To see the other types of publications on this topic, follow the link: Visible lasers.

Journal articles on the topic 'Visible lasers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Visible lasers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moncorgé, R., L. D. Merkle, and B. Zandi. "UV-Visible Lasers Based on Rare-Earth Ions." MRS Bulletin 24, no. 9 (1999): 21–26. http://dx.doi.org/10.1557/s088376940005301x.

Full text
Abstract:
An issue on novel applications of materials doped with rare-earth (RE) ions can scarcely fail to address lasers, but it need not address all RE-based lasers. Some Nd3+ -doped lasers, particularly Nd:YAG (Y3Al5O12, yttrium aluminum garnet), emitting light with a wavelength of 1064 nm, are very well-established commercial products—by no means novelties.1 Some other near-infrared (NIR) lasers, based on Er3+ or Tm3+, are also available commercially. That wavelength region is relatively easy for RE laser ions, involving energy spacings between initial and final energy levels small enough to give la
APA, Harvard, Vancouver, ISO, and other styles
2

Lando, Mordechai, Yehoshua Shimony, Roth M. J. Benmair, Dov Abramovich, Vladimir Krupkin, and Amnon Yogev. "Visible solar-pumped lasers." Optical Materials 13, no. 1 (1999): 111–15. http://dx.doi.org/10.1016/s0925-3467(99)00019-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ikeda, Masao, Kazushi Nakano, Atsushi Toda, Yoshifumi Mori, and Chiaki Kojima. "AlGaInP Visible Semiconductor Lasers." Japanese Journal of Applied Physics 26, S4 (1987): 101. http://dx.doi.org/10.7567/jjaps.26s4.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

UEMATSU, Yutaka. "InGaAlP visible semiconductor lasers." Review of Laser Engineering 16, no. 11 (1988): 724–31. http://dx.doi.org/10.2184/lsj.16.724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Zhaoyu, Lan Yang, Victor Liu, Ting Hong, Kerry Vahala, and Axel Scherer. "Visible submicron microdisk lasers." Applied Physics Letters 90, no. 11 (2007): 111119. http://dx.doi.org/10.1063/1.2714312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang Fengjuan, 王凤娟, 刘哲 Liu Zhe, 徐斌 Xu Bin, et al. "Blue Laser Diode Pumped Pr3+:YLF Visible Lasers." Chinese Journal of Lasers 40, no. 12 (2013): 1202002. http://dx.doi.org/10.3788/cjl201340.1202002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fujimoto, Yasushi, Jun Nakanishi, Tsuyoshi Yamada, Osamu Ishii, and Masaaki Yamazaki. "Visible fiber lasers excited by GaN laser diodes." Progress in Quantum Electronics 37, no. 4 (2013): 185–214. http://dx.doi.org/10.1016/j.pquantelec.2013.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

TAIRA, Takunori. "Visible Micro Solid-State Lasers." Review of Laser Engineering 33, no. 10 (2005): 655–61. http://dx.doi.org/10.2184/lsj.33.655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Young, B. C., F. C. Cruz, W. M. Itano, and J. C. Bergquist. "Visible Lasers with Subhertz Linewidths." Physical Review Letters 82, no. 19 (1999): 3799–802. http://dx.doi.org/10.1103/physrevlett.82.3799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalusniak, S., H. Tanaka, E. Castellano-Hernández, and C. Kränkel. "UV-pumped visible Tb3+-lasers." Optics Letters 45, no. 22 (2020): 6170. http://dx.doi.org/10.1364/ol.411072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kurtz, Bryan R., and James F. Daniell. "The role of lasers in the laparoscopic treatment of infertility and endometriosis." Reproductive Medicine Review 2, no. 2 (1993): 85–94. http://dx.doi.org/10.1017/s0962279900000636.

