To see the other types of publications on this topic, follow the link: Viscosity.

Journal articles on the topic 'Viscosity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Viscosity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shibata, Hiroshi. "Chaos viscosity and turbulent viscosity." Physica A: Statistical Mechanics and its Applications 274, no. 3-4 (December 1999): 476–83. http://dx.doi.org/10.1016/s0378-4371(99)00412-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

D. U., Kareem, Riveros R. L., Amos A. T., Idowu O. P. A., Adeyeye E. A., Aboderin A. T., Sakomura N. K., and Idowu O. M. O. "Evaluation of Feed Particle Size and Multienzyme Supplementation on Ileal Digesta Viscosity in Broiler Chickens: A Multiple Regression Approach." Nigerian Journal of Animal Production 50, no. 4 (October 9, 2024): 20–27. https://doi.org/10.51791/njap.v50i4.8013.

Full text
Abstract:
Feed particle size influences digesta passage rate in broiler chickens, affecting ileal digesta viscosity. Measuring the viscosity of the ileal digesta is laborious but could be simplified with a model. This study evaluated the impact of feed particle sizes and multienzyme supplementation on ileal digesta viscosity in broiler chickens and developed an equation to estimate the ileal digesta viscosity using feed particle size and multienzyme supplementation as predictors. A total of 450 unsexed one-day-old Cobb500 broiler chicks were assigned to nine treatments with three particle sizes (3, 4, and 5 mm) and three levels of multienzyme supplementation (0, 1, and 2 g/kg), with five replicates per treatment, each containing ten birds. Data obtained were subjected to analysis of variance (ANOVA). Pearson correlation (r) between ileal viscosity, particle size, and multienzyme supplementation was performed to determine suitability for multiple linear regression, considering moderate correlation coefficients (r < 0.8) to avoid collinearity. Four models were generated using multiple linear regression. The best fit was determined by R² values, r, and p-values (p ≤ 0.05). The model Y = 0.2734 P + 0.0623 E was identified as the best fit, where Y is ileal digesta viscosity, P is particle size, and E is multienzyme supplementation level. In conclusion, larger feed particle sizes decrease ileal digesta viscosity. The derived equation effectively estimates ileal digesta viscosity in broiler chickens fed maize-based diets, using feed particle size and multienzyme supplementation as predictors. La taille des particules d’aliment influence le taux de passage du digesta dans le tube digestif des poulets de chair, affectant ainsi la viscosité du digesta iléal. La mesure de cette viscosité est fastidieuse, mais un modèle mathématique pourrait simplifier son estimation. Cette étude a évalué l’impact de la taille des particules d’aliment et de la supplémentation multi-enzymatique sur la viscosité du digesta iléal chez les poulets de chair. Elle a également permis de développer une équation permettant d’estimer cette viscosité en utilisant la taille des particules et la supplémentation multi-enzymatique comme variables prédictives. Un total de 450 poussins d’un jour Cobb500 non sexés ont été répartis en neuf groupes expérimentaux recevant des aliments à trois tailles de particules (3, 4 et 5 mm) et supplémentés en multi-enzymes à trois niveaux (0, 1 et 2 g/kg). Chaque groupe comprenait cinq réplicats de dix oiseaux. Les données obtenues ont été soumises à une analyse de variance (ANOVA). Une corrélation de Pearson (r) a été réalisée pour évaluer la relation entre la viscosité iléale, la taille des particules et la supplémentation multi-enzymatique. Cette analyse visait à garantir l’adéquation des variables à un modèle de régression linéaire multiple, en s’assurant de coefficients de corrélation modérés (r < 0,8) afin d’éviter la colinéarité. Quatre modèles ont été générés par régression linéaire multiple. Le meilleur ajustement a été déterminé en fonction des valeurs de R², du coefficient de corrélation (r) et de la valeur de p (p = 0,05). L’équation Y = 0,2734 P + 0,0623 E a été identifiée comme le meilleur ajustement, où Y représente la viscosité du digesta iléal, P la taille des particules et E le niveau de supplémentation multi-enzymatique. En conclusion, des particules d’aliment de plus grande taille réduisent la viscosité du digesta iléal. L’équation dérivée permet d’estimer efficacement la viscosité du digesta iléal chez les poulets de chair nourris avec des régimes à base de maïs, en utilisant la taille des particules d’aliment et la supplémentation multi-enzymatique comme facteurs prédictifs.
APA, Harvard, Vancouver, ISO, and other styles
3

