt model." Comptes Rendus Mécanique 335, no. 8 (2007): 423–29. http://dx.doi.org/10.1016/j.crme.2007.05.022.
Full textStan, Felicia, Adriana-Madalina Turcanu (Constantinescu), and Catalin Fetecau. "Analysis of Viscoelastic Behavior of Polypropylene/Carbon Nanotube Nanocomposites by Instrumented Indentation." Polymers 12, no. 11 (2020): 2535. http://dx.doi.org/10.3390/polym12112535.
Full textPezzinga, Giuseppe. "On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis." Modelling 4, no. 2 (2023): 283–95. http://dx.doi.org/10.3390/modelling4020016.
Full textKundu, Sudeep, and Amiya K. Pani. "Stabilization of Kelvin–Voigt viscoelastic fluid flow model." Applicable Analysis 98, no. 12 (2018): 2284–307. http://dx.doi.org/10.1080/00036811.2018.1460810.
Full textChen, Genmeng. "Comparison of 2-D numerical viscoelastic waveform modeling with ultrasonic physical modeling." GEOPHYSICS 61, no. 3 (1996): 862–71. http://dx.doi.org/10.1190/1.1444011.
Full textAmosov, Andrey, Ilya Kostin, Grigory Panasenko, and Valery P. Smyshlyaev. "Homogenization of a thermo-chemo-viscoelastic Kelvin-Voigt model." Journal of Mathematical Physics 54, no. 8 (2013): 081501. http://dx.doi.org/10.1063/1.4813106.
Full textReyes de Luna, Eduardo, Andriy Kryvko, Juan B. Pascual-Francisco, Ignacio Hernández, and Didier Samayoa. "Generalized Kelvin–Voigt Creep Model in Fractal Space–Time." Mathematics 12, no. 19 (2024): 3099. http://dx.doi.org/10.3390/math12193099.
Full textGholipour, Alireza, Mergen H. Ghayesh, and Yueqiang Zhang. "A Comparison between Elastic and Viscoelastic Asymmetric Dynamics of Elastically Supported AFG Beams." Vibration 3, no. 1 (2020): 3–17. http://dx.doi.org/10.3390/vibration3010002.
Full textNowfal, Shaymaa Hussein, Ganga Rama Koteswara Rao, V. Velmurugan, Sudhakar Sengan, Ravi Kumar Bommisetti, and Pankaj Dadheech. "Advancing viscoelastic material modeling : Tackling time-dependent behavior with fractional calculus." Journal of Interdisciplinary Mathematics 27, no. 2 (2024): 307–16. http://dx.doi.org/10.47974/jim-1827.
Full textNguyen, TuanDung, Jin Li, Lijie Sun, DanhQuang Tran, and Fuzhen Xuan. "Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model." Polymers 13, no. 13 (2021): 2203. http://dx.doi.org/10.3390/polym13132203.
Full textYucra, Hancco Alvaro Julio. "Modeling of a Viscoelastic System with Fractional Derivative." Open Journal of Mathematics and Physics 6 (November 22, 2024): 294. https://doi.org/10.5281/zenodo.14204903.
Full textJiang, Bing. "MODELING NONLINEAR VISCOELASTIC BEHAVIOR UNDER LARGE DEFORMATIONS." Rubber Chemistry and Technology 88, no. 1 (2015): 28–39. http://dx.doi.org/10.5254/rct.14.86927.
Full textCiuncanu, Mihai. "The Dynamic Response of the Elastomeric Isolators Modeled as Voigt-Kelvin to the Action of the Seismic Motion." Applied Mechanics and Materials 801 (October 2015): 154–58. http://dx.doi.org/10.4028/www.scientific.net/amm.801.154.
Full textQin, Yuan, Bokai Wang, Yuhui Wang, Yao Wang, Yong Song, and Xin Shi. "Fractional Order Kelvin-Voigt Constitutive Model and Dynamic Damping Characteristics of Viscoelastic Materials." International Journal of Acoustics and Vibration 29, no. 4 (2024): 457–64. https://doi.org/10.20855/ijav.2024.29.42078.
Full textBarzkar, Ahmad, and Hojatollah Adibi. "On the Propagation of Longitudinal Stress Waves in Solids and Fluids by Unifying the Navier-Lame and Navier-Stokes Equations." Mathematical Problems in Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/789238.
Full textFu, Chao. "Vibration Analysis of Viscoelastic Timoshenko Cracked Beams with Massless Viscoelastic Rotational Spring Models." Journal of Applied Mathematics 2023 (July 31, 2023): 1–11. http://dx.doi.org/10.1155/2023/2341137.
Full textEmmanuel, A. K., G. E. Roger, and P. Nadjime. "ENERGETIC SOLUTIONS FOR REGULARIZED DAMAGE OF A VISCOELASTIC MATERIAL." Advances in Mathematics: Scientific Journal 13, no. 4 (2024): 491–99. http://dx.doi.org/10.37418/amsj.13.4.3.