Full text
Abstract:
Lasers have now been used laparoscopically in infertility surgery for over a decase. Use of the CO2 laser at laparoscopy began independently in France, Israel and North America. Investigators have subsequently reported use of the argon, Nd-YAG, and the KTP lasers for laparoscopic laser surgery. All of these surgical lasers are now widely available and have been used clinically for many laparoscopic procedures. This review will examine the laparoscopic use of both infrared and visible laser light energy in the treatment of infertility and endometriosis.
APA, Harvard, Vancouver, ISO, and other styles
12

Stoilov, Yu Yu, O. A. Logunov, D. A. Nikolaenko, and A. V. Startsev. "Development of dye lasers with bleaching wave." Laser and Particle Beams 10, no. 2 (1992): 387–412. http://dx.doi.org/10.1017/s026303460000447x.

Full text
Abstract:
Dye lasers with bleaching wave (LBW) are the first condensed state lasers where the restriction on energy and duration of optical exciting pulses are practically removed. This gives an opportunity to create tunable lasers in the visible range with average powers significantly higher than that of any available laser of this type. Physical principles and current experimental results along with prospects of future LBW development are presented.
APA, Harvard, Vancouver, ISO, and other styles
13

Zou, Jinhai, Qiujun Ruan, Xiaojin Zhang, Bin Xu, Zhiping Cai, and Zhengqian Luo. "Visible-wavelength pulsed lasers with low-dimensional saturable absorbers." Nanophotonics 9, no. 8 (2020): 2273–94. http://dx.doi.org/10.1515/nanoph-2020-0022.

Full text
Abstract:
AbstractThe recent renaissance in pulsed lasers operating in the visible spectral region has been driven by their significant applications in a wide range of fields such as display technology, medicine, microscopy, material processing, and scientific research. Low-dimensional nanomaterials as saturable absorbers are exploited to create strong nonlinear saturable absorption for pulse generation at visible wavelengths due to their absorption peaks located in visible spectral region. Here we provide a detailed overview of visible-wavelength pulsed lasers based on low-dimensional nanomaterials, co
APA, Harvard, Vancouver, ISO, and other styles
14

Peterson, I. "Chemical Power for Visible-Light Lasers." Science News 132, no. 17 (1987): 261. http://dx.doi.org/10.2307/3971974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

NIINA, Tatsuhiko. "Recent Advances in Visible Semiconductor Lasers." Review of Laser Engineering 14, no. 7 (1986): 572–84. http://dx.doi.org/10.2184/lsj.14.572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Banerjee, A., T. Frost, and P. Bhattacharya. "Nitride-based quantum dot visible lasers." Journal of Physics D: Applied Physics 46, no. 26 (2013): 264004. http://dx.doi.org/10.1088/0022-3727/46/26/264004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gavrikov, V. F., A. N. Dvoryankin, A. A. Stepanov, A. K. Shmelev, and V. A. Shcheglov. "Visible and near-infrared chemical lasers." Journal of Russian Laser Research 15, no. 3 (1994): 177–212. http://dx.doi.org/10.1007/bf02581029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen, Nuofu, Xiulan Zhang, and Yiwen Den. "Degradation related defects in visible lasers." Journal of Crystal Growth 148, no. 3 (1995): 219–22. http://dx.doi.org/10.1016/0022-0248(94)00868-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Surin, A. A., S. V. Larin, T. E. Borisenko, K. Yu Prusakov, and Yu S. Stirmanov. "High-power cw visible lasers pumped by Raman fibre lasers." Quantum Electronics 46, no. 12 (2016): 1097–101. http://dx.doi.org/10.1070/qel16222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Scheps, Richard. "Cr-doped solid state lasers pumped by visible laser diodes." Optical Materials 1, no. 1 (1992): 1–9. http://dx.doi.org/10.1016/0925-3467(92)90011-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lv, Xinlin, Junchi Chen, Yujie Peng, et al. "Discretely Tunable Multiwavelength Visible Laser Based on Cascaded Frequency Conversion Processes." Applied Sciences 10, no. 23 (2020): 8608. http://dx.doi.org/10.3390/app10238608.