Richtering, Walter. "Viscosity." Applied Rheology 14, no. 3 (June 1, 2004): 125. http://dx.doi.org/10.1515/arh-2004-0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shibata, Hiroshi. "Chaos viscosity and turbulent viscosity II." Physica A: Statistical Mechanics and its Applications 276, no. 3-4 (February 2000): 441–47. http://dx.doi.org/10.1016/s0378-4371(99)00456-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fuller, Gerald G., Cheryl A. Cathey, Brent Hubbard, and Beth E. Zebrowski. "Extensional Viscosity Measurements for Low‐Viscosity Fluids." Journal of Rheology 31, no. 3 (April 1987): 235–49. http://dx.doi.org/10.1122/1.549923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shibata, Hiroshi. "Erratum to “Chaos viscosity and turbulent viscosity”." Physica A: Statistical Mechanics and its Applications 282, no. 3-4 (July 2000): 609. http://dx.doi.org/10.1016/s0378-4371(00)00185-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wei, Xian-fu, Na Wang, Bei-qing Huang, and Cheng-bo Sun. "Viscosity model of high-viscosity dispersing system." Journal of Central South University of Technology 15, S1 (September 2008): 163–66. http://dx.doi.org/10.1007/s11771-008-0338-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cui, Yun Hua, and Yi Jie Liu. "Study on the Effect of Ultrasonic in the Mixing and Cooking of Sizing Material." Advanced Materials Research 680 (April 2013): 20–24. http://dx.doi.org/10.4028/www.scientific.net/amr.680.20.

Full text
Abstract:
In this paper, the effect of ultrasonic wave on sizing materials is analyzed to optimize sizing properties. To give an overall view on the advantages of ultrasonic wave treatment in mixing and cooking , a range of solid contents are taken into account. By comparing with the traditional method of mixing and cooking, the relationships between sizing materials’(s) gelatinization temperature and time ,viscosity and viscosity stability are discussed. Experimental results have demonstrated that a certain ultrasonic frequency ( 40kHz ) in mixing and cooking method can reduce the gelatinization temperature and time, lower the viscosity of sizing solutions and increase viscosity’s stability.
APA, Harvard, Vancouver, ISO, and other styles
9

SHIMADA, K., and S. KAMIYAMA. "HYDRODYNAMIC CHARACTERISTICS OF ELECTRORHEOLOGICAL FLUID IN A PARALLEL DUCT FLOW." International Journal of Modern Physics B 15, no. 06n07 (March 20, 2001): 980–87. http://dx.doi.org/10.1142/s0217979201005507.

Full text
Abstract:
An experimental investigation is conducted to clarify the hydrodynamic characteristics of ERF with elastic particles of smectite in a two-dimensional parallel duct of various widths. Experimental data on pressure difference to a volumetric flow rate in a supplying D.C. electric field are measured. These data are arranged to obtain the apparent viscosit by using the integral method of rheology. From the data of apparent viscosity, the wall friction coefficient is obtained. The increment of the apparent viscosity caused by the applying electric field is a function of shear rate as well as the electric field strength and the width of the duct. However, the wall friction coefficient is not a function of elecric field strength and the width of the parallel duct, but only of shear rate. The yield stress is a function of the width of the parallel duct as well as of electric field strength. The ratio of Non-Newtonian viscosity in the apparent viscosity is varied by the intensity of the shear rate.
APA, Harvard, Vancouver, ISO, and other styles
10

Yarmola, Tetiana, Petro Topilnytskyy, and Victoria Romanchuk. "High-Viscosity Crude Oil. A Review." Chemistry & Chemical Technology 17, no. 1 (March 26, 2023): 195–202. http://dx.doi.org/10.23939/chcht17.01.195.

Full text
Abstract:
The current problem of the production and processing of heavy high-viscosity oils in Ukraine and the world has been considered. It has been established that the main reserves of heavy high-viscosity crude oils in the world are located in South and North America, in the Middle East, as well as in Ukraine in the eastern regions. An analysis of various classifications of heavy high-viscosity oils, which are used both in Ukraine and in the world, was carried out. The main extraction methods of heavy high-viscosity oils were considered, in particular, quarry, mine, and well extraction methods. An overview of the technological processes of heavy high-viscosity oil processing was carried out.
APA, Harvard, Vancouver, ISO, and other styles
11