Full textKorobko, Evguenia V., Mikalai A. Zhurauski, Buhe Bateer, Zoya A. Novikova, and Vladimir A. Kuzmin. "Modeling of strain kinetics of damping viscoelastic magnetically controlled materials in creep mode." Journal of Intelligent Material Systems and Structures 31, no. 2 (2019): 243–52. http://dx.doi.org/10.1177/1045389x19888785.
Full textFarokhi, Hamed, and Mergen H. Ghayesh. "Viscoelastic resonant responses of shear deformable imperfect microbeams." Journal of Vibration and Control 24, no. 14 (2017): 3049–62. http://dx.doi.org/10.1177/1077546317699345.
Full textBartlewska-Urban, Monika, Marek Zombroń, and Tomasz Strzelecki. "Numerical analysis of road pavement thermal deformability, based on Biot viscoelastic model of porous medium." Studia Geotechnica et Mechanica 38, no. 1 (2016): 15–22. http://dx.doi.org/10.1515/sgem-2016-0002.
Full textSánchez, Alejandro, Karla Y. Guerra, Andrés V. Porta, and Susana Orozco. "Viscoelastic Behavior of Polymeric Optical Fiber." MRS Proceedings 1766 (2015): 131–37. http://dx.doi.org/10.1557/opl.2015.420.
Full textBukenov, M. M., and D. S. Rakisheva. "Some estimates for the viscoelastic incompressible Kelvin-Voigt medium." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 118, no. 2 (2025): 52–59. https://doi.org/10.31489/2025m2/52-59.
Full textShao-hua, Guo. "Eigen theory of viscoelastic dynamics based on the Kelvin-Voigt model." Applied Mathematics and Mechanics 25, no. 7 (2004): 792–98. http://dx.doi.org/10.1007/bf02437571.
Full textDobrescu, Cornelia. "Dynamic Response of the Newton Voigt–Kelvin Modelled Linear Viscoelastic Systems at Harmonic Actions." Symmetry 12, no. 9 (2020): 1571. http://dx.doi.org/10.3390/sym12091571.
Full textLi, Junxia, and Xiaoxu Pang. "Belt Conveyor Dynamic Characteristics and Influential Factors." Shock and Vibration 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/8106879.
Full textPezzinga, Giuseppe. "MOC-Z Model of Transient Cavitating Flow in Viscoelastic Pipe." Water 16, no. 11 (2024): 1610. http://dx.doi.org/10.3390/w16111610.
Full textLoktev, Aleksey A., Ahmad Barakat, and Jaafar Qbaily. "Seismic behavior of the main girder of a bridge with viscoelastic dampers." Vestnik MGSU, no. 7 (July 2021): 809–18. http://dx.doi.org/10.22227/1997-0935.2021.7.809-818.
Full textItou, Hiromichi, Victor A. Kovtunenko, and Kumbakonam R. Rajagopal. "On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body." Mathematics and Mechanics of Solids 23, no. 3 (2017): 433–44. http://dx.doi.org/10.1177/1081286517709517.
Full textEldred, Lloyd B., William P. Baker, and Anthony N. Palazotto. "Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials." AIAA Journal 33, no. 3 (1995): 547–50. http://dx.doi.org/10.2514/3.12471.
Full textWei, ZHANG, and Nobuyuki SIMIZU. "Damping Properties of the Viscoelastic Material Described by Fractional Kelvin-Voigt Model." JSME International Journal Series C 42, no. 1 (1999): 1–9. http://dx.doi.org/10.1299/jsmec.42.1.
Full textKarner, Timi, Janez Gotlih, Boštjan Razboršek, Tomaž Vuherer, Lucijano Berus, and Karl Gotlih. "Use of single and double fractional Kelvin–Voigt model on viscoelastic elastomer." Smart Materials and Structures 29, no. 1 (2019): 015006. http://dx.doi.org/10.1088/1361-665x/ab5337.
Full textHosseini Hashemi, Sh, and H. Bakhshi Khaniki. "Dynamic Behavior of Multi-Layered Viscoelastic Nanobeam System Embedded in a Viscoelastic Medium with a Moving Nanoparticle." Journal of Mechanics 33, no. 5 (2016): 559–75. http://dx.doi.org/10.1017/jmech.2016.91.
Full textWang, Jianfeng, Yuke Liu, Chao Yang, Wenmin Jiang, Yun Li, and Yongqiang Xiong. "Modeling the Viscoelastic Behavior of Quartz and Clay Minerals in Shale by Nanoindentation Creep Tests." Geofluids 2022 (January 13, 2022): 1–16. http://dx.doi.org/10.1155/2022/2860077.
Full textShitikova, Marina, and Anastasiya Krusser. "FORCE DRIVEN VIBRATIONS OF NONLINEAR PLATES ON A VISCOELASTIC WINKLER FOUNDATION UNDER THE HARMONIC MOVING LOAD." International Journal for Computational Civil and Structural Engineering 17, no. 4 (2021): 161–80. http://dx.doi.org/10.22337/2587-9618-2021-17-4-161-180.