Full text
Abstract:
We demonstrate a discretely tunable multiwavelength visible laser through second harmonic generation (SHG) and sum frequency generation (SFG) of multiorder Stokes lasers generated from an external Raman laser oscillator. The Raman laser oscillator, driven by a 1064 nm laser with an energy of 120 mJ, is based on a cascade of Ba(NO3)2 and two axial orthogonal KGd(WO4)2 crystals. Through adjusting the angle of the SHG/SFG crystal, we obtain 16 visible wavelengths with a wide range from 579.5–658.4 nm. In addition, we investigate the output energy and conversion efficiency of the resulting laser w
APA, Harvard, Vancouver, ISO, and other styles
22

Haglund, Richard F. "Damage Mechanisms in Optical Materials For High-Power, Short-Wavelength Laser Systems." MRS Bulletin 11, no. 3 (1986): 46–47. http://dx.doi.org/10.1557/s088376940005483x.

Full text
Abstract:
Damage to optical materials under intense photon irradiation has always been a major problem in the design and operation of high-energy and high-average-power lasers. In short-wavelength lasers, operating at visible and ultraviolet wavelengths, the problem appears to be especially acute; presently attainable damage thresholds seriously compromise the engineering design of laser windows and mirrors, pulsed power trains and oscillator-amplifier systems architecture. Given the present interest in ultraviolet excimer lasers and in short-pulse, high-power free-electron lasers operating at visible a
APA, Harvard, Vancouver, ISO, and other styles
23

AMANO, Sho, Seiichi YOKOYAMA, Masashi FUJINO, Satoru AMANO, and Takayasu MOCHIZUKI. "Diode pumped RGB visible solid-state lasers." Review of Laser Engineering 18, no. 8 (1990): 634–38. http://dx.doi.org/10.2184/lsj.18.8_634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hara, K. "Wide band-gap ZnHgSSe for visible lasers." Journal of Crystal Growth 184-185, no. 1-2 (1998): 610–13. http://dx.doi.org/10.1016/s0022-0248(97)00730-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hara, K., S. Haneda, Y. Eguchi, and H. Munekata. "Wide band-gap ZnHgSSe for visible lasers." Journal of Crystal Growth 184-185 (February 1998): 610–13. http://dx.doi.org/10.1016/s0022-0248(98)80128-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Spence, David J., Xiaoli Li, Andrew J. Lee, and Helen M. Pask. "Modeling of wavelength-selectable visible Raman lasers." Optics Communications 285, no. 18 (2012): 3849–54. http://dx.doi.org/10.1016/j.optcom.2012.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tihanyi, P. L., F. C. Jain, M. J. Robinson, et al. "High power AlGaAs-GaAs visible diode lasers." IEEE Photonics Technology Letters 6, no. 7 (1994): 775–77. http://dx.doi.org/10.1109/68.311451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Orlovsky, V. M., V. S. Skakun, V. F. Tarasenko, and A. V. Fedenev. "Electron-beam-pumped infrared and visible lasers." Russian Physics Journal 43, no. 5 (2000): 372–82. http://dx.doi.org/10.1007/bf02508519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cavenett, B. C., K. A. Prior, and S. Y. Wang. "Blue diode lasers and visible optoelectronic devices." Materials Science and Engineering: B 21, no. 2-3 (1993): 205–10. http://dx.doi.org/10.1016/0921-5107(93)90350-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kolerov, A. N., Sh O. Arzumanyan, K. P. Chirkina, and I. I. Gritsaĭ. "Soft apertures for lasers emitting visible radiation." Soviet Journal of Quantum Electronics 18, no. 12 (1988): 1624–25. http://dx.doi.org/10.1070/qe1988v018n12abeh012780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Poletimov, A. E., A. S. Shcheulin, and I. L. Yanovskaya. "Apodizing apertures for visible and IR lasers." Soviet Journal of Quantum Electronics 22, no. 10 (1992): 927–30. http://dx.doi.org/10.1070/qe1992v022n10abeh003632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Xiaobo, Guotong Du, Zheng Zou, Fanghal Zhao, and Dingsan Gao. "A novel structure of visible semiconductor lasers." Optical and Quantum Electronics 22, no. 4 (1990): 385–89. http://dx.doi.org/10.1007/bf02189221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zou, Jinhai, Zhe Kang, Rui Wang, et al. "Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods." Nanoscale 11, no. 34 (2019): 15991–6000. http://dx.doi.org/10.1039/c9nr05096e.