Nakheli, A., A. Eljazouli, M. Elmorabit, E. Ballouki, J. Fornazero, and J. Huck. "The viscosity of maltitol." Journal of Physics: Condensed Matter 11, no. 41 (October 1, 1999): 7977–94. http://dx.doi.org/10.1088/0953-8984/11/41/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

DE ZARATE, J. GONZALEZ, J. OJEDA, and R. SANZ. "BLOOD VISCOSITY." British Journal of Anaesthesia 58, no. 10 (October 1986): 1202–3. http://dx.doi.org/10.1093/bja/58.10.1202-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aras, Sevgi, Ibrahim Tek, Murat Varli, Ahmet Yalcin, Ozlem Karaarslan Cengiz, Volkan Atmis, and Teslime Atli. "Plasma Viscosity." American Journal of Alzheimer's Disease & Other Dementias® 28, no. 1 (December 14, 2012): 62–68. http://dx.doi.org/10.1177/1533317512467682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bates, T. W. "VISCOSITY CLASSIFICATION." Industrial Lubrication and Tribology 38, no. 1 (January 1986): 4–40. http://dx.doi.org/10.1108/eb053318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Miura, Shinsuke, and Susumu Ishizuka. "Viscosity detector." Journal of the Acoustical Society of America 86, no. 5 (November 1989): 2047. http://dx.doi.org/10.1121/1.398514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hemmerlin, William M., and Kenton B. Abel. "Viscosity races." Journal of Chemical Education 68, no. 5 (May 1991): 417. http://dx.doi.org/10.1021/ed068p417.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Petrie, Christopher J. S., and Ann Petrie. "Spinning viscosity." Journal of Non-Newtonian Fluid Mechanics 57, no. 1 (April 1995): 83–101. http://dx.doi.org/10.1016/0377-0257(94)01297-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Brookfield Viscometers Ltd. "Viscosity sensor." NDT & E International 26, no. 4 (August 1993): 222. http://dx.doi.org/10.1016/0963-8695(93)90591-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Eggen, Svein. "Viscosity measurement." Journal of the Acoustical Society of America 119, no. 5 (2006): 2557. http://dx.doi.org/10.1121/1.2203521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jethra, Ravi. "Viscosity measurement." ISA Transactions 33, no. 3 (September 1994): 307–12. http://dx.doi.org/10.1016/0019-0578(94)90101-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kaatze, U., and R. Behrends. "High-Frequency Shear Viscosity of Low-Viscosity Liquids." International Journal of Thermophysics 35, no. 11 (August 24, 2014): 2088–106. http://dx.doi.org/10.1007/s10765-014-1711-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Emeis, Stefan. "Parameterization of turbulent viscosity over orography." Meteorologische Zeitschrift 13, no. 1 (February 16, 2004): 33–38. http://dx.doi.org/10.1127/0941-2948/2004/0013-0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li-Ban, Chen, and Yang Shu-Ying. "Calculation and Corrections of Kinematic Viscosity and Intrinsic Viscosity." Acta Physico-Chimica Sinica 7, no. 05 (1991): 524–30. http://dx.doi.org/10.3866/pku.whxb19910503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

NOGUEIRA, P. C., and R. CHAN. "RADIATING GRAVITATIONAL COLLAPSE WITH SHEAR VISCOSITY AND BULK VISCOSITY." International Journal of Modern Physics D 13, no. 08 (September 2004): 1727–52. http://dx.doi.org/10.1142/s0218271804005158.

Full text
Abstract:
A model of a collapsing radiating star consisting of a fluid with shear viscosity and bulk viscosity undergoing radial heat flow with outgoing radiation is studied. This kind of fluid is the most general viscous fluid we can have. The pressure of the star, at the beginning of the collapse, is isotropic but, due to the presence of the shear viscosity and the bulk viscosity, the pressure becomes more and more anisotropic. The radial and temporal behaviors of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar are analyzed. The collapsing time, density, mass, luminosity and Kretschmann scalar of the star do not depend on the viscosity of the fluid (nor the shear viscosity and neither the bulk viscosity).
APA, Harvard, Vancouver, ISO, and other styles
25