Full textKoumatos, Konstantinos, Corrado Lattanzio, Stefano Spirito, and Athanasios E. Tzavaras. "Existence and uniqueness for a viscoelastic Kelvin–Voigt model with nonconvex stored energy." Journal of Hyperbolic Differential Equations 20, no. 02 (2023): 433–74. http://dx.doi.org/10.1142/s0219891623500133.
Full textMunoz Rivera, Jaime E., Carlos A. da Costa Baldez, and Sebastiao M. S. Cordeiro. "Signorini's problem for the Bresse beam model with localized Kelvin-Voigt dissipation." Electronic Journal of Differential Equations 2024, no. 01-?? (2024): 17. http://dx.doi.org/10.58997/ejde.2024.17.
Full textCallejas, Antonio, Antonio Gomez, Inas H. Faris, Juan Melchor, and Guillermo Rus. "Kelvin–Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography." Sensors 19, no. 15 (2019): 3281. http://dx.doi.org/10.3390/s19153281.
Full textVodička, Roman, and Vladislav Mantič. "Numerical Solution of Frictional Contact Problems for Viscoelastic Solids by SGBEM and Quadratic Programming." Key Engineering Materials 681 (February 2016): 175–84. http://dx.doi.org/10.4028/www.scientific.net/kem.681.175.
Full textXu, Hong Yu, Bing Bing Xue, and Zhu Mu Fu. "Frequency Equations of Magneto-Thermoviscoelastic Surface Wave." Advanced Materials Research 97-101 (March 2010): 479–83. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.479.
Full textGhayesh, Mergen H. "Resonant vibrations of FG viscoelastic imperfect Timoshenko beams." Journal of Vibration and Control 25, no. 12 (2019): 1823–32. http://dx.doi.org/10.1177/1077546318825167.
Full textRusinek, Rafal, Marcin Szymanski, and Robert Zablotni. "Biomechanics of the Human Middle Ear with Viscoelasticity of the Maxwell and the Kelvin–Voigt Type and Relaxation Effect." Materials 13, no. 17 (2020): 3779. http://dx.doi.org/10.3390/ma13173779.
Full textFan, Qianqian, Qiumei Liu, Yiming Chen, Yuhuan Cui, Jingguo Qu, and Lei Wang. "Studying the Dynamics Response of Viscoelastic Orthotropic Plates Based on Fractional-Order Derivatives and Shifted Legendre Polynomials." Mathematics 13, no. 4 (2025): 622. https://doi.org/10.3390/math13040622.
Full textKostyushko, Iryna, and Hlib Shapovalov. "Study of motion stability of a viscoelastic rod." Mechanics and Advanced Technologies 8, no. 1(100) (2024): 80–86. http://dx.doi.org/10.20535/2521-1943.2024.8.1(100).297514.
Full textLi, Haibo, Xi Wang, Heling Wang, and Jubing Chen. "The nonlocal multi-directional vibration behaviors of buckled viscoelastic nanoribbons." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 18 (2020): 3571–83. http://dx.doi.org/10.1177/0954406220916500.
Full textMichozounnou, Robert, Valery K. Doko, Agapi K. Houanou, Gerard L. Gbaguidi Aisse, Amos E. Foudjet, and Antoine Vianou. "LINEAR VISCOELASTIC MODEL OF BORASSUS WOOD: RHEOLOGICAL PARAMETERS." International Journal of Advanced Research 10, no. 01 (2022): 233–42. http://dx.doi.org/10.21474/ijar01/14037.
Full textZamani, HA, and MM Aghdam. "Hybrid material and foundation damping of Timoshenko beams." Journal of Vibration and Control 23, no. 18 (2016): 2869–87. http://dx.doi.org/10.1177/1077546315624077.
Full textBarboteu, M., T. V. Hoarau-Mantel, and M. Sofonea. "On the frictionless unilateral contact of two viscoelastic bodies." Journal of Applied Mathematics 2003, no. 11 (2003): 575–603. http://dx.doi.org/10.1155/s1110757x03212043.
Full textZhou, Yunying, Dongying Liu, Dinggui Hou, Jiahuan Liu, Xiaoliang Li, and Zhijie Yue. "Wave Propagation in the Viscoelastic Functionally Graded Cylindrical Shell Based on the First-Order Shear Deformation Theory." Materials 16, no. 17 (2023): 5914. http://dx.doi.org/10.3390/ma16175914.
Full textAbuzeid, Osama M., Anas N. Al-Rabadi, and Hashem S. Alkhaldi. "Fractal Geometry-Based Hypergeometric Time Series Solution to the Hereditary Thermal Creep Model for the Contact of Rough Surfaces Using the Kelvin-Voigt Medium." Mathematical Problems in Engineering 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/652306.
Full text