Full text
Abstract:
We demonstrate visible-wavelength all-fiber pulsed vortex lasers for the first time that may serve as attractive alternatives to solid-state vortex lasers for a variety of applications, such as visible mode-division multiplexing and STED microscopy.
APA, Harvard, Vancouver, ISO, and other styles
34

UEMATSU, Yutaka. "Short wavelength operation in InGaAlP visible semiconductor lasers." Review of Laser Engineering 18, no. 8 (1990): 579–81. http://dx.doi.org/10.2184/lsj.18.8_579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Luo, Saiyu, Bin Xu, Huiying Xu, and Zhiping Cai. "High-power self-mode-locked Pr:YLF visible lasers." Applied Optics 56, no. 34 (2017): 9552. http://dx.doi.org/10.1364/ao.56.009552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Funk, D. S., and J. G. Eden. "Glass-fiber lasers in the ultraviolet and visible." IEEE Journal of Selected Topics in Quantum Electronics 1, no. 3 (1995): 784–91. http://dx.doi.org/10.1109/2944.473660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lee, Min-Wei. "Combination Visible and Infrared Lasers for Skin Rejuvenation." Seminars in Cutaneous Medicine and Surgery 21, no. 4 (2002): 288–300. http://dx.doi.org/10.1053/sder.2002.36765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Christine Lee, Min-Wei. "Combination visible and infrared lasers for skin rejuvenation." Seminars in Cutaneous Medicine and Surgery 21, no. 4 (2002): 288–300. http://dx.doi.org/10.1053/sder.2002/36765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schinca, D., L. Scaffardi, and J. O. Tocho. "Population mechanisms in visible carbon monoxide pulsed lasers." Applied Optics 25, no. 1 (1986): 102. http://dx.doi.org/10.1364/ao.25.000102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Runcorn, Timothy H., Frederik G. Gorlitz, Robert T. Murray, and Edmund J. R. Kelleher. "Visible Raman-Shifted Fiber Lasers for Biophotonic Applications." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 3 (2018): 1–8. http://dx.doi.org/10.1109/jstqe.2017.2770101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

M. A. Eid, Mahmoud, Iraj Sadegh Amiri, Ahmed Nabih Zaki Rashed, and Preecha Yupapin. "Dental lasers applications in visible wavelength operational band." Indonesian Journal of Electrical Engineering and Computer Science 18, no. 2 (2020): 890. http://dx.doi.org/10.11591/ijeecs.v18.i2.pp890-895.

Full text
Abstract:
<p>There is no doubt that radiation has many side effects in our lives, so our goal in this study is to reduce our use of radiation in the diagnosis of tooth caries, and in order to achieve this goal we used the field of optical fiber in the detection of some diseases associated with oral and dental medicine. This diagnosis was accomplished by shedding light on the teeth, to be diagnosed and creating an image that allows the doctor to examine them and determine whether there are caries or any root problems. The principle is also used to detect oral cancer, fractures, and cracks in bones.
APA, Harvard, Vancouver, ISO, and other styles
42