Lorefice, S., and F. Saba. "The Italian primary kinematic viscosity standard: The viscosity scale." Measurement 112 (December 2017): 1–8. http://dx.doi.org/10.1016/j.measurement.2017.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Lihan, Han Geng, and Yanna Sun. "Simplified viscosity evaluating method of high viscosity asphalt binders." Materials and Structures 48, no. 7 (April 2, 2014): 2147–56. http://dx.doi.org/10.1617/s11527-014-0299-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Shu‐Ping, Ge Zhao, and Hong‐Yuan Chen. "The Relationship between Steady Shear Viscosity and Complex Viscosity." Journal of Dispersion Science and Technology 26, no. 4 (July 2005): 415–19. http://dx.doi.org/10.1081/dis-200054555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wendroff, Burton. "A compact artificial viscosity equivalent to a tensor viscosity." Journal of Computational Physics 229, no. 19 (September 2010): 6673–75. http://dx.doi.org/10.1016/j.jcp.2010.05.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rao, M. V. Ram Mohan, and M. Yaseen. "Determination of intrinsic viscosity by single specific viscosity measurement." Journal of Applied Polymer Science 31, no. 8 (June 1986): 2501–8. http://dx.doi.org/10.1002/app.1986.070310811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Conradi, Marjetka, Aleksandra Kocijan, and Bojan Podgornik. "Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy." Materials 16, no. 19 (October 9, 2023): 6615. http://dx.doi.org/10.3390/ma16196615.

Full text
Abstract:
Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity’s influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50–200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.
APA, Harvard, Vancouver, ISO, and other styles
31

Indriani, Erdila, Sudjati Rachmat, Leksono Mucharram, Agus Yodi Gunawan, Munir Achmad, and Anugerah Solida. "The Thermal Encroachment of Microwave Heating with Nano Ferro Fluids Injection on Heavy Oil Deposits." Modern Applied Science 12, no. 9 (August 8, 2018): 1. http://dx.doi.org/10.5539/mas.v12n9p1.

Full text
Abstract:
Heavy oil demands more energy for its lifting to the surface facilities. A critical parameter that can be altered to enhance the production from the reservoir is the viscosity. Lowering oil viscosity predominantly achieved by thermal methods. This study investigated thermal encroachment in the sand pack layers as simulated heavy oil reservoir was generated by the microwave stack heated mixtures of 22 0API of Indonesian heavy crude, nano-ferrofluidFe2O3 and saturated brines. The wave guide was used to focus microwave radiation into the sand bed. The experimental results showed thatmicrowaveheatingwith maximum output power of 900 Watt and Fe2O3 as the nano particles, works at the frequency of 2.45 GHz reduces oil viscosity from 4,412.11 cP on its pour point at 51 0C to 134.24 cP at 90 0C. Thermal heating with nano ferro fluidsdecreased the viscosityof heavyoiland make it easierto beflowed. Theincreasesoftemperature are directly proportionalwithpoweroutput and nano-ferroconcentration.
APA, Harvard, Vancouver, ISO, and other styles
32

Malyshev, V. P., and A. M. Makasheva. "Clusters: Viscosity Cause?" Open Journal of Physical Chemistry 09, no. 03 (2019): 107–25. http://dx.doi.org/10.4236/ojpc.2019.93007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gelfand, DW, DJ Ott, HA Minitz, and YM Chen. "Barium suspension viscosity." American Journal of Roentgenology 146, no. 6 (June 1986): 1317–18. http://dx.doi.org/10.2214/ajr.146.6.1317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shimoji, Mitsuo, and Toshio Itami. "3.2 Shear Viscosity." Defect and Diffusion Forum 43 (January 1986): 183–207. http://dx.doi.org/10.4028/www.scientific.net/ddf.43.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dintenfass, Leopold. "Cancer: viscosity viewpoint." Medical Journal of Australia 144, no. 8 (April 1986): 442. http://dx.doi.org/10.5694/j.1326-5377.1986.tb128428.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Teaney, Derek A. "Viscosity and thermalization." Journal of Physics G: Nuclear and Particle Physics 30, no. 8 (July 20, 2004): S1247—S1250. http://dx.doi.org/10.1088/0954-3899/30/8/100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Earl, J. A., J. R. Jokipii, and G. Morfill. "Cosmic-ray viscosity." Astrophysical Journal 331 (August 1988): L91. http://dx.doi.org/10.1086/185242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

N. Petford. "Which effective viscosity?" Mineralogical Magazine 73, no. 2 (April 2009): 167–91. http://dx.doi.org/10.1180/minmag.2009.073.2.167.