Reisfeld, Renata, and Gunther Seybold. "Stable solid-state tunable lasers in the visible." Journal of Luminescence 48-49 (January 1991): 898–900. http://dx.doi.org/10.1016/0022-2313(91)90266-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Roentgen, P., W. Heuberger, G. L. Bona, and P. Unger. "MOVPE of AlGaInP/GaInP heterostructures for visible lasers." Journal of Crystal Growth 107, no. 1-4 (1991): 724–30. http://dx.doi.org/10.1016/0022-0248(91)90549-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tatum, J. A., D. L. Macfarlane, and H. B. Serreze. "Sustained oscillations in GaInP/AlGalnP visible diode lasers." Optical and Quantum Electronics 27, no. 2 (1995): 101–16. http://dx.doi.org/10.1007/bf00367945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Williams, R. L., F. Chatenoud, and R. Normandin. "MBE grown, visible, surface emitting harmonic generation lasers." Journal of Crystal Growth 111, no. 1-4 (1991): 1066–70. http://dx.doi.org/10.1016/0022-0248(91)91134-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zellmer, H., P. Riedel, and A. Tünnermann. "Visible upconversion lasers in praseodymium-ytterbium-doped fibers." Applied Physics B 69, no. 5-6 (1999): 417–21. http://dx.doi.org/10.1007/s003400050829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kränkel, Christian, Daniel-Timo Marzahl, Francesca Moglia, Günter Huber, and Philip Werner Metz. "Out of the blue: semiconductor laser pumped visible rare-earth doped lasers." Laser & Photonics Reviews 10, no. 4 (2016): 548–68. http://dx.doi.org/10.1002/lpor.201500290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Boller, Klaus-J., Albert van Rees, Youwen Fan, et al. "Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits." Photonics 7, no. 1 (2019): 4. http://dx.doi.org/10.3390/photonics7010004.

Full text
Abstract:
Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth, as well as compatibility for embedding into integrated photonic circuits, are of high importance for a wide range of applications. We present an overview on our recently developed hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si 3 N 4 in SiO 2 ) circuits, to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around a 1.55 μ m wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain operation, laser frequency comb
APA, Harvard, Vancouver, ISO, and other styles
49

ABDULRAHMAN, Hayder J., and Suzan B. MOHAMMED. "DEVELOPMENT OF ULTRA-SHORT HIGH INTENSITY LASERS FOR THE VISIBLE SPECTRA RANGE." Periódico Tchê Química 17, no. 35 (2020): 739–52. http://dx.doi.org/10.52571/ptq.v17.n35.2020.63_abdulrahman_pgs_739_752.pdf.

Full text
Abstract:
Ultra-short laser pulses are particularly suitable for processing micro tools made of ultra-hard and dielectric materials. Ultra-short laser pulses provide a contact-free and precise fabrication of heat-sensitive materials such as visible spectra range. Visible spectra range has unique properties, which makes it an essential material in the tool, jewelry, and semiconductor industries. The processing of visible spectra range by ultra-short laser pulses is complex, as visible and near-infrared light is generally not absorbed. However, the intensity of ultra-short laser pulses is extremely high,
APA, Harvard, Vancouver, ISO, and other styles
50

Sotor, Jarosław, Krzysztof Abramski, Arkadiusz Antończak, et al. "Laser and Fiber Electronics Group." Photonics Letters of Poland 11, no. 2 (2019): 38. http://dx.doi.org/10.4302/plp.v11i2.901.

Full text
Abstract:
The Laser & Fiber Electronics Group (LFEG) constitutes a team of young, skilled and ambitious researchers, doctoral candidates and students. The Group possesses great experience in applied optoelectronics and laser technology. Currently, it conducts research in several areas,mostly focusing on: ultrashort laser pulse generation using novel materials, development of pulsed fiber laser sources ranging from visible to mid-infrared, development of compact mid-infrared optical frequency combs, laser spectroscopy techniques, laser vibrometry, solid-state lasers, advanced analog and digital elect
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!