Full text
Abstract:
AbstractMagmas undergoing shear are prime examples of flows that involve the transport of solids and gases by a separate (silicate melt) carrier phase. Such flows are called multiphase, and have attracted much attention due to their important range of engineering applications. Where the volume fraction of the dispersed phase (crystals) is large, the influence of particles on the fluid motion becomes significant and must be taken into account in any explanation of the bulk behaviour of the mixture. For congested magma deforming well in excess of the dilute limit (particle concentrations >40% by volume), sudden changes in the effective or relative viscosity can be expected. The picture is complicated further by the fact that the melt phase is temperature- and shear-rate-dependent. In the absence of a constitutive law for the flow of congested magma under an applied force, it is far from clear which of the many hundreds of empirical formulae devised to predict the rheology of suspensions as the particle fraction increases with time are best suited. Some of the more commonly used expressions in geology and engineering are reviewed with an aim to home in on those variables key to an improved understanding of magma rheology. These include a temperature, compositional and shear-rate dependency of viscosity of the melt phase with the shear-rate dependency of the crystal (particle) packing arrangement. Building on previous formulations, a new expression for the effective (relative) viscosity of magma is proposed that gives users the option to define a packing fraction range as a function of shear stress. Comparison is drawn between processes (segregation, clustering, jamming), common in industrial slurries, and structures seen preserved in igneous rocks. An equivalence is made such that congested magma, viewed in purely mechanical terms as a high-temperature slurry, is an inherently nonequilibrium material where flow at large Pe´clet numbers may result in shear thinning and spontaneous development of layering.
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, X., and E. A. Spiegel. "Radiative bulk viscosity." Monthly Notices of the Royal Astronomical Society 323, no. 4 (May 30, 2001): 865–71. http://dx.doi.org/10.1046/j.1365-8711.2001.04261.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Clarke, C. J., and J. E. Pringle. "Kinetic theory viscosity." Monthly Notices of the Royal Astronomical Society 351, no. 4 (July 2004): 1187–92. http://dx.doi.org/10.1111/j.1365-2966.2004.07847.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hund, Jerry P. "Determination of viscosity." Metal Finishing 98, no. 6 (January 2000): 571–73. http://dx.doi.org/10.1016/s0026-0576(00)80465-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hund, Jerry P. "Determination of viscosity." Metal Finishing 97, no. 5 (January 1999): 558–60. http://dx.doi.org/10.1016/s0026-0576(99)80830-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tout, Christopher A. "Accretion Disc Viscosity." International Astronomical Union Colloquium 158 (1996): 97–106. http://dx.doi.org/10.1017/s0252921100038343.

Full text
Abstract:
AbstractWe review the various physical processes that could lead to viscosity in accretion discs. A local magnetic dynamo offers the most plausible mechanism and we discuss a simple model in some detail. The dynamo operates even in partially and very weakly ionized discs without much modification.
APA, Harvard, Vancouver, ISO, and other styles
44

Baek, Seonggi. "Measuring Viscosity Accurately." Genetic Engineering & Biotechnology News 35, no. 7 (April 2015): 26–27. http://dx.doi.org/10.1089/gen.35.07.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

MILLER, JO, WILLIAM R. KRAUSE, WILLIAM H. KRUG, LYDIA C. KELEBAY, and LEONARD F. PELTIER. "Low Viscosity Cement." Clinical Orthopaedics and Related Research &NA;, no. 276 (March 1992): 4???6. http://dx.doi.org/10.1097/00003086-199203000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mócsy, Ágnes. "Viscosity versus Causality." Progress of Theoretical Physics Supplement 193 (2012): 331–34. http://dx.doi.org/10.1143/ptps.193.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lawrence, Andy. "Quasar viscosity crisis." Nature Astronomy 2, no. 2 (January 29, 2018): 102–3. http://dx.doi.org/10.1038/s41550-017-0372-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

VROOM, G. B. "FUEL OIL VISCOSITY*." Journal of the American Society for Naval Engineers 37, no. 4 (March 18, 2009): 754–71. http://dx.doi.org/10.1111/j.1559-3584.1925.tb00924.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Doremus, Robert H. "Viscosity of silica." Journal of Applied Physics 92, no. 12 (December 15, 2002): 7619–29. http://dx.doi.org/10.1063/1.1515132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Di Nucci, C., D. Pasquali, D. Celli, A. Pasculli, P. Fischione, and M. Di Risio. "Turbulent bulk viscosity." European Journal of Mechanics - B/Fluids 84 (November 2020): 446–54. http://dx.doi.org/10.1016/j.euromechflu.2020.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography